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Abstract - German

Virtualisierungstechnologien ermöglichen eine dynamische Zuordnung von Rechenressour-
cen an Ausführungsumgebungen zur Laufzeit. Um das mit diesem Freiheitsgrad verbun-
dene Optimierungspotenial ausschöpfen zu können, sind zuverlässige Vorhersagen über die
Intensität der einem System ankommenden Arbeitslast wertvolle Informationen, um kon-
tinuierlich die Dienstgüte einer Anwendung sicherzustellen und zugleich die Effizienz der
Ressourcennutzung zu steigern.

Die Zeitreihenanalyse bietet ein breites Spektrum an Methoden zur Berechnung von Vor-
hersagen, basierend auf periodisch beobachteten Erfahrungswerten an. Verwandte Ar-
beiten im Feld der proaktiven Ressourcenplanung konzentrieren sich meist auf einzelne
Methoden der Zeitreihenanalyse und deren individuelles Optimierungspotential, so dass
sich verwertbare Vorhersagen ausschließlich in bestimmten Situationen erzielen lassen.

In dieser Diplomarbeit werden die etablierten Methoden der Zeitreihenanalyse hinsichtlich
ihrer Stärken und Schwächen analysiert und gruppiert. Ein Ansatz wird vorgestellt, der
basierend auf einem Entscheidungsbaum und direktem Feedback über die Genauigkeit
einer Vorhersage dynamisch die für die momentane Situation geeignete Methode auswählt.
Ein Nutzer definiert lediglich seine generellen Zielsetzungen und Anforderungen an die
Vorhersage.

Es wird eine Implementierung des vorgestellten theoretischen Ansatzes präsentiert, die
Vorhersagen über die Intensität der ankommenden Arbeitslast kontinuierlich in konfigu-
rierbaren Intervallen und unter kontrollierbarem Rechenaufwand zur Laufzeit liefert.

Basierend auf realen Arbeitslastverläufen werden eine Reihe an unterschiedlichen Experi-
menten und eine Fallstudien durchgeführt. Die Ergebnisse zeigen, dass es durch Einsatz
der Implementierung im Vergleich zur statischen Anwendung einer etablierten Methode
gelingt, den relativen Fehler der vorhergesagten Punkte in Bezug auf die eintretenden Be-
obachtungen im Mittel um 63% zu reduzieren. In einer Fallstudie werden durch proaktive
Ressourcenplanung, basierend auf den Vorhersagen der Implementierung, zwischen 52%
und 70% der normalerweise eintretenden Verletzungen einer fixen Leistungsvereinbarung
verhindert.
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Abstract - English

Virtualisation technologies enable dynamic allocation of computing resources to execution
environments at run-time. To exploit optimisation potential that comes with these degrees
of freedom, forecasts of the arriving work’s intensity are valuable information, to continu-
ously ensure a defined quality of service (QoS) definition and at the same time to improve
the efficiency of the resource utilisation.

Time series analysis offers a broad spectrum of methods for calculation of forecasts based on
periodically monitored values. Related work in the field of proactive resource provisioning
mostly concentrate on single methods of the time series analysis and their individual
optimisation potential. This way, usable forecast results are achieved only in certain
situations.

In this thesis, established methods of the time series analysis are surveyed and grouped
concerning their strengths and weaknesses. A dynamic approach is presented that selects
based on a decision tree and direct feedback cycles, capturing the forecast accuracy, the
suitable method for a given situation. The user needs to provide only his general forecast
objectives.

An implementation of the introduced theoretical approach is presented that continuously
provides forecasts of the arriving work’s intensity in configurable intervals and with con-
trollable computational overhead during run-time.

Based on real-world intensity traces, a number of different experiments and a case study
is conducted. The results show, that by use of the implementation the relative error of
the forecast points in relation to the arriving observations is reduced by 63% in average
compared to the results of a statically selected, sophisticated method. In a case study,
between 52% and 70% of the violations of a given service level agreement are prevented
by applying proactive resource provisioning based on the forecast results of the introduced
implementation.
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1. Introduction

The use of virtualisation technologies introduces an abstraction layer between resources
that are physically available and resources that are logically visible to an execution en-
vironment hosted on top of the virtualization layer. Thereby, virtualization allows to
dynamically assign and withdraw resources to and from hosted execution environments
at run-time. The amount of resource consumed by executed software services are mainly
induced by the arriving work’s intensity and therefore are likely to change over the course
of time. The flexibility in resource provisioning that comes with virtualisation and the
variation over time in resource demands raise a dynamic optimisation problem. Mecha-
nisms that continuously provide appropriate solutions to this optimisation problem could
exploit the potential to use physical resources more efficiently, resulting in cost and energy
savings. The challenges and potentials to reduce costs and the energy consumption by in-
telligent resource management using virtualization are discussed in many research papers
[OAL11, AMM+09, TBL09, OLG10, LO10].

In general, mechanisms that try to continuously match the amounts of demanded to pro-
visioned resources are reactive using threshold based rules to detect and react on resource
shortages. However, such reactive mechanisms can be combined with a more intelligent
one that proactively anticipates changes in resource demands and prevent shortages. To
achieve this, forecasts of the arriving work’s intensity are a crucial building block.

Related research work in the field of proactive resource provisioning as it can be found in
[GRCK07, HMBN10, BKB07, MIK+10, KKK10, CDM11] mostly concentrates on single
forecast methods of the time series analysis and their individual optimisation potential.
This way, usable forecast results are achieved only in certain situations. In addition, the
forecasts are applied in the majority of cases on monitored performance metrics that are
depending on the recent combination of consumed and provisioned resources and therefore
cannot directly quantify the amount of arriving work.

In this thesis, the broad spectrum of methods offered by the time series analysis to compute
forecasts based on periodically monitored values is surveyed and the individual methods
are grouped concerning their strengths, weaknesses and requirements. A dynamic ap-
proach is presented that selects at run-time the most suitable method for a given situa-
tion. This selection is based on a decision tree that captures forecast objectives, individual
requirements and integrates heuristics, and direct feedback cycles on forecast accuracy.
Users of the approach need to provide only their general forecast objectives and are not
responsible to dynamically select appropriate forecast methods. An implementation of
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the introduced theoretical approach is presented that continuously provides forecasts of
the arriving work’s intensity in configurable intervals and with controllable computational
overhead during run-time.

The approach and the implementation are evaluated in multiple different experiments
and a case study, all based on real-world arriving workload intensity traces. The results
show that the intelligent and dynamic selection of a suitable forecast strategy reduces
the relative error of the forecast points in relation to the arriving observations by 63%
in average compared to the results of a statically selected, sophisticated method. Even
when limiting the space of selectable forecast methods to a certain group of similar ones,
the implementation achieves a higher forecast accuracy with less outliers than individual
methods of the group in focus. In the conducted case study, between 52% and 70% of the
violations of a given service level agreement are prevented by applying proactive resource
provisioning based on the forecast results of the introduced implementation.

1.1 Goals of the Thesis

The contributions of this diploma thesis are formulated in the following goals that are
tackled stepwise in the individual chapters.

Identify the characteristics and components of a workload intensity behavior and metrics
to quantify them for automatic classification and selection of a forecast strategy.

Build a survey on state-of-the-art forecasting approaches (including interpolation, decom-
position and pattern recognition techniques) of the time series analysis focusing on
their strengths, weaknesses and requirements and analyse the computational over-
head of the individual forecasting strategies to identify suitable configurations for
their online application. Identify metrics that capture or estimate the accuracy of a
forecast and enable direct comparison of different strategies.

Design an approach to automatically correlate workload timing behavior classes and
time series based forecasting approaches using a decision tree that considers forecast
objectives, incorporates feedback on the forecast accuracy and offers a configurable
space for further heuristic optimisation.

Build a WorkloadClassificationAndForecasting system for online application that
provides continuous forecast results of a variable number of different workload inten-
sity behaviors. This goal includes known software engineering tasks like designing
the system’s architecture, specifying its interfaces, selecting appropriate technologies
and implementation as well as testing and documentation.

Validate the introduced approach by conducting experiments at the WorkloadClassi-

ficationAndForecasting system and illustrate the value of its benefits in a case
study.

Achieving these goals in combination can be seen as a step towards the Descartes Research
Group’s vision of a Self-aware System as outlined in [KBHR10], since an application of
the resulting approach enables a system to analyse its past usage to intelligently anticipate
recurring patterns or trends.
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1.2. Thesis Structure

1.2 Thesis Structure

According to the stated main goals, the remainder of this thesis is structured as outlined
in the following:

The foundations in Chapter 2 start with a section on definitions, terms and differentia-
tions, before Section 2.2 describes characteristics of workload intensity behaviors that are
captured in time series of request arrival rates. It further refines these characteristics in
dimensions and corresponding metrics for classification. Section 2.3 gives short summary
on pattern identification methods that are applicable to time series data and an survey on
existing forecast approaches that use time series analysis This sections ends with a survey
on forecast accuracy metrics. Section 2.4 outlines the application context in which forecast
results can be used.

Chapter 3 presents the workload classification and forecasting approach and starts with a
section on assumptions and limitations. Section 3.2 explains the individual concepts before
they are combined in a decision tree with feedback cycles as outlined and illustrated in 3.3

Section 4.1 outlines the architecture of the WorkloadClassificationAndForecasting sys-
tem that realises the presented approach. The following Section 4.2 captures implementa-
tion details on the individual system components. Section 4.3 discusses design decisions
and variation or extension points, before the last Section 4.4 of this chapter gives technical
details on the development and run-time environments.

The evaluation of the approach and its implementation can be found in Chapter 5 that
starts with a section containing details on the used real-world workload traces. In Sec-
tion 5.2, four experiments with different focus are presented and their results illustrated
and explained, before the value of benefit that is connected to an application of the pre-
sented implementation is illustrated in a case study. In the last section of Chapter 5, the
experiments’ results are interpreted and discussed.

A discussion of related research work can be found at the end of this thesis in Chapter 6.
before the concluding remarks and future prospects in Chapter 7.
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2. Foundations

This chapter starts with a section on definitions of crucial terms from the fields of vir-
tualisation, software services and workload characterisation as well as from the field of
the performance analysis. Section 2.2 discusses the characteristics of workload intensity
behaviors and outlines ways to quantify them. The following section starts by giving a
brief overview on pattern identification methods offered by the time series analysis that
are already build in or can be combined with forecast methods. Subsection 2.3.2 gives a
survey on state-of-the-art forecast methods and analyses them concerning their strengths,
weaknesses and requirements. This section ends with a summary of metrics that are able to
quantify the forecast accuracy and enable direct comparisons of different forecast methods.
The last section of this chapter outlines the application context for which the approach is
designed as presented in Chapter 3.

2.1 Definitions, Terms and Differentiations

The aim of this section is to enable the reader to build up a precise understanding of the
presented concepts and ideas as well as of the thesis’ context. Crucial terms concerning
virtualisation, software services, workload characterisation and performance analysis are
lined up and defined for the context of this thesis. The definitions can also be found in
the glossary at the end of this thesis.

The following four items define terms in the context of virtualisation, as this technology
offers functionality that enables dynamic resource provisioning.

An execution platform consists of hardware, virtualization and operating system layer
plus optional middleware like an application server.

Scalability: A computing system consisting of an execution platform and applications
is scalable if both properties are fulfilled:

• Platform scalability is the ability of the execution platform to provide and
make use of as many (additional) resources as needed (or explicitly requested)
by an application.

• Application scalability is a property of the software/application layers. The
application is able to maintain its performance goals in terms of response time
or throughput as defined in Service Level Agreements (SLA) even when its
workload intensity increases. Platform scalability is a necessary property to
make application scalability possible.
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These properties imply the absence of bottlenecks in both active and passive re-
sources. Scalability of a computing system can be limited by an upper bound of
workload intensity or resource pool size. [KHvKR11]

Elasticity of a computing system is characterized by the temporal and quantitative
properties of automated scaling, which is run-time resource provisioning and un-
provisioning performed by the execution platform. A manually scaled system cannot
be called elastic. Execution platform elasticity depends on the state of the platform
and on the state of the platform-hosted applications. Elasticity implies Scalability
beneath a given upper bound. [KHvKR11].

A virtualized elastic system is an execution platform that is elastic in terms of the
given definition and makes use of virtualization technologies. By using virtualiza-
tion technology the underlying physical resources can be mapped transparently and
dynamically to virtual resources.

In the following, nine terms are defined concerning software services and the work that is
processed by these software services:

Software services (SaaS) are offered by a computing system to the users of the system,
which can be human persons via an interface or computing machines. In our context,
a software service can be seen as a deployed software component.

Requests are submitted to a software service by a user and can be seen as an encapsu-
lation of a single usage of a service.

A request class is a category of requests that is characterized by statistically indistin-
guishable resource demands.

A resource demand in units of time or capacity is the consumption of physical or
virtual resources induced by processing a single request.

A workload is the physical (not modeled) usage of a system over time containing requests
of one or more request classes. A workload can contain usage patterns that enable
load forecasting, provisioning, planning or anomaly analysis. This definition deviates
from the definition in [TL10] on page 2, where a workload is a more general term
capturing applications and their service level agreements additionally.

Workload models are representations that capture the main aspects of a corresponding
real workload that has effect on the performance measures of interest. [Kou07]

A usage scenario is an instance of a workload model and defines the rates and order of
service requests and is used for early performance predictions in the context of the
Palladio Component Model (PCM) as described in [RBH+07].

A workload category is a coarse-grained classification of a workload and divided into
four basic application and technology domains broadly used for market segmentation
and analysis. As in [TL10] on page 13 the four categories are:

• Database and Transaction Processing

• Business Process Applications

• Analytics and High Performance Computing

• Web Collaboration and Infrastructure

The last five items of this section focus on terms that are needed to capture characteristics
of variable arriving work to a software service as well as on three basic performance metrics
throughput, resource utilization and response time:
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2.2. Workload Intensity Behavior Characteristics

A time series X is a discrete function that represents real-valued measurements xi ∈ R
for every time point ti in a set of n equidistant time points t = t1, t2, ..., tn: X =
x1, x2, ..., xn as described in [Mit09]. A time series may have a finite capacity. The
time between to time series points is defined by a value and a time unit. The number
of time series points, that add up to a higher time unit or another obvious period
is the frequency of a time series. The frequency attribute of a time series is an
important start value for the search of seasonal patterns.

A time series of request arrival rates is a time series that contains ni ∈ N sums of
unique request arrivals during the corresponding time intervals [ti, ti+1).

Workload intensity behavior is a description of a workload’s characteristic changes
in intensity over time like seasonal patterns, trends, noise, burstiness, level and more
like positivity or burstiness. The workload intensity behavior can be extracted from
a corresponding time series of request arrival rates.

Throughput is the rate at which requests are completed by a computer system (mea-
sured in operations per unit of time). [Kou05]

Resource utilization is the fraction of time that the resource is busy. [Kou05]

Response time is the time it takes a system to react to a request and is composed of
congestion time(s) and service time(s). [Kou05]

2.2 Workload Intensity Behavior Characteristics

Already in 1985, Calzarossa et al. published a research paper [CS85] on characterization
of the variation in time of workload arrival patterns, where they use polynomial regression
to identify and describe daily workload patterns. In 1996, Arlitt and Carey searched
for invariants in web-server workloads as they describe in their paper [AW96] focusing
on characteristics of request classes and their typical resource demands. In the paper
[SWHB06], the authors discuss and evaluate the two basic ways to model different workload
types either in an open or a closed workload model. The generation of intensity varying
workloads is captured in the publication [vHRH08], of Hoorn, Rohr and Hasselbring, where
the influences on the intensity variation of a workload are modelled in detail to achieve
the generation of realistic behaviors that can be used e.g. for benchmarking purposes.

The above listed research work on workload classification identifies central characteristics of
workload intensity behaviors (WIB), but it is not in the focus to establish any connection
between a certain characteristic and a suitable forecast strategy. To tackle the goal of
building a classification scheme for a forecast strategy selection, it helps to decompose a
workload intensity behavior in a first step. As a WIB is captured in a time series of request
arrival rates, the components of the time series itself and its properties are central to the
analysis.

2.2.1 Time Series Component Identification

According the theory of the time series analysis as presented in standard works of this
field [BJR08, Hyn08, Shu11], a time series can be decomposed into the following three
components. The relative weights and the shapes of these components characterise a
corresponding workload intensity behavior.

The trend component can be described by a monotonic increasing or decreasing function
(in most cases a linear function) that can be approximated using common regression
techniques. A break within the trend component is caused by system extrinsic events
and therefore cannot be forecast by analysis of historic observations but detected in
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retrospect. It is possible to estimate the likelihood of a change within the trend
component by analysis of the durations of historic trends.

The season component captures recurring patterns that are composed of at least one
or more frequencies, for example daily, weekly or monthly patterns (but they do
not need to be integer valued). These frequencies can be identified by using a Fast
Fourier Transformation (FFT) or by auto-correlation techniques.

The noise component is an unpredictable overlay of various frequencies with different
amplitudes changing quickly due to random influences on the time series. Noise can
be reduced by applying smoothing techniques like weighted moving averages (WMA),
by using lower sampling frequency or by a filter that eliminates high frequencies. A
suitable tradeoff between reduction of noise and loss of information can enhance
forecast accuracy.

A time series decomposition into the above mentioned components is illustrated in Figure
2.1. This decomposition of a time series has been presented in [VHZC10]. The authors
offer an implementation of their approach for time series decomposition and detection
of breaks in trends or seasonal components (BFAST)1. In the first row, the time series
input data is plotted. The second row contains the detected (yearly) seasonal patterns,
whereas the third row shows the estimated trends and several breaks within these trends.
The remainder in the undermost row is difference between time series data and the sum
of the trend and the seasonal component and can be seen as the non-deterministic noise
component.
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Figure 2.1: Illustration of a Time Series Decomposition into Season, Trend and Noise Com-
ponents as presented in [VHZC10]

The theory of time series analysis differentiates between static and dynamic stochastic
processes. In static process models it is assumed that the trend and season component
stay constant. Having a dynamic process model, these components change or develop over
time and therefore have to be approximated periodically to achieve good quality forecasts.
Nevertheless, the trend and season components are considered as deterministic and the
quality of their approximation is important for the quality of forecasts. Depending on the

1http://bfast.r-forge.r-project.org/
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2.2. Workload Intensity Behavior Characteristics

applied stochastic model, the season, trend and noise components can be either concerned
as multiplicative or additive (or neglected) to build the original time series data.

2.2.2 Means for Automated Classification

As the decomposition of a time series using the BFAST approach induces a high compu-
tational burden, more easily computable characteristics of a time series are important for
an online classification and selection of a suitable forecasting strategy. These metrics are
presented in Table 2.1 in addition to the enumeration with short explanations below:

The burstiness index is a measure for the spontaneity of developments within the time
series and calculated by the ratio of the maximum observed value to the median
within a sliding window.

The length of the time series data mainly influences the accuracy of approximations for
the above mentioned components.

The number of consecutive monotonic values either upwards or downwards within an
sliding window characterises a time series as this value describes indirectly the in-
fluence of the noise and seasonal components on the time series. Observing a small
value can be seen as a hint to apply a time series smoothing technique.

The maximum, the median and the quartiles are important to describe the distribution of
time series values and can be unified in the quartile dispersion coefficient (QDC) as
defined in common statistics as the distance of the quartiles divided by the median
value.

The standard deviation and the mean value are combined in the variance coefficient that
expresses unit-free the distribution of the time series values as the QDC.

Absolute positivity of a time series is an important characteristic, because intervals con-
taining negative or zero values can influence the forecast quality and even the appli-
cability of forecast strategies, as they can loose their numeric stability through the
possibility of a division by zero. As arrival rates cannot be negative by nature but
only zero, a not absolutely positive time series can be treated with a simple filter or
a specialized forecasting strategy. Therefore, it is useful to compute the rate of zero
values within a sliding window.

The application of Weighted Moving Averages is a simple approach to reduce noise effects
in a time series without changing the level of data aggregation.

The relative gradient is defined in this context as the absolute gradient of the latest
quarter of a time series period in relation the median of this quarter. It captures the
steepness of the latest quarter period without a unit, as it is related to the median.
A positive relative gradient shows that the last quarter period changed less than the
median value, a negative value indicates a steep section within the time series (e.g.
the limb of a seasonal component).

The period and frequency are properties of a time series and describe the number of time
series values (frequency) that form a period of interest (in most cases simply the
next bigger time-unit) and an important input as they are taken as starting values
for the search of seasonal patterns.

These metrics introduce only low complexity in their computation, are sufficient to capture
important characteristics of a workload intensity behavior and therefore are suitable to be
integrated into an online classification process.
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Table 2.1: Means for Characterisation and Classification of Workload Intensity Behaviors
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2.3. Time Series Analysis

2.2.3 Real-World Workload Intensity Behavior

As software services are normally used directly or indirectly by human users, real-world
workload intensity behavior traces are likely to show strong seasonal patterns in daily
periods that are possibly overlaid by far longer periods like weeks or months. The shape of
a daily seasonal pattern characterises a workload intensity behavior as these patterns are
directly influenced by common human habits like working hours, lunch time and of course
common sleeping hours. The calender that defines working days, weekends and holidays
may also have an strong impact on the workload intensity behavior. Even the weather can
possibly influence human usage behavior.

A high weight of a trend component within a workload intensity behavior trace is rarely
seen at the scale of hours and days, but may be found in aggregated data at the scale of
weeks, month or years for long term forecasts. If monitoring values are available in a high
resolution at the scale of minutes or seconds, stronger trends may also be visible if the
noise level is not to strong.

2.3 Time Series Analysis

This section starts with a short summary of pattern identification methods and lists recent
research publications in this field of the time series analysis, before a survey on forecast
approaches is conducted in 2.3.2. At the end of this section, metrics are presented that
capture forecast accuracy.

2.3.1 Pattern Identification in Time Series

It is important to understand the past when trying to anticipate the future developments.
Therefore it is necessary to extract the deterministic patterns that occur in the time series
history as precise as possible to apply them in a forecast approach or for time series
decomposition. Common methods for pattern identification of the time series analysis are
lined up in the following:

The Discrete Fourier Transformation (DFT) analyses the frequencies within a time
series. Frequencies that are found more often than others hint towards seasonal
patterns within the time series with a duration of the detected frequency. DFT
is for example integrated in the tBATS innovation state space modelling framework
[DLHS11] as stated in 2.3.2.8 or used in approaches of related work like in [GRCK07,
HMBN10].

Auto-correlation techniques highlight similarities of a time series within itself for a
given lag that can be provided by a DFT analysis. If this lag is equal to the duration
of a seasonal pattern, the auto-correlation function identifies seasonal patterns and
measures their similarity. For example, this technique is applied in combination with
DFT in [BKB07] as presented in Related Work 6.

Polynomial Regression is a method that fits a polynomial of given degree through
given discrete points minimizing squared distances. This technique has been used
for the description of daily patterns (know frequency) in the early work in 1985 of
Calzarossa and Serazzi [CS85]. For a small polynomial degree, this method does not
induce a high processing complexity and does not need an extensive history, but this
regression technique is sensitive to noise. Linear regression is a common approach
to extrapolate the trend component of a time series.

Pattern identification approaches are already integrated into or can be combined with
forecast methods that consider seasonal components and are therefore crucial in wider
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context of time series based forecasting. Still, they do not support WIB classification for
forecast strategy selection and are therefore not in the focus of the workload classification
and forecast approach and its implementation that relies on accuracy feedback and simple
heuristics to limit the computational overhead.

Further advanced pattern identification approaches are presented and discussed in a broad
spectrum of research publications. In Olszewski’s PhD thesis [Ols01] a generalized feature
extraction approach is introduced for structural pattern recognition in time series data.
Warren and Liao present a survey on clustering approaches for time series data in [WL05].
The authors of the publication [ZLDL11] present a novel clustering approach in time series
data. In 1992, Raatikainen published a paper [Raa93] where he critically assesses the use
of the k-means algorithm for workload classification. In [SGL+11] the authors propose an
approach for pattern identification and classification in multivariate time series. Such an
approach could be applied to analyse and detect correlations between workload intensity
behaviors of different request classes. The authors of the publications [ALSS95] and [HB10]
focus in both cases on the detection of fuzzy patterns under scaling or translations or in
the presence of noise. As demonstrated in [BBR+07, Kle], neuronal nets in combination
with machine learning techniques can be used to detect patterns in time series data.

2.3.2 Survey on Forecast Approaches

This section lines up forecast approaches of the time series analysis and highlights their
requirements, strengths and weaknesses together with a short summary that is based on
information from the sources in [BJR08, Hyn08, HK08, Shu11]. All of the following forecast
methods have been implemented by Hyndman in the R forecast package 2 and documented
in his publication [HK08]. The implemented forecast methods are based either on the state-
space approach as discussed in [Hyn08] or the ARIMA (auto-regressive integrated moving
averages) approach for stochastic process modelling that is extensively presented in the
book of Box, Jenkins and Reinsel [BJR08]. These two general stochastic process modelling
frameworks overlap, but are not identical as in both cases there exist model instances that
have no counterpart in the other and both have different strength and weaknesses as stated
in the comparison part in [HK08].

The below listed and shortly summarized forecast approaches are selected to cover the
state-of-the-art spectrum of the time series analysis for different objectives, data charac-
teristics and are ordered in their computational complexity. Capturing the complexity in
common O-notations is hardly possible besides in the two first simple cases. The time
series size is only one part of the problem description, as in addition, the shape of seasonal
patterns contained in the data and optimisation thresholds during a model fitting proce-
dure strongly influence the processing times. Therefore, the computational complexity of
the individual methods has been evaluated in experiments that contain a representative
amount of forecast method executions in an environment as described in Section 4.4.

The first two presented methods below are very basic ones, whereas the third to seventh
method include capability to estimate trends within a time series development and can be
seen as instances of more extensive stochastic proves modelling frameworks. The last three
forecast methods are stochastic proves modelling frameworks and capable to additionally
model seasonal patterns in different peculiarity. Table 2.2 summarises the presented fore-
cast methods by shortly covering their operating mode, giving information on a suitable
forecast horizon, requirements and experimentally evaluated computational overheads as
well as by depicting strengths, weaknesses and an optimal application scenario. Some more
forecast approaches, like Holt-Winters approach as described in [Goo10] from 1960 or the
Theta method are covered in the presented list as a special case of exponential smoothing.

2http://robjhyndman.com/software/forecast/
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Table 2.2: Table of Forecast Strategies and their Properties
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2.3.2.1 Naive Forecast Method

The naive method has no inherent complexity as it takes the assumption that the last
observed value is the most likely one to be observed in the next step. This method is
usually taken as the reference method to enable the comparison of two other forecast
approaches. It can be combined with a random-walk factor or a drift. This method
induces no computational overhead beside the calculation of a confidence interval and
requires only a single time series point to be applicable. The naive method is identical to
the arithmetic mean method with a sliding window size of one.

2.3.2.2 Moving Averages Method

The moving average (MA) of a sliding window can be computed and used as a point
forecast for the next interval. Compared to the naive method this method is able to
smooth out a certain noise level by averaging over a sliding window. The computational
overhead is negligible.

2.3.2.3 Simple Exponential Smoothing

The simple exponential smoothing (SES) method extends the moving averages approach
by weighting more recent values in a sliding window with exponential higher factors. In
the first step, the parameters of this exponential function are adapted to the given time
series data in an iterative optimisation process beginning with recommended start param-
eters, before in the second step, point forecasts and confidence intervals are computed
iteratively. This method smooths out a certain noise level and reacts more flexible as the
arithmetic mean method on the influences of trend or seasonal patterns due to the expo-
nential weighting. But still, as this method inherently damps any changes in the values it
does not extrapolate trends or other developments due to seasonal patterns. Experiments
showed that the SES method returns a result below 80milliseconds when applied on less
than 100 values. This computational overhead is mainly induced by the parameter esti-
mation step. SES is suitable for short-term forecasts and can be applied already at a small
time series size. In the SES method no trend or season component is considered, but it is
extended to do so in the ETS method. The SES method is equal to an application of the
ARIMA((p, d, q) = (0, 1, 1)) model as described in 2.3.2.9.

2.3.2.4 Cubic Smoothing Splines

As demonstrated and discussed in [HKPB02], cubic smoothing splines (CS) can be fitted
to univariate time series data to obtain a linear forecast function that estimates the trend.
The smoothing parameters are estimated using a likelihood approach enabling the con-
struction of confidence intervals. The authors say that this approach is a special case of
the ARIMA((p, d, q) = (0, 2, 2)) model as described in 2.3.2.9 with a restricted parameter
set. They demonstrate that this restriction does not impair the forecast accuracy. This
approach tends to better estimate trends than the SES method, but seasonal patterns
cannot be captured. This method sometimes overestimates a trend in steep parts of a
time series. The computational overhead stays below 100 milliseconds when applied on
the last 30 values. It has been observed that the computation time rises for more values
without an observable improvement in forecast accuracy.

2.3.2.5 ARIMA(1,0,1) Stochastic Process Model

The ARIMA((p, d, q) = (1, 0, 1)) model is an instance of the ARIMA (auto-regressive
integrated moving averages) framework as described in Section 2.3.2.9 and assumes a
stationary stochastic process (constant mean value) as it does not make use of integration
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2.3. Time Series Analysis

as in SES and CS, where d is not zero in the corresponding ARIMA models. Therefore,
it can also be called an ARMA((p, q) = (1, 1)) process model as explained in Shumway’s
book on time series analysis [Shu11]. This method is not as sensitive as the CS method
to steep parts in a time series. This application of the auto-regressive moving average
includes as in SES and CS a parameter estimation that induces the major computational
effort. Experiments showed that this method returns results below 70 milliseconds when
applied on the last 100 values.

2.3.2.6 Croston’s Method for Intermittent Time Series

Croston’s method is presented in [SH05] and is specialized for forecasting of intermittent
time series. In contrast to the other methods, this is applicable to time series that contain
zero values. Internally, the original time series is decomposed into a time series without
zero values and a second one that captures durations of zero valued intervals. These
two time series are then independently forecast using the SES method and unified. As
this method has no consistent underlying stochastic model, confidence intervals cannot be
computed. As this method is based on the SES method, the computational overhead is
slightly higher with 100 milliseconds computation time on 100 values.

2.3.2.7 Extended Exponential Smoothing

As presented in [Hyn08] and [HK08], the extended exponential smoothing (ETS) bases on
the innovation state space approach and explicitly models a trend, a season and a trend
component in individual SES equations that are combined in the final forecast result in
either additive or multiplicative (or neglected) manner. In addition, damping the influence
of one of these components is possible. According to this model framework, the forecast
process starts with the selection of an optimized model, before the parameters of the single
SES equations are estimated. Having the model and the parameters adapted to the time
series data, point forecasts and confidence intervals are computed. This method is able to
detect and capture sinus like seasonal patterns that are contained at least three times in
the time series data. In this case, the ETS has a computation time of 15 seconds on 200
time series values. In the case of more complex patterns, this method is a multiple faster,
but not able to detect this pattern resulting in worse forecast accuracy.

2.3.2.8 tBATS Innovation State Space Modelling Framework

The tBATS innovation state space modelling framework has been presented in 2011 in
[DLHS11] and recently been integrated into the R forecasting package. It further extends
the ETS state space model for a better handling of more complex seasonal effects by
making use of a trigonometric representation of seasonal components based on a Fourier
transformations, by the incorporation of Box-Cox transformations and by use of ARMA
error correction. tBATS relies on a new method that reduces the computational burden of
the maximum likelihood estimation. In experiments processing times of up to 18 seconds
have been observed on 200 values, but in several cases the processing time of five to seven
seconds still resulted in appropriate forecast accuracy.

2.3.2.9 ARIMA Stochastic Process Modelling Framework

The ARIMA (auto-regressive integrated moving averages) stochastic process modelling
framework is presented in the book “Time Series Analysis - Forecasting and Control”
by Box, Jenkins and Reinsel [BJR08]. The ARIMA model space is defined by seven
parameters (p, d, q) and (P,D,Q)m, whereas the first triple defines the model concerning
trend and noise component, the second vector is optional and defines a model for the
seasonal component. The parameter m stands for the frequency of the seasonality. P or
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p stands for the order of the AR(p) process, D or d for the order of integration (needed
for the transformation into a stationary stochastic process) and Q or q for the order of
the MA(q) process. This model space is theoretically unlimited as the parameters are
positive integers or zero. The model selection is a difficult process that can be realised
via space limitation and intelligent model space traversion using different unit-root tests
(KPSS, HEGY or Canova-Hansen) and Akiake’s information criterion (AIC). Hyndman
proposes an process for automated model selection in [HK08] that is implemented in the
auto.arima() function of the R forecast package. A selected ARIMA model is then
fitted to the time series data to compute point forecasts and confidence intervals. A high
computational effort is induced by the model selection and further fitting: Up to 50 seconds
on 200 values, but with a high variance as the model selection process depends also on the
data itself and not only on the amount of data to base the forecast result on. Experiments
also showed that this ARIMA approach achieves in most cases closer confidence intervals
than the tBATS approach.

2.3.3 Forecast Accuracy Metrics as Feedback for Classification

Numerous error metrics have been proposed to capture the differences between point fore-
casts and corresponding observations and are summarized, explained and compared in
the publication of Hyndman and Koehler [HK06]. In the following, the forecast accuracy
metrics are defined and grouped into four sets as presented in the mentioned publication.

Table 2.3: Scale-dependent Error Metrics

Mean Square Error MSE mean(et
2)

Root Mean Square Error RMSE
√
MSE

Mean Absolute Error MAE mean(|et|)
Median Absolute Error MdAR median(|et|)

The first group of error metrics in Table 2.3 are the scale-dependent ones that are directly
computed using the error et at a time point t: et = forecastV aluet− observedV aluet and
can be used for comparisons of forecast accuracy on identical data.

Table 2.4: Percentage Error Metrics (Scale-independent)

Mean Absolute Percentage Error MAPE mean(|pt|)
Median Absolute Percentage Error MdAPE median(|pt|)
Root Mean Square Percentage Error RMSPE

√
mean(pt2)

Root Median Square Percentage Error RMdSPE
√
median(pt2)

The second group are the percentage error metrics in Table 2.4 that relate the errors et
to the corresponding observed value at the time point t: pt = 100×et

observedV aluet
These metrics

are undefined, if the time series contains zero values.

The third group contains relative error metrics as in Table 2.5 that relate the errors et of
the method in focus to the errors et

∗ of a benchmark method: rt = et
et∗

. The benchmark
method need to be defined beforehand to enable accuracy comparisons of forecast methods
even on different data samples.

The fourth group are the scaled error metrics as in Table 2.6 that relate the errors et to
the in-sample forecast results of a one-step naive forecast as follows:
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Table 2.5: Relative Error Metrics (Scale-independent)

Mean Relative Absolute Error (MRAE) mean(|rt|)
Median Relative Absolute Error (MdRAE) median(|rt|)
Geometric Mean Relative Absolute Error (GMRAE)

√
gmean(|rt|)

Table 2.6: Scaled Error Metrics

Mean Absolute Scaled Error (MASE) mean(|qt|)
Median Absolute Scaled Error (MdASE) median(|qt|)
Root Mean Squared Scaled Error (RMSSE)

√
mean(qt)2

qt = et

1
n−1

n∑
i=2

|observedV aluei−observedV aluei−1|

This way, the scaled error are relative errors that use the naive forecast method as bench-
mark. The metric is easily interpretable as a value smaller than 1 indicates smaller baseline
than compared to errors of the naive method and a larger value indicates a worse accuracy
accordingly.

In [HK06], the authors propose to use the MASE forecast accuracy metric to enable con-
sistent comparisons of forecast strategies even over different data samples. Computing the
MASE metrics enables direct impressions whether the forecast result is better as the naive
approach and therefore indicates that a result interpretation may be useful for proactive
provisioning. The R forecast package offers the accuracy() method that offers inter alia
the MASE metric that is based on the recently available time series data and captures the
historic forecast accuracy as an estimate for the recent forecast.

2.4 Application Context of WIB Forecasts

Having continuous forecasts with an appropriate accuracy that are calculated online in
a repetitive manner and induce controllable processing overheads, enables to estimate
a future usage profile of a software service and is therefore an building block for the
realisation of a proactive resource management. The plausibility of the forecast results can
be directly evaluated by such an resource management using the provided estimates for
the recent accuracy in form of confidence intervals and the MASE metrics. An intelligent
system, in which these approaches are integrated, can be aware of its near future and
manage its resources proactively in addition to reactive mechanisms.

The system for workload classification and forecasting as introduced in the following chap-
ters of this thesis can be integrated into an comprehensive process for intelligent reac-
tive and proactive resource provisioning as is illustrated in the chart in Figure 2.2 from
[KBHR10]. The incorporation of a workload forecasting system is visualised as the box
in the upper right side to provide continuous forecast results of monitored arrivals rates
to a resource management component based on architecture-level performance models.
This component takes the predicted usage profile (or workload intensity behavior) as in-
put parameter to estimate resource consumptions. After completion of this step, likely
resource shortages or conflicts are detected and solved if possible by finding an optimized
reconfiguration scenario.
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Figure 2.2: Illustration of an Online System Reconfiguration Process as published in
[KBHR10]

A nearly optimal resource efficiency may be achieved by dynamic proactive provisioning,
when in all points of time the demand for resources is almost equal to the amount of pro-
visioned resource. Any improvement in resource efficiency results in savings of energy and
costs. Providing a solution to this dynamic optimisation problem would address the chal-
lenge of Software-as-a-Service (SaaS) cloud providers to run their deployed services in an
elastic system compliant to performance goals as defined in fixed service level agreements
(SLAs), while not wasting resources and energy on the other hand.
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3. Approach

As stated in the Introduction in Section 1.1, the major research goal of this diploma
thesis is the construction of an automatically executable classification scheme for workload
intensity behaviors. An approach for this goal is presented in this chapter that uses a
decision tree and forecast quality feedback mechanisms for the computation of classification
results to enable the selection of a time series forecast strategy according to a given set of
forecast objectives. The classification process and the forecast strategies are both applied
periodically. To achieve a trustworthy classification of the workload intensity behavior, a
subset of suitable forecast strategies is selected according to given objectives and properties
of the time series. After execution of different forecast strategies in this subset, their
accuracy is evaluated for the classification. By taking forecast quality metrics as feedback
into consideration, the overall forecast accuracy is improved in the majority of cases as
shown in the Evaluation in Chapter 5 of this thesis.

In Section 3.1 assumptions and inevitable limitations of the approach are outlined and
discussed. In the second part of this chapter 3.2 the basic ideas and concepts of the
approach are presented stepwise and detailed. The composition of these concepts within
a unified classification process can be found in Section 3.3.

3.1 Assumptions and Limitations

It is inevitable to assume that a software service, on which this workload classification and
forecasting (WCF) approach is applied, is able to constantly monitor and report its request
arrivals of a defined request class, for example by using a monitoring framework like Kieker
which is presented in [vHWH12]. In this case time series based forecast algorithms can
be applied to predict future time series points. Concerning this approach, the input to
a time series based forecast algorithm is assumed to be a time series of request arrival
rates of a single request class. This implies that the focus is not to observe or analyze
interactions between different two or more different request classes, which would be the
task of system resource planning and optimization algorithms like presented in a broad
spectrum of research papers [MIK+10, vMvHH11, KBHR10, KKK10, JHJ+10, HBK11,
HMBN10, CEM+10, ACCM09, BKB07].

In addition, this WCF approach does not analyse request characteristics or predict the im-
pact of changes within the arriving requests themselves like changes in data sizes or com-
plexity as discussed for example in [AW96, CS85, Raa93]. Even though the request char-
acteristics are essential for the estimation of the resource demand. A trustworthy resource
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demand estimation can be achieved by means of system monitoring and is needed for cali-
bration of a system’s performance model that is able to simulate and predict performance
metrics for a given arrival rate of requests. Approaches for resource demand estimation
and performance model calibration are presented in [Kou07, KBHR10, Kou05, HBK11].

Moreover, this WCF approach is not meant to be applied to time series containing re-
sponse time, resource utilization or throughput values. Forecasting of these quality of
service attributes making use of time series analysis methods is in the focus of approaches
that are shortly discussed in the context of related work in Chapter 6. The basic perfor-
mance metrics characterize a system’s capability to handle and process requests but do
not directly quantify the amount of arriving work. In the wider context of this thesis, ar-
rival rates are not a performance metric but serve as input for performance models, which
are later analysed. Due to the fact that the stochastic models of the forecast strategies
based on time series analysis are not designed and therefore not capable to capture all sys-
tem’s performance relevant characteristics in addition to the workload intensity behavior.
Therefore, a direct prediction of performance metrics may be difficult to achieve with a
high accuracy needed for trustworthy decisions.

Any forecast is inherently connected with uncertainty due to unforeseeable system extrinsic
influences. It is obvious that the influence of a system extrinsic change or event as for
example an accident cannot be forecast based on experience that is captured solely in
system specific historic data. This is due to the non-deterministic nature of apparently
randomized events and their possibly sudden influence to a system. In contrast, the
influence of a planned change or event could be manually estimated beforehand. Unplanned
events can cause anomalies that can be detected and analyzed afterwards by methods
like ΘPAD. Speaking in basic terms, this method compares the observation with the
expected values. Performance anomaly detection is the target of a related diploma thesis
at Christian-Albrecht University Kiel authored by Tillmann Carlos Bielefeld [Bie12].

The uncertainty induced by sudden anomalies and constant noise is usually captured by
confidence intervals of a given confidence level α. These intervals symmetrically enclose
the forecast mean value. Deterministically recurring fluctuations and patterns form the
seasonal component within the workload intensity behavior and need to be observed at
least two or better three times to enable their detection and analysis of their temporal
distance and shape by the more complex forecast strategies like ARIMA or tBATS.

3.2 Concepts for the Classification of a Workload Intensity
Behavior

This section presents and discusses step by step the basic concepts for the classification
of workload intensity behavior that are then combined into a unified classification process
via decision tree with feedback cycles as shown in Section 3.3

3.2.1 Workload Intensity Behavior Classes

A workload intensity behavior class is defined via the current choice of the most appropriate
forecast strategy. Each class identifier is equal to the name of the corresponding forecast
strategy. A workload intensity behavior changes and develops over time in a way that the
classification is not stationary and therefore needs periodically verification with may lead
to a reclassification. For example, a workload intensity behavior at a time point t is in the
class that is named after the currently selected forecast strategy A delivering optimized
forecast accuracy compared to other available forecast strategies. At a later point in time
t+ i the workload intensity behavior has been reclassified and its class is now named after
a forecast strategy B.
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3.2. Concepts for the Classification of a Workload Intensity Behavior

As different forecast strategies possibly deliver identical results due to an overlap of their
underlying stochastic model, the class of a workload intensity behavior may not be unique
anytime.

3.2.2 Time Series Attributes

A time series of request arrival rates of a request class is a dynamic and frequently updated
object and contains the most recent available request arrival rates within the single time
series points up to a defined length of the time series. For this WCF approach, the
length of a time series should be limited to a maximum of 200 values to assure that the
processing times of a single forecast strategy execution stays below 60 seconds. Due to
high algorithmic complexity classes of the more advanced forecast strategies the processing
times grow quickly with a higher amount of time series values.

According to the definition of a time series in Section 2.1 a time series object has five
attributes, that are fixed for the lifetime of a time series instance and further explained in
Table 3.1.

Table 3.1: Time Series Attributes

Parameter 
Name  

Parameter Range Proposed 
Configuration 

Explanation 

StartTime [0;max_long][ms] given by monitoring 
setting 

The timestamp (absolute time in [ms]) of the first arrival rate value added to 
the time series is equal to the start time of the time series 

DeltaTime (0;max_long] given by monitoring 
setting 

The constant time difference between two time series values is the Delta 
Time 

DeltaTime 
Unit 

{ms; sec; min; hours; days; 
weeks; months; years} 

given by monitoring 
setting 

This parameter defines the time unit of the DeltaTime parameter 

Frequency [1;max_int] [7;65] The Frequency is the number of time series points that add up either to the 
next bigger time unit and/or to the estimated length of seasonal patterns in 
focus. The value should not be too small (still able to approximate the shape 
of the seasonal pattern) and not to high (to limit the computational effort of 
complex forecast strategies) 

Maximum 
Periods 

[1;max_int] [3;28] The amount of Frequency time series points form a period. This parameter 
defines the maximum number of periods that fit into the time series. As in a 
`fifo’ queue the oldest values fall off when more recent values are added. 
The value of this setting should be at least 3 to enable reliable pattern 
detection by complex forecast strategies and multiplied the by Frequency 
value not be higher than 200 if the computational effort of more complex 
forecast strategies should stay below one minute.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Overhead Groups of Forecast Strategies

The in 2.2 presented forecast strategies are grouped into four subsets according to their
computational overhead:

• Group 1 stands for nearly none overhead and contains mean value forecasting and
naive forecasting.

• Group 2 stands for low overhead and contains the fast forecasting strategies Sim-
ple Exponential Smoothing (SES), Cubic Spline Interpolation (CS), the predefined
ARIMA((p, d, q) = (1, 0, 1)) model and the specialized Croston’s method. The pro-
cessing times of of forecast strategies in this group are below 100ms for a maximum
of 200 time series points.

• Group 3 stands for medium overheads and contains the forecasts strategies Extended
Exponential Smoothing (ETS) and the tBATS approach. The processing times are
below 30 seconds for less than 200 time series points.

• Group 4 stands for high overheads and contains again the tBATS approach and ad-
ditionally the ARIMA forecasting framework with automatic selection of an optimal
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ARIMA model. The processing times stay below 60 seconds for less than 200 time
series points.

The four overhead groups of forecast strategies are presented in 3.2 together with their
application scenario.

Table 3.2: Overhead Groups of Forecast Strategies 

Overhead 
Group  

Strategies  Application 

1 – nearly 
none 

Naïve,  
MovingAverages  

These two strategies are only applied if less than InitialSizeThreshold values 
are in the time series. The arithmetic mean strategy can have a forecast 
accuracy below 1 and therefore be better than a solely reactive approach 
using implicitly the naïve strategy. This is only true in cases of nearly constant 
base level of the arrivals rates. These strategies should be executed as 
frequently as possible every new time series point. 

2 - low CubicSmoothingSplines, 
ARIMA101,  
SimpleExponential 
Smoothing,  
Croston’s method for 
intermittent demands 

The strengths of these strategies are the low computational efforts below 
100ms and their ability to extrapolate the trend component. They differ in 
sensitivity to noise level or seasonal components. These strategies need to 
be executed in a high frequency with small horizons. 

3 - medium ExtendedExponential 
Smoothing, 
tBATS 

The computational effort for both strategies is below 30 sec for a maximum 
of 200 time series points. They differ in the capabilities of modeling seasonal 
components.   

4 - high ARIMA, 
tBATS 

The computational effort for the ARIMA approach can reach up to 60 sec for 
a maximum of 200 time series points and may achieve smaller confidence 
intervals than the tBATS approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Forecast Objectives

As the forecast results can be used for a variety of purposes like manual long term resource
planning or short term proactive resource provisioning, a set of forecast objectives is in-
troduced to enable tailored forecast result processing and overhead control. The following
parameters should be configurable in a forecast objectives object:

• The Highest Overhead Group parameter should be a value of the interval [1; 4] and
defines the highest overhead group from which the forecast strategies are allowed to
be chosen in the classification process.

• The Forecast Horizon parameter is given by a tuple of two positive integer values
quantifying the number of time series points to forecast. The first value defines the
start value, the second value accordingly the maximum forecast horizon setting. Due
to significant differences of the forecast strategies in processing times and capabilities
for long term forecasts, the start value is increased by multipliers that are defined in
the configuration of the classification process up to the given maximum value.

• The Confidence Level parameter can be a value out of the interval [0; 100) and sets
the confidence level alpha in percent for the confidence intervals surrounding the
forecast mean values.

• Forecast Period is an positive integer parameter i. Every next i new time series
points in the time series of request arrival rates a forecast will be triggered.

The configuration of these forecast objectives allows a customization of the execution of
the forecasts and their results. Proposed settings and further explanations can be found
in Table 3.3.
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3.2. Concepts for the Classification of a Workload Intensity Behavior

Table 3.3: Forecast Objective Attributes  

Parameter  
Name 

Parameter 
Range 

Proposed 
Configuration 

Explanation 

ForecastPeriod [1;max_int] [1; Frequency] This objective defines how often a forecast is executed in times of new time series points. 
For a value of 1 a forecast is requested every new time series point and can be dynamically 
increased by period factors in the classification setting to reach the configured maximum 
horizon. This value should be equal or smaller than the StartHorizon objective (if continuous 
or even overlapping forecasts are needed) 

Highest  
Overhead 
Group 

[1;4] [2;4] This objective defines the highest overhead group from which the forecast strategies will be 
chosen. A value of 2 may be sufficient if the time series data have strong trend components 
that are not overlaid by seasonal patterns, as the strength of group 2 strategies is the trend 
extrapolation. For time series with seasonal patterns, a setting of 3 for a maximum forecast 
computation time of 30 seconds and 4 for forecast computation times below 1 minute is 
recommended.  

ConfidenceLevel [0;100) may be given  
by a forecast 
interpreter 

The confidence level α of the returned forecast confidence intervals is defined by this 
objective. 

StartHorizon [1;max_int] [1; 1/8x 
Frequency] 

The StartHorizon defines the number of time series points to be forecasted at the beginning 
and can be dynamically increased by period factors in the classification setting up to the 
MaximumHorizon setting. This value should be equal or higher than the ForecastPeriod 
objective (if continuous or even overlapping forecasts are needed). 

Maximum 
Horizon 

[1;max_int] Frequency The value of MaximumHorizon setting defines the maximum number of time series points to 
be forecasted. A recommendation for this setting is the value of the Frequency setting of the 
time series, as a higher horizon setting may lead to broad confidence intervals.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5 Partitions of the Classification Process

According to the theory of neuronal stimuli processing by Joseph LeDoux, stimuli are
processed by the human brain in two different and independent ways to fulfill different
objectives. The first is needed for a fast but possibly inaccurate result, the second for a
slower but far more precise and reliable result.

Motivated by this theory from the field of human biology, the classification process of
workload intensity behaviors can be partitioned accordingly. When a time series of request
arrival rates is newly registered at the classification system and no historic data on the
workload intensity behavior is available yet, it is solely useful to apply fast and naive
strategies just to get a basic forecast. At a later point in time when some observations
are already available, it may be useful to apply strategies that can interpolate the trends
within the time series. And again at a later point in time, when about three periods within
the time series have already been observed, it is possible to detect deterministic seasonal
patterns by using complex time series analysis, decomposition and forecasting methods.

The classification process is designed to have an initial, a fast and a complex partition
according to the amount of available historic data in the time series. Having a short time
series only forecast strategies of the overhead group 1 can be applied. A medium length
may allow application of strategies contained in the overhead group 2 and a long time
series enables the use of the strategies in overhead group 3 and 4. The two thresholds
that define, when a time series is short, medium or long can be set as parameters in the
classification setting.

Based on experience gained from experiments it is my recommendation to set the low-
medium threshold to a value between five (as this is the minimal amount of point needed
for Cubic Spline Interpolation) and the value that is half of a period. The medium-long
threshold should be set to a value as high as three time series periods for the simple
reason that the most methods for the recognition of seasonal patterns need at least three
occurrences.

A short summary of the capabilities of this three different classification strategies (initial,
fast and complex) can be found in Table 3.4. How these capabilities are realised, is
discussed in detail in the following sections.
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Table 3.4: Classification Strategies and their Capabilities 

Classification 
Strategy  

ForecastStrategy 
OverheadGroup 

Capabilities 

Initial 1 – nearly none This classification strategy only checks via the estimated and observed MASE 
metrics whether the arithmetic mean is a better forecast estimate than the naïve 
approach. 

Fast 2 - very low This classification strategy observes the noise level and can apply the moving 
averages for smoothing, heuristically selects the Croston’s method or the cubic 
spline interpolation, evaluates the result plausibility and the forecast accuracy via 
the estimated and observed MASE metrics to adjust the current classification. 

Complex 3 – medium, 
4 - high 

This classification strategy observes the noise level and can apply the moving 
averages for smoothing, heuristically selects the Croston’s method if necessary and 
evaluates the result plausibility and the forecast accuracy via the estimated and 
observed MASE metrics to adjust the current classification. Either strategies from 
overhead class 3 or class 4 are selected. 

 

 

 

 

 

 

 

3.2.6 Handling of Zero Values

A time series of request arrival rates contains positive integer values and also zero values,
as a system may no be in constant use. The majority of forecasting strategies is possibly
not numerical stable if the input time series contains zero values. This would mean that a
forecast strategy interrupts after a division by zero exception and cannot return a forecast
result. This fact makes a simple elimination of zeroes before passing to the forecast strategy
necessary.

If the zero values in the time series are not only a single event but arise regularly, it is better
to use the special Croston’s forecasting strategy for intermittent demands that decomposes
the time series into two different ones: A strictly positive time series and another time
series containing the period duration as points when zero values are observed. The forecast
is then executed independently for both time series and combined later on.

The classification of workload intensity behavior would be highly sensitive to zero values,
if only a few observations of a zero values would immediately trigger a switch to the
Croston’s forecast strategy. To make this sensitivity configurable a threshold for the rate
of zero values is introduced and recommended to be set to a reasonable value between 20%
and 40%.

3.2.7 Forecast Quality Improvement using Weighted Moving Averages

A high noise level within the time series of request arrival rates complicates every fore-
casting process. As the workload intensity behavior is not stationary, the level of present
noise even may change over time. To improve the quality of forecasts it is conducive to
observe metrics that capture the noise level within the time series and define thresholds for
these metrics. These threshold can trigger a smoothing method before the time series is
processed by the forecasting strategy. However, any smoothing method has to be applied
carefully not to eliminate valuable information.

The following four metrics that were already introduced in Section 2.2 and in Table 2.1
are suitable and sufficient to quantify noise related characteristics within a time series and
therefore should be repeatedly applied to a configurable amount n of the most recent time
series points:

• Burstiness Index: A burstiness index close to zero indicates strong bursts within the
analysed time span.

• Relative Length of the Longest Monotonic Section: If the longest monotonic section
related to the length of the observed time series span is close to zero, this metric
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3.2. Concepts for the Classification of a Workload Intensity Behavior

indicates frequent fluctuations. The application of a smoothing method would clarify
the trend and seasonal pattern.

• Variance Coefficient: The variance coefficient is a common, unit-free measure of
variance. If the value of this coefficient is one or bigger, the standard deviation is
higher than the mean value. A smoothing method can slightly reduce the level of
the variance, leading to a clearer visibility of trends within the time series.

• Quartile Dispersion Coefficient: The quartile dispersion coefficient is a unit-free
metric to quantify the range size of the time series values as well as the amount
of outlying values whose negative effect on the forecast could be minimized by a
smoothing method.

These metrics are easy to compute without high processing overheads. But as none of these
metrics directly measures the noise level, Based on experiments it can be recommended
that at least three of these four metrics should exceed the configured thresholds, before a
smoothing technique should be applied.

Smoothing of the time series can be achieved for example by the elementary method
Weighted Moving Averages (WMA), where the level of smoothing can easily be controlled
by the window size and the weights. For this WCF approach it is recommended to use
a small window size of only three, a weight vector w = (0.25; 0.5; 0.25) and a control
variable to assure, that no value is smoothed more than one time. This setting would
slightly smooth out a high noise level but avoids the loss of valuable information.

Time series smoothing can also be achieved by far more complex methods like using a Fast
Fourier Transformation to build a low-pass filter eliminating high frequencies. However,
this would introduce additional overheads and would require an adequately high amount
of time series data.

3.2.8 MASE Metric for Decisions between Alternatives

As already mentioned, the workload intensity behavior is supposed to be non-stationary
- in other words, its class and accordingly the most suitable forecast strategy will change
from time to time. It is the responsibility of the classification process to identify the
current workload intensity behavior class that is needed for the selection of the most
suitable forecast strategy according to the given forecast objectives.

The evaluation and comparison of the forecast accuracy gives crucial input for this decision
making process. If the strategy delivers results of low accuracy or even non-plausible
results, the strategy need to be compared directly to one or more other forecast strategies.
In this case, two or even more forecast strategies will be executed in parallel on the same
time series data. Before the following forecast on the next period will be triggered, the
performance of the parallel executed can be evaluated just by a comparison of the forecast
values to the observed ones. The strategy that shows the highest accuracy defines the
workload intensity behavior class. In addition, this mechanism is applied periodically to
assure that the classification is still valid.

However, any forecast result can only be of use to a proactive resource planning before
the corresponding monitored arrival rates are observed and reported. This fact makes it
necessary to additionally estimate the better performing strategy beforehand to select the
one that is more likely to show higher accuracy if more than one forecast is computed.

As presented in Section 2.3.3 and extensively discussed in [HK06] the Mean Absolute Scaled
Error (MASE) metric is the metric of choice to measure forecast accuracy. As the metric
directly compares the forecast accuracy to the accuracy of the naive forecast strategy, it is
directly visible when a strategy performs poorly. If the MASE is close to one or even bigger,
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the computed forecast results are of no value, because their accuracy is even or worse to
the naive forecast that is based on the simple assumption that the last observation is still
valid for the next period. The closer the metric value is to zero, the better the forecast
strategy can deliver trustworthy forecast values.

To implement the above outlined decision making process, the MASE metric is computed
at two different times: First, the MASE is calculated at the time point of the forecast itself,
capturing the forecast performance in the past to get an estimation for the future time
steps. This estimated forecast accuracy is used to decide, which of two or more strategies
executed in parallel to be the better one. Second, before the next classification process is
triggered, it is now possible to directly measure the forecast performance, as the observed
values are already known. This exact MASE metric is now used for the decision making
about a need for a reclassification. The forecast strategy having the smallest MASE value
defines a possibly changed workload intensity behavior class.

3.2.9 Cubic Spline Interpolation and MASE estimation

Using the Cubic Spline Interpolation method for short term forecasting brings the advan-
tage that this method does not need many time series points to achieve possibly good
forecast results with low computational overhead.

As this strategy fits cubic splines to the points of the time series, in other words minimizes
the distances between a cubic spline and the time series points, the mean absolute scaled
error metric estimating the forecast quality does not deliver useful results for a priori
decision making.

This leads to the need of developing a heuristic to decide, when the Cubic Spline Inter-
polation should be used. The method is sensitive to noise or strong bursts. Therefore,
thresholds for the burstiness index and the relative length of the longest monotonic sec-
tion are introduced. If a low burstiness and long monotone parts have been observed
in the most recent n values, the Cubic Spline Interpolation method delivers good trend
estimations.

As this method cannot differentiate between a seasonal pattern and a trend, it possibly
delivers implausible results in some cases. Especially when applied at the edge of a sea-
sonal pattern, where the discrete function of the time series points is usually very steep,
interpolation of this wrong trend is not useful. To prevent this, a third threshold for the
relative gradient of the discrete function and a simple plausibility check is build into this
approach. The relative gradient indicates whether the time series changed more or less
than the median over the last eights of a time series period. A plausibility check may just
assure that the forecast values are not negative and not bigger than two times the observed
maximum.

In the evaluation section, it is shown, that the Cubic Spline Interpolation method is not
the best choice in all cases, but delivers the best accuracy among the overhead group
2 strategies in some special cases. Therefore, this method helps to increase the overall
forecast accuracy of the presented flexible WCF approach.

3.3 Decision Tree with Feedback Cycles for Classification

The presented concepts and mechanisms can now be combined to build the flexible WCF
approach that automatically adapts to changing workload intensity behavior with the
result of optimized and more constantly adequate forecast accuracy. The combination of
a classification process with a set of forecast strategies enables a configuration according
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3.3. Decision Tree with Feedback Cycles for Classification
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Figure 3.1: Decision Tree for Classification and Selection of a Forecasting Strategy includ-
ing Direct Feedback Cycles
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Table 3.5: Parameters, Parameter Ranges, Further Explanations and Recommended Con-
figurations of the WCF Approach

Parameter  
Name  

Parameter 
Range 

Proposed 
Configuration 

Explanation 

Classification 
Period 

[1;max_int] [1; 4x 
Forecast 
Period] 

This objective defines how often a classification is executed in times of new time series points. 
For a value of 1 a classification is requested every new time series points and can be 
dynamically increased by the period factors. A classification can be executed before every 
single forecast strategy call. It is recommended to set this value equal or smaller than 4 times 
the ForecastPeriod setting (at least every forth forecast call) to detect the time when a 
reclassification is needed with an adequate precision. 

Initial 
Classification 
SizeThreshold 

[1;max_int] ½ x Frequency This setting defines the time series size at which the classification strategy is switched from 
initial (overhead group 1) to the fast classification strategy (overhead group 2). The class 2 
forecast strategies require at least 4 time series values. Using a rule of thumb this value can be 
set to half the time series points of a period (as this is in most cases the minimum size for the 
plausibility check to work properly).  

FastClassification 
Size 
Threshold 

[1;max_int] 3 x Frequency This setting defines the time series size at which the classification strategy is switched from 
fast (overhead group 2) to the complex classification strategy (overhead groups 3 & 4). The 
forecast strategies in overhead groups 3 & 4 require at least 3 periods of time series data to 
detect seasonal patterns.  

LastNValues [1;max_int] Frequency,   
at least 30 

This setting defines the number of the most recent time series points for that the analysis 
metrics are calculated in the fast or complex classification strategy. The value could be set to 
the Frequency value, to capture the characteristics of the last observed period. The value 
should be at least as high as 30. As a rule of thumb from common statistics says, the sample 
variance is an appropriate estimate for the variance of the population for more than 30 values.  

FastPeriod 
Factor 

[1;max_int] [1;4] This factor setting is a multiplicator for the StartHorizon and the ForecastPeriod of the forecast 
objectives as well as for the ClassificationPeriod applied when switching from the initial to the 
fast classification strategy. As the forecast strategies in overhead group 2 only extrapolate the 
trend components, the ForecastHorizon should not growth bigger than an eighth of a period. It 
may be better to apply forecast strategies in overhead group 2 more frequently, as their 
computational overheads stay below 100 ms.  

ComplexPeriod 
Factor 

[1;max_int] [1;16] This factor setting is a multiplicator for the StartHorizon and the ForecastPeriod of the 
ForecastObjectives as well as for the ClassificationPeriod (each already multiplied by the Fast 
PeriodFactor) applied when switching from the fast to the complex classification strategy.  

RateZeroValues 
Threshold 

[0;1] 0.3 The rate of zero values defines the sensitivity to zero values in the time series and defines the 
threshold, when the classification switches to the Croston’s forecast strategy for intermittent 
demands. For an observed rate of zero values, these values a just skipped as the other forecast 
strategies are not numerical stable if the time series contains zero values. As it is not useful to 
switch the Croston’s forecast strategy for only a few zero values, it is recommended to set this 
threshold to a value in [0.2;0.4] 

CubicSpline 
Burstiness 
Threshold 

[0;1] 0.3 This threshold defines a necessary precondition for the heuristic switch to the cubic spline 
forecasting strategy. The observed burstiness index value of the LastNValues need to be 
higher than the value of 0.3, which can recommend based on experiment experience.  The 
closer the burstiness index is to 0, the more distinctive is the burstiness.  

CubicSpline 
Gradient 
Threshold 

double 0 This threshold defines a necessary precondition for the heuristic switch to the cubic spline 
forecasting strategy. The observed relative gradient captures whether the discrete function of 
the time series point changed during the most recent eighths of a period for more (negative 
value) or less (positive values) than the median value of the LastNValues. Based on experiment 
experience it can be recommended to have this precondition fulfilled for any positive relative 
gradient.    

CubicSpline 
Relative 
Monotonicity 
Threshold 

[0;1] 0.2 This threshold defines a necessary precondition for the heuristic switch to the cubic spline 
forecasting strategy. The observed relative monotonicity is the length of the longest 
monotone section during the LastNValues related to the value of LastNValues. The 
precondition is fulfilled for a higher observed value. Based on experiment experience a 
threshold of 0.2 is recommended. 

Smoothing 
Burstiness 
Threshold 

[0;1] 0.15 This threshold defines a precondition for the heuristic application of smoothing averages for 
noise reduction. The observed burstiness index value of the LastNValues need to be smaller 
than the value of 0.15, which can be recommended based on experiment experience. The 
closer the burstiness index is to 0, the more distinctive is the burstiness. 

Smoothing 
Quartile 
Dispersion 
Threshold 

[0;max_int] 2 This threshold defines a precondition for the heuristic application of smoothing averages for 
noise reduction. The quartile dispersion captures is a unit-less index capturing the variance 
level of the LastNValues. If the distance between the quartiles is at least two times bigger than 
the median value, the precondition would be true for a recommended threshold value of 2.   

Smoothing 
Variance 
Coefficient 
Threshold 

[0;max_int] 1 This threshold defines a precondition for the heuristic application of smoothing averages for 
noise reduction. The quartile dispersion captures is a unit-less index capturing the variance 
level of the LastNValues. If the standard deviation is as high as the arithmetic mean value, the 
precondition would be true for a recommended threshold value of 1.   

Smoothing 
Relative 
Monotonicity 
Threshold 

[0;1] 0.15 This threshold defines a precondition for the application of smoothing averages for noise 
reduction. The observed relative monotonicity is the length of the longest monotone section 
during the LastNValues related to the value of LastNValues.  The precondition is fulfilled for a 
lower observed value indicating a high noise level. Based on experiment experience a 
threshold of 0.15 is recommended. 
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to given forecast objectives. The WCF approach can be controlled in detail and tuned for
case specific optimisation via adaptations of the parameter settings and thresholds.

Figure 3.1 illustrates the classification process of the WCF approach. The classification
process can be seen as independent from the forecast executions and is triggered according
to the configuration of the classification period parameter every n time series points,
just before a forecast execution is requested. The classification process uses the forecast
objectives given by the user and the workload intensity behavior characteristics to reduce
the space of suitable forecast strategies. The suitable forecast strategies are then processed
together and their estimated forecast accuracy is evaluated to output the more promising
result. Before the next forecast strategy execution, the classification (which is the selection
of the better performing strategy) is validated by the observed MASE metric and used
until the next classification process execution is triggered.

3.3.1 Classification Settings

In Table 3.5, a survey of the parameters and according parameter ranges for the calibration
and configuration of the presented WCF approach can be found and in addition further
explanations and recommendations for the configuration.
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4. Architecture and Implementation

The focus of this chapter is the architecture and implementation of the presented workload
classification and forecasting approach and can serve as a high level documentation of the
software artifacts that have been developed in the context of this thesis. For documen-
tation and illustration concerns, an UML component and an UML sequence diagram are
presented and described in Section 4.1 followed by UML class diagrams on the implemen-
tation of the individual components in Section 4.2. In Section 4.3 an in-depth discussion
of design decisions is given including remarks on further extension and variation points. A
description of the development and run-time environment as well as information on code
used from third party and licensing can be found in Section 4.4.

4.1 Architecture of the Workload Classification and Forecast-
ing System

The WorkloadClassificationAndForecasting (WCF) system is constructed according
to component-based software architecture principles and can be seen as a composite com-
ponent. An RForecastServer instance as a third party component is required by the
WCF system to offer the workload classification and forecasting as a service to users or
other systems. The WCF system is composed of one composite component and three
basic components whose individual responsibilities are presented in the following. The
UML component diagram in Figure 4.1 illustrates the compositions and connections of
the individual components.

Management: The Management composite component is responsible for the realisation of
the user’s WCF system management requests that arrive at the WCFSystemManage-

ment provides interface of the system as discussed in Subsection 4.1.1 In addition,
the component manages the data exchange at the ArrivalRateInput and Forecas-

tResultOutput i/o-interfaces with the users of the WCF system. The Management

component initiates the classification and forecasting processes according to user
specific or default configurations. Another responsibility is the handling of data
structures and configurations that need to be held in memory during run-time, as
well as their backup for a smooth restart of the system. The Management component
is composed of the following three basic components:

WIBManagement: The acronym WIB stands for workload intensity behavior. The
WIBManagement component handles the user’s WCF system management re-
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<<System>>
WorkloadClassificationAndForecasting

<<BasicComponent>>
WIBClassification

<<BasicComponent>>
Forecasting

<< CompositeComponent>>
Management

<<Interface>>
ArrivalRateInput

<<Interface>> 
ForecastResultOutput

<<3rdParty>> 
<<CompositeComponent>> 

RForecastingServer

<<BasicComponent>>
RServerBridge

<<Interface>>
WCFSystem

Management 

<<BasicComponent>>
TimeSeries

<<BasicComponent>>
Persistency

<<BasicComponent>>
WIBManagement

Figure 4.1: UML Component Architecture Diagram of the WCF System

quests and triggers periodically the executions of the classification and fore-
casting processes according to the user specific or default configurations.

Persistency: The Persistency component is responsible for the backup of the of
data structures and configurations that are held in memory during run-time, to
enable a smooth WCF system restart. In addition, the Persistency compo-
nent offers functionality at the WCF system’s ArrivalRateInput interface for
reading arrival rates and for writing of the forecast results at the ForecastRe-

sultOutput interface.

TimeSeries: The TimeSeries component offers an interface for a time series data
structure.

WIBClassification: The WIBClassification component is responsible for the classifica-
tion of workload intensity behaviors according to the presented decision tree in Figure
3.3.

Forecasting: The Forecasting component is responsible for the execution of a forecast
strategy according to the classification and returns a forecast result.
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RServerBridge: The bridge is needed for the communication with the system external
RForecastServer. This communication includes the composition of scripts and
parsing of the result strings in and from the R language for statistical computing 1.

The interactions of these individual components is given in Subsection 4.1.2 and illustrated
by an UML sequence diagram in Figure 4.2.

4.1.1 Provides and Requires Interfaces

The WCFSystemManagement provides interface offers the management functionality accord-
ing to the create-read-update-delete (CRUD) principle. This enables a WCF system user
to register a new or remove a registered WorkloadIntensityBehavior, to read and update
the ForecastObjectives or ClassificationSettings of a WorkloadIntensityBehav-

ior. The configuration of these two sets of parameters that are presented in Table 3.3 and
in Table 3.5 enables the user to define the execution details for periodically classification
and forecast processing according to the presented decision tree in Figure 3.1. In addition,
the user can manually trigger executions of a classification or a forecast. For WCF sys-
tem maintenance, a global backup function can be called by a WCF system administrator
to allow a system shutdown without loss of run-time data. The WCF system can either
be restarted by loading the latest stored configuration using an initialisation routine or
started as a clean system by a reset routine.

In addition, the WCF system has a pair of requires ArrivalRateInput and provides
ForecastResultOutput interfaces for the data exchange. For the integration of the WCF
system into a monitoring or resource provisioning framework, these two interfaces can
be easily adapted as a change impacts only the Persistency component. The input data
which are newly monitored arrival rate values of a registered WorkloadIntensityBehavior

can be read for example from a buffer as in common buffered pipes&filters architectures.
It is required that the system user provides the monitored arrival rate values constantly
in fixed but configurable periods, as the WCF system won’t return forecast results in the
case that no new values are available. For the evaluation concerns of this approach, the
buffer is simulated by a comma separated file (CSV) from which the arrival rate data is
read stepwise.

The forecast results could again be written to a buffer if integrated into a pipes&filters
architecture to pass it to a resource provisioning system or system adaptation component
and allow further processing. For manual result interpretation that is needed for the
evaluation of the approach implementation, the forecast results are written to a CSV file.

4.1.2 Exemplary Use Case of the WCF System

The UML sequence diagram in Figure 4.1 illustrates the component interaction for an
exemplary use-case of the WCF system showing in addition first implementation specific
details of the individual components that are further explained in Sections 4.2.1 to 4.2.3.
In the sequence diagram interfaces are used intentionally instead of class instances to
underline that the method calls between the components make strict use of provided
interfaces.

1. In the first step, the system user registers a workload intensity behavior at the WCF
system using the WCFSystemManagement interface. The system user can pass cus-
tomized ForecastObjectives and ClassificationSettings with this method call,
but is not required to provide more than a minimal set of parameters, as the recom-
mended ClassificationSettings parameters are chosen by default as described in
Table 3.5.

1http://www.r-project.org/
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Figure 4.2: UML Sequence Diagram illustrating an Exemplary Use-case of the WCF
System

38



4.2. Implementation of the Individual WCF System Components

2. This call lets the Manager class in the WIBManagement component create a new
WorkloadIntensityBehavior instance as a thread that is started immediately and
runs concurrently to other WIB instances. The WorkloadIntensityBehavior thread
now checks whether a TimeSeries for this individual WorkloadIntensityBehavior
has already been created in the past and if data exist, reads the stored time series
configuration to use this for the creation of a new TimeSeries in-memory data
structure. In the negative case, the user is asked to provide time series configuration
parameters as according to Table 3.1 (not modelled).

3. While the WorkloadIntensityBehavior thread is not deactivated by its Manager,
it runs in a loop with a configurable period duration.

a) In every loop cycle, the interface of the Persistency component is called to
check for new available arrival rate values that are then appended to the Time-

Series in-memory data structure.

b) In the next step of the loop cycle it is checked, whether a classification is
planned, and in the positive case a classification process is synchronously trig-
gered at the interface of the WIBClassification component before the thread
waits for possible updates to the ClassificationSetting.

c) At this point in the loop cycle it is checked if a forecast is planned to be executed.
In the positive case the ForecasterFactory of the Forecasting component
is asked to return a ForecasterStrategy object according the result of the
classification.

d) The ForecasterStrategy object is now called by the WorkloadIntensityBe-

havior thread to forecast according to the ForecastObjectives, which lets
the ForecasterStrategy object execute an R script on the RForecastServer

via the RServerBridge.

e) After receiving the forecast results from the RForecastServer a new Forecas-

tResult object is created, passed backed and printed. If the user listens at an
WCF system output buffer, he is automatically notified about new results.

f) The WorkloadIntensityBehavior thread now sleeps for the rest of the config-
ured period duration time.

4. The system user can remove the workload from the WCF system. This does not
interrupt a possibly running thread (which could lead to memory leaks) but hinders
the WorkloadIntensityBehavior thread to reenter its loop.

4.2 Implementation of the Individual WCF System Compo-
nents

This section presents the implementation and shows UML class diagrams of the individual
WCF system components beginning with the Management component in Subsection 4.2.1,
followed by the WIBClassification component in Subsection 4.2.2 and the Forecasting

component in Subsection 4.2.3.

4.2.1 Management Component

Figure 4.3 shows an UML 2 class diagram of the Management component that is composed
of the WIBManagement, the Persistency and the TimeSeries components.
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«interface»
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«interface»
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Figure 4.3: UML Class Diagram of the Management Component

4.2.1.1 WIBManagement Component

The WIBManagement component is in the upper left quarter of the diagram in Figure 4.3
consisting of the Manager class, its interface that is connected the WCFSystemManagement

user interface and the active WorkloadIntensityBehavior instances that are controlled
by the Manager class via the WorkloadIntensityBehavior interface. The Manager class
has a private list of managed WorkloadIntensityBehavior objects.

The active WorkloadIntensityBehavior class is realized as a thread and holds references
to a ForecastObjectives instance of the Forecasting component and a Classifica-

tionSettings instance of the WIBClassification component. These two objects make
the classification and forecasting process configurable as outlined in Tables 3.3 and 3.5.
In addition, the WorkloadIntensityBehavior thread calls the provided interface of the
WIBClassification component and the static ForecasterFactory, the Forecaster and
ForecastResult interfaces of the Forecasting component.

4.2.1.2 TimeSeries Component

The active WorkloadIntensityBehavior uses the TimeSeries component as in-memory
data structure which is situated in the lower left of the diagram in Figure 4.3. The
TimeSeries component itself consists of the TimeSeries class that stores the TimeSeries

configuration attributes in private variables and uses internally the data structure of a
circular first-in-first-out (FIFO) buffer (not modelled) to hold the date and value tuples
as TimeSeriesPoints.

40



4.2. Implementation of the Individual WCF System Components

4.2.1.3 Persistency Component

The interface of the Persistency component is used by the active WorkloadIntensi-

tyBehavior class and can be found in the lower right quarter of the diagram. Via this
interface, the functionality is offered to read and write a time series configuration, to read
new incoming or persisted values, to persist and initialize a WorkloadIntensityBehavior

configurations and its in-memory data structures and to write out forecast results. The
Persistency class implements the above mentioned interface and uses in the current code
version third party CSVReader and CSVWriter classes that are publicly available under
the GNU licence. This Persistency class needs to be adapted if the WCF system should
not work directly on the file system but make use of a database or is integrated into a
pipes&filters framework.

4.2.2 WIBClassification Component

In Figure 4.4 an UML class diagram of the WIBClassification component can be found.

+calcForecastQuality() : double
+calcIndices() : double
+calcDeviation() : double
+calcVarianceCoefficient() : double
+countNumberOfZeroValues() : int
+calcMaximum() : double
+calcArithMean() : double
+calcMedian() : double
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+calcRelativeMonotonicity() : double
+calcRelativeGradient() : double
+calcQuartileDispersionCoefficient() : double
+calcQuartiles() : double
+calcBurstinessIndex() : double
+applyMovingAverage() : ITimeSeries
+smoothTSbyCombination() : ITimeSeries
+getLastXofTS() : ITimeSeries
+getValuesGreaterThan() : ITimeSeries
+getValuesLessThan() : ITimeSeries

«utility»
ClassificationUtilities

+classify()

«interface»
IClassification

+Initial
+Fast
+Complex

«enumeration»
ClassificationStrategyEnum

+getForecaster1() : IForecaster
+getForecaster2() : IForecaster

-classificationStrategy : ClassificationStrategyEnum
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-recentFcStrategy1 : ForecastStrategyEnum
-recentFcStrategy2 : ForecastStrategyEnum

ClassificationSetting

+classify()

InitialClassificationStrategy

+classify()

FastClassificationStrategy

+classify()

ComplexClassificationStrategy

«implements»

«creates» «creates»

«call»

«call»

«call»

Figure 4.4: UML Class Diagram of the WIBClassification component

The Classification interface offers the functionality to the WIBManagement component
to classify a WorkloadIntensityBehavior. The Classification interface is implemented
by the three concrete strategies Initial, Fast and Complex that are listed in an enumer-
ation. The ClassificationUtilities class offers static methods for the computation
of the indices and accuracy metrics needed for the classification process as presented in
the decision tree in Figure 3.1. The result of a classification, which is a selection of one
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concrete Forecaster strategies or two strategies if a comparison is needed, is saved and
returned in via the ClassificationSettings object.

4.2.3 Forecasting Component and RServerBridge

In Figure 4.5, an UML class diagram illustrates the Forecasting component implementing
the strategy and the factory design patterns. Via the Forecaster interface the functional-
ity to initiate a forecast execution is offered to WIBManagement component. This interface is
implemented by an AbstractForecaster that gives the frame for any call to a Forecast-

Strategy and stores the confidence level the configured ForecastObjectives and the time
series history. The AbstractForecaster is further extended by an AbstractRForecaster

that is R specific and gives a more detailed strategy frame to the concrete Forecasters

and uses the RServerBridge for TCP/IP network communication to the RForecastServer
instance. The concrete Forecaster strategies are created by the ForecasterFactory and
all of those strategies return a ForecastResult object. A ForecastResult object contains
the forecast duration, the confidence level, the forecast strategy name, a MASE estimation
as described in 3.2.8 and finally three TimeSeries objects holding the mean forecast value
and the upper and lower confidence interval boundaries. All forecast strategies are listed
in an enumeration. The ForecastObjectives class offers the ability to store a forecast
objectives configuration.

+forecast() : IForecastResult
+getConfidenceLevel() : int
+getTsOriginal() : ITimeSeries

«interface»
IForecaster

+getConfidenceLevel() : int
+getDuration() : long
+getFcStrategy() : ForecastStrategyEnum
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+getUpper() : ITimeSeries
+getOriginal() : ITimeSeries
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IForecastResult
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+forecast() : IForecastResult

-confidenceLevel : int
-historyTimeSeries
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+forecast() : IForecastResult
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+getInstance() : RServerBridge
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+ARIMA101
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«enumeration»
ForecastStrategyEnum

ForecastResult

1

-result

0..1

has4 

-start_horizon : int
-max_horizon : int
-overhead : int
-fc_period : int
-confidenceLevel : int

ForecastObjectives

«implements»

+getForecaster() : IForecaster

ForecastStrategy::ForecasterFactory

«creates»

Figure 4.5: UML Class Diagram of the Forecasting Component

4.3 Discussion of Design Decisions

This section discusses several design decisions that have been made during the development
of this implementation. These decisions have also been a central topic in an architecture
and code review.
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4.3. Discussion of Design Decisions

Thread Pool Pattern: The use of a thread pool of worker threads controlled by the Man-

ager class as an executor with a task waiting queue is seemingly appropriate. But as
the workload intensity behavior of a newly deployed and registered request class is
meant to be analysed constantly over a longer time period, a thread pool executor dis-
tributes mainly long running tasks. The major thread pool benefit of reusing already
existing worker threads looses importance in this case. If the manager and not the
WorkloadIntensityBehavior threads themselves is responsible for the scheduling
of single classifications and forecasts, the Manager class would grow highly complex
as the periods are variable over time and may differ between WorkloadIntensity-

Behavior specific settings. It is difficult to realise a scheduling of classification and
forecasting tasks that require to be executed in various periods and additionally need
low waiting times in the dispatch queue to guarantee a continuous ForecastResult
output. Therefore, the design decision has been taken to implement the thread pool
pattern with no waiting queue and accordingly an direct dispatch of long running
tasks that need no further scheduling. This implies that the WorkloadIntensityBe-
havior threads are responsible for their own individual and configurable scheduling
of classification and forecast tasks.

Observer Pattern versus Polling: The use of the observer pattern for notification of the
WorkloadIntensityBehavior threads for newly available monitoring values has been
proposed in the review. In this case, a monitoring system triggers indirectly the clas-
sifications and forecasts and is therefore responsible for the exact timing to achieve
a continuous ForecastResult output. But any monitoring system connected to the
WCF system should only be responsible for reliably providing the monitored arrival
rates at defined buffers or CSV files. Optionally, a monitoring system is enabled
as a WCF system user to manually trigger classifications or forecasts if needed.
Therefore, it has been decided not to apply the observer pattern and let the Work-

loadIntensityBehavior threads periodically check the availability of new arrival
rates.

Remote versus Local Forecast Processing: At the beginning of the development it has
been a crucial point to decide whether to apply a client-server architecture for the
actual forecast result processing or to use local method calls to an R engine. Experi-
ments have shown that the computational overhead for the forecast result processing
is high and reaches up to 60 seconds for a single execution using only 200 values. In
addition, the amount of data that needs to be transmitted for a forecast execution
in a R engine, can be disregarded. Therefore, it was decided to use a client-server
architecture to enable local separation the WCF system and the R engine and there-
fore enable horizontal scaling as the computational resources for the forecast result
processing are likely to become a bottleneck resource. The induced network latencies
for the communication between the WCF system and the R Server can be kept below
an acceptable duration threshold of five milliseconds by using a local area and not a
wide area network.

Time Series Data Structure: Having for example an unlimited queue as data structure,
it would grow uncontrollable and slow down the WCF system and the forecast pro-
cessing of the RForecastServer. The decision has been taken to use a circular FIFO
buffer, which is a simple array of fixed length in a combination with a pointer, as
internal data structure of the TimeSeries component to handle the TimeSeries-

Points. This decision is based on the need to limit the size of the time series to a
configurable value. The TimeSeries data structure is not thread safe in the current
version of the implementation, as no concurrent accesses can happen. Any Time-

Series holding historic data is only known to one WorkloadIntensityBehavior and
any TimeSeries in a ForecastResult object is created and written once. For use of
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the TimeSeries data structure in another context with concurrent accesses it would
be necessary to synchronize the write and read blocks.

Persistency Layer: For the concern to evaluate the classification and forecasting approach
it is sufficient to work directly on the file system using CSV files to simulate input,
and store status backup and output. For an integration of the WCF system into a
productive software system, the persistence layer can easily be adapted to make use
of Java Persistence API or a SQL based database for internal status backups. To
improve the communication flow with other systems, the WCF system’s persistence
layer can be adapted to integrate the WCF system into a pipes&filters architecture.

4.4 Development and Run-Time Environment

For the development, documentation and testing of the above described software artifacts
the following software tools and technologies have been used:

• Java SE 1.6.0 as run-time environment for the WCF system

• Eclipse IDE for Java Developers - Indigo SR 1 as development environment and with
Subclipse 1.8.4 for SVN versioning and remote backup

• jUNIT 4.8.2v4 for unit testing

• A Debian GNU Linux 6.0 Squeeze 64 bit virtual machine in an Oracle VirtualBox
4.1.12 hypervisor as logically separated R server

• R 2.15.0 64 bit version with R forecast package 3.2 [HK08] and Rserve package 1.7.0
[Urb11] for the forecast processing and statistical evaluations.

• Java REngine library as Java client for Rserve

The computing platform for execution of the above listed software and as environment for
the evaluation experiments has been a Sony Vaio z Series VPCZ1 laptop:

• CPU: Intel Core i7 M620 2 Core processor @2.67 GHz featuring hyper-threading and
over-boost of frequency up to 3.2 GHz

• OS: Microsoft Windows 7 Ultimate SP1 64bit

• RAM: 8 GB

• HDD: RAID 0 array of 4 solid state disks a 61 GB

4.4.1 Third Party Source Code

For the implementation of the WCF system, source code of the TSLIB Java library has
been reused, adapted and extended. The TSLIB Java library is a result of implementation
work in the context of a related diploma thesis [Bie12] on the topic of online anomaly
detection that has been completed at the Christian-Albrechts University of Kiel by Till-
mann Carlos Bielefeld and been supervised by André van Hoorn. The explicit permission
has been given to use and adapt the TSLIB code for the concerns of the WCF approach.
The TSLIB offers Java classes for the TimeSeries data structure, several classes of the
Forecasting component and the RServerBridge. As all of these Java classes needed
adaption and extension for the requirements of the WCF system, it has been decided not
to simply import and use the TSLIB code. In the RServerBridge class unnecessary code
has been removed and code added to enable remote Rserve connections. The TimeSeries

data structure has been debugged and extended to handle frequency, period and capacity
attributes. In the Forecasting component, the R script of the AbstractRForecaster
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4.4. Development and Run-Time Environment

was extended to provide time series frequency information to the R engine as needed by
the complex forecast strategies, and additionally to calculate the MASE estimation to en-
able an immediate decision which forecast result shows higher accuracy and is written to
the WCF system output. The number of available forecast strategies in the Forecasting

component has been increased by six. All enhancements and removed bugs of the TSLIB
have been reported to their primary authors.

4.4.2 RServe Debian Virtual Machine Setup

As it is recommended to execute the server of the RServe package only in an Unix based
operation system, a virtual machine has been build that is executable in the Oracle Vir-
tualBox 4.1.12 hypervisor. The virtual machine itself is a Debian GNU Linux 6.0 Squeeze
64 bit configured to run on 2 cores of the described underlying host platform and having
assigned 2024 MB of RAM. Only required software packages are installed in this virtual
machine to keep its size small (3.5 GB). The R environment for statistical computing is
installed in version 2.15.0 for 64 bit operating systems and extended by the R forecast
package 3.2 [HK08] and Rserve package 1.7.0 [Urb11]. Rserve has been manually config-
ured to accept remote connections at the default port 6311 on the primary ethernet device
without authentication. Via the Unix command R CMD Rserve the server is started in
deamon-mode and ready to accept remote requests. For safety reasons the Rserve should
not be executed by an Unix user with root rights.

Having this configured virtual machine image, brings the advantages of replicability and
portability of the WCF system’s forecast processing environment. All software installed
in this virtual machine is publicly available under the GNU licence.
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5. Evaluation

This chapter evaluates the workload classification and forecasting (WCF) approach that is
presented in Chapter 3 by conducting experiments using the implementation of the WCF
system as outlined in Chapter 4. Different real-world workload intensity behavior traces
have been used as input for the conducted experiments to compare particular forecast
strategies against the results of the WCF system in various configurations. This chapter
starts with a presentation of the used exemplary real-world workload intensity behavior
traces in Section 5.1. In Section 5.2, four different experiment scenarios are given together
with result illustrations and statistical analysis. The experiments are designed to compare
the forecast accuracy of the flexible WCF approach with the accuracy of single forecast
strategies in a fair way. In addition, the forecast accuracy is compared to the accuracy that
can be achieved just by system monitoring. Finally, an exemplary case study is conduced
in Section 5.3 to underline the benefits that are connected to an application of the WCF
system. At the end of this chapter in Section 5.4 the experiment results are discussed,
as they allow conclusions on how to provide the input data to the WCF system in terms
of aggregation level selection or even splitting to achieve optimal and reliable forecast
accuracy in particular application scenarios or for certain forecast objectives.

5.1 Exemplary Real-World Workload Traces

As discussed in Section 2.2, real-world workload intensity behavior traces are likely to show
strong seasonal patterns in daily periods due to human users of a software service. The
daily seasonal patterns are possibly overlaid by patterns of a far longer period like a week or
month. Depending on the monitoring precision, a certain noise level is normally observed,
but can be reduced by aggregation of monitoring intervals or smoothing techniques as
discussed in Section 3.2.7. Deterministic bursts within a trace of a workload intensity
behavior are often induced by planned batch tasks on a system that uses the analysed
software service (for example in transaction processing systems). In addition, a workload
intensity behavior trace can show non-deterministic bursts that cannot be foreseen by any
time series analysis technique due to system extrinsic influences as discussed in Section
3.1.

For the evaluation of the WCF approach several different real-world workload intensity
behavior traces have been analysed. All of them show the above mentioned characteristics
in different peculiarity and collocation. Two of them have been used as input data for the
presented experiments:
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Wikipedia Germany Page Requests: The hourly number of page requests at the web-
page of Wikipedia Germany has been extracted from the publicly available server
logs 1 for the October of the year 2011.

CICS Transaction Processing Monitoring data has been provided by IBM for the aca-
demic concerns of this thesis. The monitored system has been an IBM z10 main-
frame server that offers a CICS transaction processing service. The data covers one
week from Monday to Sunday in transaction arrivals per 15 minutes.

5.2 Concept Validation

The following four experiments are designed to compare the WCF forecast result accuracy
with the forecast accuracy that can be achieved by constantly applying a fixed forecast
strategy chosen from 2.2. In the first experiment the WCF system uses forecast strategies
from all four overhead groups and is compared to a fixed use of ETS strategy of the
overhead group 3. The following experiments from 2 to 4 then compare the WCF system
which is limited to select only strategies from a certain overhead group to the individual
strategies of the overhead group in focus. Additionally, in all experiments the naive forecast
strategy (which is equal to system monitoring without forecasting) is compared to the other
forecast strategies to quantify and illustrate the benefit of applying forecast strategies
against just monitoring the arrival rates.

The individual forecasts have been executed with identical forecast objectives and on
the same input data. The forecast results are continuous over the simulated period which
means that for every observed value there is a forecast mean value and a confidence interval.
This experiment design allows an analysis whether the WCF system successfully classifies
the workload intensity behavior. A successful classification would mean that the forecast
strategy that delivers the highest accuracy for a particular forecast execution is selected
by the WCF system in the majority cases using time series analysis and comparisons of
suitable subsets of forecast strategies.

To analyse the forecast result accuracy in higher detail, a relative error is calculated for
every single forecast point.

relativeErrort = |forecastMeanV aluet−observedArrivalRatet|
observedArrivalRatet

The distributions of these relative errors are illustrated in cumulative histograms which
have inclusive error classes on the x-axis and on the y-axis the corresponding percentage of
all forecast points. In other words, an [x; y] tuple expresses that y percent of the forecast
points have an relative error between 0% and x%. Accordingly, as the constant line y = 100
represents the hypothetical optimal distribution with no errors at all, the topmost value
of the compared ones is the best for all error classes. The cumulative histogram instead
of normal histogram has been chosen to obtain a monotone discrete functions of the error
distribution resulting in less intersections with the other error distributions and therefore
in a clearer illustration of the data. For better visibility, the histograms are not drawn
using pillars but simple lines connecting the single [x; y] tuples.

In addition, statistical key indices like the arithmetic mean, the median and the quartiles
as well as the maximum have been computed to enable direct comparison of the relative
error distributions and build an order of the forecast strategies according to their achieved
forecast accuracy in the experiment scenario.

Finally, directed, paired t-tests from common statistics have been conducted to determine
how significantly the average forecast accuracy of a certain strategy is better than the
average forecast accuracy of another strategy in comparison of the experiment scenario.

1http://dumps.wikimedia.org/other/pagecounts-raw/
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5.2. Concept Validation

5.2.1 Experiment 1: Comparison of WCF, ETS and Naive

The first experiment compares the forecast accuracy of the WCF with the ETS and Naive
strategy during a learning process which means that at the beginning there is no historic
knowledge available to the individual forecast strategies in comparison. Various strategies
of all overhead groups are applied in the WCF forecast strategy during the simulated five
days of the CICS workload intensity behavior from Monday until Friday. The forecast
horizon (identical for Naive, ETS and WCF) is configured to increase stepwise as given in
Table 5.1.

Table 5.1: Experiment 1: Configuration

Experiment Focus Comparison of unrestricted WCF
to static ETS and Naive

Forecast Strategies WCF(1-4), ETS(3), Naive(1)
(overhead group)

Input Data CICS Monday to Friday,
240 values in transactions per 30 minutes,
frequency = 48,
5 periods as days

Horizon h = 1 for tsl in [1;24] (1st half period),
(number of forecast points (h) h = 2 for tsl in [25;144] (until 3rd period complete),
for time series length (tsl)) h = 12 for tsl in [145;240] (4th and 5th period)

The cumulative error distribution for each of the strategies is shown in Figure 5.2 which
demonstrates that the WCF strategy achieves the best forecast accuracy compared to
ETS and Naive, as the corresponding line is constantly on the top. The ETS strategy
can only partly achieve slightly better forecast accuracy than the Naive strategy though
it induces processing overheads of 715 ms per forecast execution compared to 45 ms for
the Naive strategy (computation of the confidence intervals). The WCF strategy has an
average processing time of 61 ms until the overhead group 4 strategies are selected after
the first three periods. For the last two periods the WCF approaches processing time per
execution is on average 13.1 seconds. The forecast mean values of the individual strategies
and the observation values in the course of time are plotted in Figure 5.1. In this chart it is
visible that the ETS strategy forecast mean values have several bursts during the first three
periods and therefore do not stay as close to the observed values in a number of cases as the
WCF forecast mean values more constantly do. During the last eight forecast executions in
the fourth and fifth period (Thursday and Friday) the WCF approach successfully detects
the daily pattern of the day before and therefore estimates the course better than the ETS
strategy.

Table 5.2: Experiment 1: Result Summary

Strategy Minimum 25% Quantil Median Mean 75% Quantil Maximum

WCF 0.0128% 9.474% 20.77% 47.39% 49.65% 874.3%

ETS 0.0014% 12.2% 32.31% 75.01% 73.36% 1977%

Naive 0.4917% 16.26% 38.05% 78.88% 81.5% 1671%

In Table 5.2, the error distributions of the individual forecast strategies’ accuracies are
characterized by basic statistical indices and in addition illustrated in a Box&Whisker plot
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Figure 5.1: Experiment 1: Comparison Chart of WCF and ETS
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5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% >

Naive 10% 19% 23% 28% 34% 41% 46% 49% 51% 56% 59% 62% 67% 68% 69% 71% 79% 80% 85% 87% 100%

ETS 12% 19% 30% 36% 43% 46% 50% 53% 56% 61% 63% 66% 71% 73% 74% 75% 76% 79% 79% 81% 100%

WCF 13% 25% 34% 46% 56% 64% 66% 68% 70% 72% 76% 79% 82% 82% 83% 86% 88% 89% 90% 91% 100%
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Comparison of WCF to Naive and ETS strategy 

CICS transactions (5 days, 48 frequency, 240 forecast values) 
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Figure 5.2: Experiment 1: Cumulative Error Distribution of WCF, ETS and Naive
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Figure 5.3: Experiment 1: Box&Whisker Plots of the Error Distributions without outliers

in Figure 5.3. The WCF approach shows for example the lowest median value of 20.7%
and the lowest mean value of 47.4%. In addition, the WCF apporach has a significantly
smaller maximum error value that is important to increase the trust into its forecast mean
values.

In Figure 5.4, the WCF and the ETS strategy’s percentage error distributions are tested by
an paired, directed t-test on the hypothesis that their true difference in means is less than
zero. The result says that there is a significant mean of differences of −0.27 indicating that
the WCF approach achieves significantly smaller forecast errors. In addition, the WCF
and the Naive strategy’s percentage error distributions are tested in the same way with
the result of a highly significant mean of differences of −0.31 underlining the hypothesis
that the application of the WCF approach can be of use compared to just apply system
monitoring (which would be equal to the Naive strategy).

Though the ETS strategy is a sophisticated procedure on its own, this experiment shows
that the application of this fixed strategy cannot achieve useful forecast mean values as
their forecast errors are on average almost as high as of the Naive strategy and show even
higher maximal errors.
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Paired t-test

data: WCF and ETS

t = -2.1129, df = 229,

p-value = 0.01785

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.06031597

sample estimates:

mean of the differences

-0.2762366

Paired t-test

data: WCF and Naive

t = -2.7639, df = 229,

p-value = 0.003088

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.1267299

sample estimates:

mean of the differences

-0.3148823

Figure 5.4: Experiment 1: Directed, paired t-test on WCF and ETS error distributions
(left) and on WCF and Naive error distributions (right)

5.2.2 Experiment 2: Comparison of Overhead Group 2 Strategies

The second experiment compares the forecast accuracy of the WCF approach with strate-
gies of overhead group 2 forecast and lower (WCF2) against the individual group 2 strate-
gies: CS, ARIMA101 and SES. As a strength of all of these strategies is the trend extrap-
olation and as none of them is capable to handle seasonal patterns, high forecast accuracy
is not likely to be achieved for the CICS workload intensity behavior that shows highly
complex daily patterns and therefore only very short term trends are visible. To achieve
acceptable forecast accuracy the strategies are applied in a high frequency and with a max-
imum horizon of only two forecast mean values. Six days of the CICS workload intensity
behavior are simulated in this experiment from Monday until Saturday. More details on
the experiment configuration are given in Table 5.3.

Table 5.3: Experiment 2: Configuration

Experiment Focus Comparison of overhead group 2 strategies
to WCF restricted to select from group 1 to 2

Forecast Strategies CubicSpline(2), ARIMA101(2), SES(2),
(overhead group) WCF(1-2), Naive(1)

Input Data CICS Monday to Saturday,
576 values in transactions per 15 minutes,
frequency = 96,
6 periods as days

Horizon h = 1 for tsl in [1;48] (1st half period),
(number of forecast points (h) h = 2 for tsl in [49;576] (until 6th period complete),
for time series length (tsl))

The cumulative percentage error distribution for each of the executed strategies is given in
Figure 5.6. It is visible that the WCF2 approach achieves similar forecast accuracy com-
pared to the SES strategy whereas the ARIMA101 and CS strategies show lower forecast
accuracy as they are constantly below the SES and WCF2 lines. As the WCF2 approach is
just combining the other strategies internally by the classification and feedback mechanism
as in 3.3, it gets visible in this experiment that the WCF2 approaches continuous selection
is successful.

All forecast strategies induce approximately the same amount of computational overhead
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Figure 5.5: Experiment 2: Comparison Chart of WCF2, CS, ARIMA101 and SES
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5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% >

Naive 22% 36% 46% 51% 59% 64% 68% 71% 76% 80% 82% 84% 86% 88% 89% 90% 92% 93% 93% 95% 100%

CS 16% 30% 41% 48% 55% 60% 63% 67% 71% 74% 77% 79% 80% 82% 83% 84% 85% 87% 88% 89% 100%

ARIMA101 18% 32% 37% 44% 49% 52% 57% 61% 63% 66% 69% 71% 74% 75% 77% 78% 80% 81% 82% 85% 100%

SES 22% 36% 45% 50% 57% 62% 66% 69% 74% 78% 81% 82% 85% 87% 89% 89% 91% 93% 93% 95% 100%

WCF 25% 38% 46% 51% 58% 63% 67% 70% 74% 77% 80% 82% 85% 86% 88% 89% 91% 92% 92% 94% 100%
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Figure 5.6: Experiment 2: Cumulative Error Distribution of WCF2, CS, ARIMA101 and
SES

per execution of only 55 ms on average which allows a high frequency of forecast executions.

The forecast mean values of the individual strategies and the observation values in the
course of time are plotted in Figure 5.5. This chart illustrates that the WCF2 strategy
constantly stays closer to the observed values than the ARIMA101 strategy (divergences
at the beginning) and the CS strategy (which constantly assumes too strong trends at the
edges of a seasonal pattern).
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Figure 5.7: Experiment 2: Box&Whisker Plots of the Error Distributions without outliers

In Table 5.4, the error distributions of the individual forecast strategies are characterized
by basic statistical indices and in addition illustrated in a Box&Whisker plot in Figure 5.7.
On the one hand, the WCF approach shows the lowest median error of 18.6%. But on the
other hand, the Naive strategy achieves the lowest mean error of 53.7%. This shows that
in presence of strong seasonal patterns the simple trend extrapolating strategies are not
useful as their accuracy is comparable or worse than the accuracy of the Naive strategy.

In Figure 5.8, the WCF2 approach and the CS strategy’s percentage error distributions
are tested by a paired, directed t-test on the hypothesis that their true difference in means
is less than zero. The result says that there is a highly significant mean of differences of
−0.70 indicating that the WCF approach achieves significantly smaller forecast errors. In
addition, the WCF and the ARIMA101 strategy’s percentage error distributions are tested
in the same way with the result of a highly significant mean of differences of −0.17. These
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Table 5.4: Experiment 2: Result Summary

Strategy Minimum 25% Quantil Median Mean 75% Quantil Maximum

WCF2 0.067% 5.063% 18.64% 59.69% 47.94% 3777%

Naive 0.029% 6.215% 19.26% 53.79% 44% 3779%

SES 0.029% 5.935% 20.13% 54.8% 47.24% 3777%

CS 0.005% 7.232% 21.38% 130.4% 50.57% 6476%

ARIMA101 0.114% 7.223% 25.68% 77.39% 65.5% 3776%

Paired t-test

data: WCF2 and CS

t = -4.8649, df = 570,

p-value = 7.418e-07

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.4675543

sample estimates:

mean of the differences

-0.7069751

Paired t-test

data: WCF2 and ARIMA101

t = -5.7216, df = 570,

p-value = 8.529e-09

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.1260808

sample estimates:

mean of the differences

-0.177067

Figure 5.8: Experiment 2: Directed, paired t-test on WCF2 and CS error distributions
(left) and on WCF2 and ARIMA101 error distributions (right)

two results underline that the WCF2 approach achieves higher forecast accuracy by its
classification mechanism than the two other strategies (CS and ARIMA101) on their own.

As the SES strategy achieved the highest accuracy in this experiment, a high similarity of
the WCF2 approaches and the SES strategy’s percentage error distributions is expected
and accordingly a significant difference of means cannot be detected by a paired t-test
as in Figure 5.9. When comparing the WCF2 approaches and the Naive strategies’ error
distributions, a small but significant mean of differences of 0.058 is detected by the paired,
directed t-test. In this case the Naive strategy is as good as the WCF2 approach. This may
change if the workload intensity behavior does not show that strong seasonal patterns for
example in data of higher resolution (seconds, minutes) for short term trend interpolation
or on highly aggregated data for long term trend extrapolation (weeks, months, years).
This has not yet been validated as no high resolution or long term real-world workload
intensity behavior data is available up to now.

55



Paired t-test

data: WCF2 and SES

t = 1.9554, df = 570,

p-value = 0.9745

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf 0.09009366

sample estimates:

mean of the differences

0.04889562

Paired t-test

data: WCF2 and Naive

t = 2.3452, df = 570,

p-value = 0.00968

alternative hypothesis:

true difference in means

is greater than 0

95 percent confidence interval:

0.0175491 Inf

sample estimates:

mean of the differences

0.05899171

Figure 5.9: Experiment 2: Directed, paired t-test on WCF2 and SES error distributions
(left) and on WCF2 and Naive error distributions (right)

5.2.3 Experiment 3: Comparison of Overhead Group 3 Strategies

The third experiment compares the forecast accuracy of the WCF approach using overhead
group 3 forecast strategies (WCF3) against the individual group 3 strategies: ETS and
tBATS. As a strength of both of these strategies is the seasonal pattern detection, a historic
knowledge of 3 periods is given at the beginning. These strategies do not need to be applied
in a high frequency as they can deliver high forecast accuracy for a longer horizon. 18
days of the Wikipedia workload intensity behavior are simulated in this experiment from
Thursday until the next but one Sunday. More details on the experiment configuration
are given in Table 5.5.

Table 5.5: Experiment 3: Configuration

Experiment Focus Comparison of overhead group 3 strategies
to WCF restricted to select from group 3

Forecast Strategies ETS(3), tBATS(3), WCF(3),
(overhead group) Naive(1)

Input Data Wikipedia 3 weeks,
504 values in page requests per hour,
frequency = 24,
21 periods as days,
first 3 days Monday to Wednesday
as historic knowledge

Horizon h = 12 for tsl in [73;504] (4th until 21st period),
(number of forecast points (h) no forecasts for the first 3 periods
for time series length (tsl))

The cumulative percentage error distribution for each of the executed strategies is given in
Figure 5.11. The tBATS strategy and the WCF3 approach achieve both a similar forecast
accuracy. The ETS strategy is only slightly worse. The big gap to the Naive strategy
indicates that the forecast mean values of these complex forecast strategies are possibly
useful for resource planning in this context.

All three forecast strategies induce approximately the same amount of computational over-
head as they belong to the same overhead group: tBATS on average 10 seconds per ex-
ecution, ETS 13.8 seconds and WCF3 19 seconds (as it executes both tBATS and ETS
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Figure 5.10: Experiment 3: Comparison Chart of WCF3, ETS, tBATS and ETS
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Figure 5.11: Experiment 3: Cumulative Error Distribution of WCF3, ETS, tBATS and
Naive

every second time). Their computations are based on the last seven observed periods and
therefore on a maximum number of 168 observation values.

The forecast mean values of the individual strategies and the observation values in the
course of time are plotted in Figure 5.10 only for the first 10 days of the simulated 18
days. This chart illustrates the high forecast accuracy of all three forecast strategies
especially at the edges of the daily seasonal patterns. It can be seen that the changes in
the amplitudes of the daily patterns for example from Sunday to Monday induce higher
forecast errors than for constant amplitudes on working days.
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Figure 5.12: Experiment 3: Box&Whisker Plots of the Error Distributions without outliers

Table 5.6: Experiment 3: Result Summary

Strategy Minimum 25% Quantil Median Mean 75% Quantil Maximum

tBATS 0.0209% 3.793% 10.93% 22.76% 28.33% 185.2%

WCF3 0.0209% 3.915% 11.63% 24.01% 29.42% 209.6%

ETS 0.0294% 4.807% 11.62% 27.44% 32.41% 241.2%

Naive 0.0081% 12.98% 80.73% 127.4% 89.13% 1013%

In Table 5.6, the error distributions of the individual forecast strategies are characterized
by basic statistical indices and in addition illustrated in a Box&Whisker plot in Figure 5.12.
The tBATS strategy shows the lowest median value of only 10.9%. The low maximum
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5.2. Concept Validation

errors of all three forecast strategies strengthen the trustworthiness of the forecast mean
values compared to the naive strategy. As the WCF3 approach is a combination of the
two other strategies, it obviously cannot be better than these for individual executions but
their error values are more close to the in this case better performing tBATS strategy.

Paired t-test

data: WCF3 and ETS

t = -4.1869, df = 430,

p-value = 1.716e-05

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.02077467

sample estimates:

mean of the differences

-0.03426498

Paired t-test

data: WCF3 and tBATS

t = 1.1914, df = 430,

p-value = 0.2341

alternative hypothesis:

true difference in means

is not equal to 0

95 percent confidence interval:

-0.008086287 0.032979603

sample estimates:

mean of the differences

0.01244666

Figure 5.13: Experiment 3: Directed, paired t-test on WCF3 and ETS error distributions
(left) and on WCF3 and tBATS error distributions (right)

When comparing the WCF3 approaches and the ETS strategy’s error distributions by a
paired, directed t-test as in Figure 5.13, the detected mean of differences is small with a
value of −0.034 but highly significant which means that the WCF3 approach constantly
achieves a slightly higher accuracy. The mean of differences between the WCF3 approaches
and tBATS strategy’s error distributions is even smaller and not significant as the WCF3
selects in this scenario the tBATS strategy in about 80% of the forecast executions .
This shows that the WCF3 approach is able to continuously choose the better performing
strategy.
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5.2.4 Experiment 4: Comparison of Overhead Group 4 Strategies

The fourth and last presented experiment compares the forecast accuracy of the WCF
approach using overhead group 4 forecast strategies (WCF4) against the individual group
4 strategies: ARIMA and tBATS. This is the only difference to the configuration in ex-
periment 3. The configuration of experiment 4 is summarized in the Table 5.7.

Table 5.7: Experiment 4: Configuration

Experiment Focus Comparison of overhead group 4 strategies
to WCF restricted to select from group 4

Forecast Strategies ARIMA(4), tBATS(4), WCF(4),
(overhead group) Naive(1)

Input Data Wikipedia 3 weeks,
504 values in page requests per hour,
frequency = 24,
21 periods as days,
first 3 days Monday to Wednesday
as historic knowledge

Horizon h = 12 for tsl in [73;504] (4th until 21st period),
(number of forecast points (h) no forecasts for the first 3 periods
for time series length (tsl))

The cumulative percentage error distribution for each of the executed strategies is given in
Figure 5.15. The ARIMA strategy and the WCF4 approach achieve both a similar forecast
accuracy. The tBATS strategy is only slightly worse. Again, as in experiment 3, the big
gap to the Naive strategy indicates that the forecast mean values of these complex forecast
strategies are of possible use for resource planning in this context. In addition, this chart
illustrates the even higher forecast accuracy of the WCF4 approach and ARIMA strategy
compared to WCF3 approach in experiment 3.

The computational overhead per forecast execution are on average 22 seconds for the
WCF4 approach, again 10 seconds for the tBATS strategy. The ARIMA strategy needed
on average 15 seconds per forecast execution but the durations show a higher variance and
maximal duration of 56 seconds. As in experiment 3, their computations are based on
the last seven observed periods and therefore on a maximum number of 168 observation
values. These measurements underline the correctness of the presented overhead grouping
of the forecast strategies in Table 3.2.

The forecast mean values of the individual strategies and the observation values in the
course of time are plotted in Figure 5.14 only for the first 10 days of the simulated 18 days.
Their shapes show similar characteristics as in experiment 3 but even closer estimations
of the pattern amplitudes.

In Table 5.8, the error distributions of the individual forecast strategies are characterized
by basic statistical indices and in addition illustrated in a Box&Whisker plot in Figure 5.16.
The ARIMA strategy shows the lowest median value of only 9.6%. The WCF4 approach
has the lowest mean error values and achieves this improvement by internally executing
the better performing strategy. In this scenario, both strategies are selected with a sim-
ilar probability resulting in a combination of their strength for particular situations. In
addition, the WCF4 approach has the lowest maximum error and therefore the highest
trustworthiness of the compared strategies. These experiment results show again that an
measurable improvement can be achieved by the WCF approach.

60



5.2. Concept Validation

0

0
,51

1
,52

2
,53

TBATS

TBATS

TBATS

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

TBATS

TBATS

TBATS

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

TBATS

TBATS

TBATS

ARIMA

ARIMA

ARIMA

TBATS

TBATS

TBATS

TBATS

TBATS

TBATS

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

TBATS

TBATS

TBATS

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

ARIMA

0
0

0
0

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

5
5

5
5

6
6

6
6

7
7

7
7

8
8

8
8

9
9

9
9

1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
8

1
8

1
8

1
8

1
9

1
9

1
9

1
9

2
0

2
0

2
0

2
0

2
1

2
1

2
1

2
1

Million  Wikipedia page requests 

O
b

se
rv

at
io

n

W
C

F4

A
R

IM
A

tB
A

TS

Th
u

rs
d

ay
 

 
 

 
Su

n
d

ay
 

 
 

 
 

 
   

   
   

   
   

   
Fr

id
ay

 

cl
as

si
fi

ca
ti

o
n

  b
y 

W
C

F 
 #

 f
o

re
ca

st
  e

xe
cu

ti
o

n
 

 

Figure 5.14: Experiment 4: Comparison Chart of WCF4, tBATS, ARIMA
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Figure 5.15: Experiment 4: Cumulative Error Distribution of WCF4, tBATS, ARIMA and
Naive
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Figure 5.16: Experiment 4: Box&Whisker Plots of the Error Distributions without outliers

In Figure 5.17, a comparison of the WCF4 approach with both others strategies, the
ARIMA and the tBATS, by the paired, directed t-tests detects a highly significant mean
of differences within percentage error distributions in both cases. This indicates that the
WCF4 approach is able to correctly select the strategy that is more likely to show higher
accuracy in particular cases out of the two others strategies ARIMA and tBATS. Therefore
the WCF4 approach is able to combine their strengths.

If the directed, paired t-test is used to compare the error distributions of the WCF4
and the WCF3 (experiment 3) as in Figure 5.18, a highly significant mean of differences
of −0.65 is found. The WCF4 approaches internal use of the overhead group 4 strategy
ARIMA has obviously caused this improvement in accuracy of WCF4 compared to WCF3.
The mean of differences of −1.1 is detected when comparing the WCF4 approach to the

Table 5.8: Experiment 4: Result Summary

Strategy Minimum 25% Quantil Median Mean 75% Quantil Maximum

WCF4 0.0272% 4.389% 10.12% 17.49% 22.67% 125.5%

ARIMA 0.0096% 4.193% 9.608% 19.89% 22.77% 340.6%

tBATS 0.0209% 3.793% 10.93% 22.76% 28.33% 185.2%

Naive 0.0081% 12.98% 80.73% 127.4% 89.13% 1013%
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5.2. Concept Validation

Paired t-test

data: WCF4 and tBATS

t = -4.2109, df = 430,

p-value = 1.55e-05

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.03208695

sample estimates:

mean of the differences

-0.05272829

Paired t-test

data: WCF4 and ARIMA

t = -1.843, df = 430,

p-value = 0.03301

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.002530368

sample estimates:

mean of the differences

-0.02396612

Figure 5.17: Experiment 4: Directed, paired t-test on WCF4 and tBATS error distribu-
tions (left) and on WCF4 and ARIMA error distributions (right)

Paired t-test

data: WCF4 and WCF3

t = -5.255, df = 430,

p-value = 1.168e-07

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.04473058

sample estimates:

mean of the differences

-0.06517494

Paired t-test

data: WCF4 and Naive

t = -11.6577, df = 430,

p-value < 2.2e-16

alternative hypothesis:

true difference in means

is less than 0

95 percent confidence interval:

-Inf -0.9436938

sample estimates:

mean of the differences

-1.099108

Figure 5.18: Experiment 4: Directed, paired t-test on WCF4 and WCF3 error distributions
(left) and on WCF4 and Naive error distributions (right)

Naive strategy by the directed, paired t-test. This enormous mean of differences of the
percentage errors indicates the high potential of the WCF4 approach in this scenario to
deliver forecast results that can be of use for a resource planning system, which is further
analysed in the presented case study in the following section.
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5.3 Case Study

The following case study illustrates how the WCF approach can be used to plan resources
of a software service. The WCF offers a higher degree of flexibility due to the spectrum of
integrated forecast strategies. None of these forecast strategies can offer these degrees of
flexibility on their own. On the one hand, the overhead group 2 strategies do not achieve
a good accuracy even if three periods of data are available and on the other hand, the
overhead group 3 and 4 strategies cannot return a forecast result if only a few values are
available or be applied in a high frequency due to their computational overheads.

In the presented scenario, there is no historic knowledge available at the beginning and the
WCF has to adapt to this and wait for the first 3 periods until the overhead group 4 strate-
gies can be applied. It is assumed that the underlying system whose workload intensity
behavior is analysed is linearly scalable and has two known thresholds at different levels.
For an arrival rate higher than a threshold values, the SLA of the average response time is
violated. It is assumed that the system’s resource planner reacts on these SLA violations
and adds additional computing resources, for example starts a new server instance. For an
arrival rate lower than a threshold value, the running server instances are not efficiently
used and therefore one of them is stopped.

In this scenario, the WCF system provides forecast mean values and confidence intervals
to the resource planer of the system which then can proactively add or remove server
instances at that point in time, when the resource or server is needed, in addition to solely
reacting on SLA violations.

Details on the WCF configuration are given in Table 5.9.

Table 5.9: Case Study: WCF System Configuration and Input Data

Forecast Strategy WCF(1-4)
(overhead group)

Input Data Wikipedia 3 weeks,
504 values in page requests per hour,
frequency = 24,
21 periods as days

Horizon h = 1 for tsl in [1;12] (1st half period)
(number of forecast points (h) h = 3 for tsl in [13;72] (until 3rd period complete)
for time series length (tsl)) h = 12 for tsl in [73;504] (4th until 21st period),

In the chart in Figure 5.19, the WCF forecast values are plotted together with the corre-
sponding confidence intervals and the observed values. The two dotted lines represent the
thresholds that define when a server instance needs to be started or stopped. The upper
threshold is placed in a way that it is not reached constantly in every daily seasonal period
(for example not on the weekends).

The starts and stops of server instances are triggered either reactive after an SLA violation
or in a planned way anticipating the points in time, when an SLA violation would happen.
Table 5.10 depicts the single points, when the thresholds are crossed. It can be seen that
the SLA violations cannot be forecast in the first three daily periods besides 2 cases with
a small decision window as defined in Section 2.4. For the following daily periods the
SLA violations can be correctly anticipated in the majority of cases. Only the when the
amplitude of the daily pattern changes for example before and after the weekends the
forecast mean values deliver false positives or do not anticipate correctly the need for an
additional computing resource.
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Figure 5.19: Case Study Chart: 21 days Wikipedia Page Requests, WCF4 approach
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Table 5.10: Case Study: Table of Prevented SLA Violations

upper_threshold: 2 or 3 server instances lower_threshhold: 1 or 2 server instances

day cut direction action type critics direction action type critics

1 no none up reactive not detected

1 no none down reactive not detected

2 yes up proactive short provisioning time up reactive not detected

2 yes down reactive not detected down reactive not detected

3 yes up proactive short provisioning time up reactive not detected

3 yes down reactive not detected down reactive not detected

4 yes up reactive not detected up proactive

4 yes down reactive not detected down proactive

5 yes up proactive up proactive

5 yes down proactive down proactive flexible4

6 no up proactive false positive up proactive

6 no down proactive false positive down proactive

7 no none up proactive slightly too early

7 no none down proactive slightly too early

8 yes up reactive not detected up proactive

8 yes down proactive down proactive slightly too late

9 yes up proactive slightly too late up proactive slightly too late

9 yes down proactive slightly too early down proactive

10 yes up proactive slightly too late up proactive

10 yes down proactive down proactive

11 yes up proactive up proactive

11 yes down proactive down proactive

12 yes up proactive up proactive

12 yes down proactive down proactive

13 no up proactive false positive up proactive

13 no down proactive false positive down proactive

14 no none up proactive slightly too early

14 no none down proactive slightly too early

15 yes up reactive not detected up proactive

15 yes down proactive down proactive

16 yes up proactive slightly too late up proactive

16 yes down proactive slightly too early down reactive not detected

17 yes up proactive slightly too late up proactive

17 yes down proactive down proactive

18 yes up proactive up proactive

18 yes down proactive down proactive

19 yes up proactive up proactive

19 yes down proactive down proactive

20 no up proactive false positive up proactive

20 no down proactive false positive down proactive

21 no none up proactive slightly too early

21 no none down proactive

Table 5.11 summarizes all detected SLA violations: In the worst case 36 and in the best
case 23 SLA violations would have been monitored when using the forecast mean values
by the WCF system instead of 78 when just reacting on SLA violations. 16.7% of the SLA
violations could not be anticipated by the WCF system in addition to 7.7% false positives
in this scenario.

In Table 5.8, the error distribution of the WCF forecast approach is characterized by basic
statistical indices. Half of the forecast mean values have an relative error below 9.4% and
even-quarter of them have an relative error below 22.9%. This low average of relative
errors with a small variance builds up a high level of trust into the forecast mean values.
The reason for the high maximum relative errors are the learning periods at the beginning.
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5.4. Experiment Result Interpretation

Table 5.11: Case Study: SLA Violations Summary

Comparison Reactive vs. Proactive using WCF

Purely reactive 78 SLA violations

WCF proactive 23 best case
36 worst case
SLA violations

WCF false positives 6 of 78 = 7.7%

WCF not detected 13 of 78 = 16.7%

Table 5.12: Case Study: Forecast Error Distribution

Minimum 25% Quantil Median Mean 75% Quantil Maximum

WCF4 0.0041% 4.145% 9.4% 20.47% 22.92% 365.3%

5.4 Experiment Result Interpretation

The presented experiments demonstrate that the WCF system is able to sensitively select
a suited forecast strategy for particular situations thereby improving the overall forecast
accuracy and reducing the number of outliers as compared to a single forecast strategy
applied repeatedly in a static way. As demonstrated in the case study, the interpretation
of WCF forecast results by proactive resource provisioning reduces the number of SLA
violations by between 52% to 70%. In addition, the automated, flexible and dynamic
forecast strategy selection of the WCF’s workload intensity behavior classification approach
supports the system user to select a forecast strategy according to given objectives and
not yet monitored data. Especially at the beginning of a workload intensity behavior’s
life time, when no or few historic data is available, a static decision would not fit for the
workload’s lifetime. With its dynamic design and the flexibility to react on changes in the
workload’s intensity behavior, the WCF system is able to adapt to these changes, thereby
increasing the accuracy and reliability of the forecast results.

The WCF system enables online and continuous forecast processing with controllable com-
putational overheads. To achieve this, forecast strategy executions and workload intensity
behavior classifications are scheduled in configurable periods by the WCF system. In all
experiments, the processing times of all forecast strategy stayed within the boundaries
given by their corresponding overhead group. This shows on the one hand that the group-
ing of strategies given in Section 3.2 is suitable. On the other hand, this enables the
WCF system to schedule the individual executions assuring that the forecast results are
available before their corresponding arrival rates are monitored. This is crucial especially
for the executions of forecasts in a high frequency with short horizons as for example in
Experiment 2. The WCF system warns its user if the result has not been provided in time
to indicate that further processing of this result would not be useful. During all presented
experiments and the case study this warning has not been observed, though the simulated
time within the experiments (up to three weeks) has been mapped to an experiment exe-
cution duration of less than 60 minutes. This indicates that the WCF system is suitable
for online usage as it provides continuous forecast results under controllable computational
overheads.

Concerning the results of experiment 2, the trend extrapolating strategies in overhead
group 2 cannot perform as good as the overhead group 3 and 4 strategies even when
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executed in high frequency and therefore do not generate a value for resource planning
in these scenarios. This is due to the fact that all analysed data on real-world workload
intensity behaviors show strong daily seasonal patterns. Due to a lack of data with no
strong seasonal components, it is left for future work to analyse whether these strategies
perform better on high resolution data (seconds, minutes) or for highly aggregated long
term data (months, years) when stronger trends are visible and overhead group 3 and 4
strategies would induce unaffordable computing overheads.

Furthermore, the experiments 1, 3 and 4 showed that if the overhead group 3 and 4 strate-
gies get at least 3 periods of data, they achieve a high forecast accuracy. But providing
more periods does not improve forecast accuracy but rises the computational overheads of
these strategies significantly. The shape of three periods can be easily described by less
than 200 arrival rate values without loosing too much precision by aggregating arrival rate
values. This is the number of time series values held in memory for computations con-
nected to classification and forecasts. By sticking to this limitation in time series length,
the overhead group 3 and 4 strategies stay within their estimated computation times.

For a workload intensity behavior with strong daily seasonal pattern and high amplitude
variance due to known calendar effects, the forecast accuracy might be strongly improved
by splitting this workload intensity behavior into two separated time series: regular work-
ing days in the first and in the second weekends together with public holidays. This can
reduce the impact of the possibly strong overlay of weekly patterns. For future work, it is
planned to automatically support such time series splittings and the selection of the data
aggregation level for varying forecast objectives. This can be achieved by a realisation of
an intelligent filter applied to the monitoring data before is provided in form of time series
to the WCF system.
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6. Related Work

In the foundations in Section 2, four groups of related work are mentioned that do not
include directly comparable work.

The first group focuses the field of workload classification in general without focus on
forecasting techniques [CS85, AW96, SWHB06, vHRH08] as presented more detailed at
the beginning of Section 2.2.

The second group includes all considered publications on forecasting approaches of the
time series analysis that have been incorporated in the WCF approach of this thesis. The
standard works of the time series analysis [Hyn08, BJR08, Shu11] and research papers on
individual approaches [GKO+08, SH05, HK08, HKPB02, DLHS11, Goo10] are introduced
in Section 2.3.2.

In Section 2.3.1, the third group of related work is summarized, as these publications focus
in techniques for pattern identification in time series data [Ols01, WL05, ZLDL11, Raa93,
SGL+11, ALSS95, HB10].

The fourth group of related work focuses on architectures for reactive resource provisioning
mechanisms as in [MHL+11, JHJ+10, HBK11, CEM+10, ACCM09] as well as on the
evaluation of the potentials for cost and energy savings by elasticity of resources in [OAL11,
AMM+09, TBL09, OLG10, LO10] as mentioned in the introduction in Section 1.

Comparable related work is divided into three groups:

The first group of related work considers research publications that focus on an evaluation
of forecast methods applied to workload-related or performance monitoring data. In 2004,
Bennani and Menasce have published their research results of an robustness assessment
on self managing computer systems under highly variable workloads in [BM04] where they
come to the conclusion that proactive resource management improves a system’s robust-
ness under highly variable workloads. In addition, the authors contribute by a comparison
of three different trend interpolating forecast methods (polynomial interpolation, weighted
moving averages and exponential smoothing) that have been introduced as means for work-
load forecasting in Menasces and Almeida’s book [MA98] on ”Capacity Planning for Web
Performance - Metrics, Models and Methods” published in 1998. Menasce and Bennani
propose to select the forecast methods according to the lowest R2 error as feedback. Even
though the focus of this related work lays more on the potentials of proactive resource
provisioning and the evaluation of forecast methods is limited to basic trend interpola-
tion strategies without any pattern recognition for seasonal time series components, the

69



authors’ idea to use the feedback of an accuracy metric for forecast strategy selection is
central the approach in this thesis. In another case of related work, Frotscher assesses in his
bachelor thesis [Fro11] the capabilities to predict response times of two concrete and simple
ARIMA models without seasonality, simple exponential smoothing and the Holt-Winters
approach as a special case of the extended exponential smoothing. The evaluation is based
on generated and therefore possibly unrealistic times series data. The author admits that
the spectrum of forecast methods offered by time series analysis is not covered and is
critical about the capability to predict response times of the evaluated methods as their
strengths in trend extrapolation does not suit to typically quickly alternating response
times.

A second group of related work considers approaches for workload forecasting that do not
base on the methods of time series analysis as alternatives to WCF approach in this thesis.
For example in Kleeberg’s diploma thesis [Kle] and a related research paper [BBR+07], it
is proposed to use neuronal nets and machine learning approaches for demand prediction.
This demand predictions are meant to be used by an operating system’s resource manager.
Goldszmidt, Cohen and Powers use an approach based on Bayesian learning mechanisms
for feature selection and short term performance forecasts described in [GCP05]. In these
cases of related research, the training of the applied neuronal nets on a certain pattern
need to be completed before the nets can provide pattern based forecasts. This stepwise
procedure limits the flexibility and implies the availability of huge amounts of monitoring
data for the mining of possibly observable patterns.

The third group of related work covers research that has its focus on approaches for
proactive resource provisioning and make use of tailored forecast methods. The authors
of the publication [GRCK07] use a tailored method to decompose a time series by into its
dominating frequencies using a Fourier transformation and trend interpolation techniques
to generate a synthetic workload as forecast. Similarly in [HMBN10], Fourier analysis
techniques are applied to predict future arrival rates. In [CDM11] the authors base their
forecast technique on pattern matching methods to detect non-periodic repetitive behavior
of cloud clients. The research of Bobroff, Kochut and Beaty presented in [BKB07] has its
focus on the dynamic placement of virtual machines, but workload forecasting is covered
by the application of static ARMA processes for demand prediction. In [KKK10] an
approach is proposed and evaluated that classifies the gradients of a sliding window as
a trend estimation, on which the resource provisioning decision are then based. The
authors Grunske, Aymin and Colman of [AGC12, ACG12] focus on QoS forecasting such as
response time and propose an automated and scenario specific enhanced forecast approach
that uses a combination of ARMA and GARCH stochastic process modeling framework for
frequency based representation of time series data. This way, the authors achieve improved
forecast accuracy for QoS attributes that typically have quickly alternating values.

A common limitation of related research work in this group is the focus on single strate-
gies that are optimised or designed to cover a subset of typical situations and are therefore
not able to cover all possible situations adequately as it can be achieved by an combina-
tion of the innovation state space frameworks of ETS and tBATS and the auto-regressive
integrated moving averages (ARIMA) framework for stochastic process modeling.

In the research work that is presented in [MIK+10], different methods of the time series
analysis and Bayesian learning approaches are applied and periodically selected by their
forecast accuracy. It is not evaluated how significantly this feedback improves the overall
forecast accuracy and there is no information given on how the user’s forecast objectives
are captured and on how the computational overheads can be controlled. In contrast to
this thesis, the authors concentrate on the prediction of resource consumptions.
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In most cases of related research work besides [HMBN10], the resource utilisation or aver-
age response times are monitored and taken as an indirect metric for the recent workload
intensity, but these performance metrics are indirectly influence by the changing amounts
of provisioned resources and other factors. The forecasts are then based on these values
that bypass the resource demand estimation per request and interleave by principle perfor-
mance relevant characteristics of the software system as they can be modelled in a system
performance model.
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7. Conclusion

Today’s resource managing systems of virtualized computing environments often work
solely reactive by using thresholds based rules, whereas the potential of proactive resource
provisioning to improve a system’s performance and efficiency are not leveraged yet. The
results of this diploma thesis can be seen as a step towards making use of this potential
by being able to compute continuous and reliable forecasts of workload intensity behaviors
with appropriate accuracy.

In this thesis, the first step to achieve this has been the identification of workload intensity
behavior specific characteristics and metrics that quantify them. Secondly, it has been a
crucial point to establish a survey on the strengths, weaknesses and requirements of exist-
ing forecast strategies from the time series analysis and ways to estimate and evaluate the
forecast accuracy of individual forecast executions. Thirdly, an approach has been intro-
duced that is able to classify a workload intensity behavior and to dynamically select an
appropriate forecast strategy. This has been achieved by using direct feedback mechanisms
that evaluate and compare the recent accuracy of different forecast strategies incorporated
into a decision tree that considers given forecast objectives and provides space for further
heuristic optimisations like noise reduction. In the next step, this approach has been imple-
mented in the presented WorkloadClassificationAndForecasting (WCF) system that
enables online application and processes continuous forecast results of a variable number
of different workload intensity behaviors.

Finally, the introduced approach has been evaluated conceptually by conducting exper-
iments with the WCF system using real-world workload intensity traces as input. For
example, in the first presented experiment, the relative error of the forecast points in rela-
tion to the arriving observations is reduced by 63% in average compared to the results of a
static application of the Extended Exponential Smoothing (ETS) strategy that is by itself
a sophisticated method and withstands direct comparisons to the other strategies used by
the WCF system. The benefit of this approach has been demonstrated in a case study,
showing that between 52% and 70% of the violations of a given service level agreement are
prevented by applying proactive resource provisioning based on the forecast results of the
introduced WCF system.
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7.1 Future Work

The conduction of experiments to further analyse the trend interpolation strategies of the
overhead group 2 with workload intensity traces that show less strong seasonal patterns
and stronger trends is left for future work. Appropriate data for these experiments with
strong trends has not been available, but is likely to be found in data of high resolution
(seconds, minutes) or long term aggregated data (months, years).

The functionality of the WCF system could be further extended at its interfaces. One
example for a possible extension is the combination of the WCF system with an intelligent
filter that helps a system user to fit the aggregation level of the monitored arrival rates for
specific forecast objectives like continuous short term forecast for proactive resource alloca-
tion or manually triggered long term forecasts for server capacity planning. For divergent
forecast objectives, such a filter would multiplex a single input stream of monitoring data
and provide the it as single workload intensity behaviors in different aggregation levels at
the requires interface of the WCF system. A second example for a WCF system exten-
sion would be a combination with an anomaly detection system like ΘPAD as outlined in
[Bie12] at the provides interface of the WCF system. Such a system would compute contin-
uous anomaly ratings by comparing the WCF system’s forecast results with the monitored
data. The anomaly rating can serve to analyse the workload intensity behavior for sudden
and unforeseen changes and in addition as an reliability indicator of the WCF system’s
recent forecast results that can easily be interpreted by a proactive resource manager.

It is planned to connect the WCF system’s requires interface (data input) to a monitoring
framework like Kieker [vHWH12] and provide the online forecast results to a performance
model simulator that enables self-adaptive resource allocations as described in [HBK11]. A
successful integration would enable more extensive experiments to validate the concepts of
self-adaptive resource allocations based on workload forecasts of the WCF system for ex-
ample by a comparison of using only a reactive provisioning method against the proactive
forecasting approach in addition to the reactive. This way, the number of monitored SLA
violations is directly comparable for equivalent workloads and system resources that run
with the same start configuration. These integrated systems can also be used to dynam-
ically reconfigure a virtualized cluster environment that executes a real-world application
like for example SPEC’s jEnterprise2010 benchmark [Sta09] and analyse the effects of the
reconfigurations. The workload driver of this benchmark could be configured to execute a
predefined workload intensity trace for the different request classes and not a constant or
stepwise scaled workload intensity.
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Glossary

application scalability is a property of the software/application layers. The application
is able to maintain its performance goals in terms of response time or throughput
as defined in Service Level Agreements (SLA) even when its workload intensity in-
creases. Platform scalability is a necessary property to make application scalability
possible.. 9, 87

elasticity of a computing system is characterized by the temporal and quantitative proper-
ties of automated scaling, which is run-time resource provisioning and unprovisioning
performed by the execution platform. A manually scaled system cannot be called
elastic. Execution platform elasticity depends on the state of the platform and on
the state of the platform-hosted applications. Elasticity implies scalability beneath
a given upper bound [KHvKR11]. 10, 69, 87

execution platform consists of hardware, virtualization and operating system layer plus
optional middleware like an application server. 9, 10, 87, 88

platform scalability is the ability of the execution platform to provide and make use of as
many (additional) resources as needed (or explicitly requested) by an application..
9, 87

request is submitted to a software service by a user and can be seen as an encapsulation
of a single usage of a service. 10, 11, 23, 24, 87, 88

request class is a category of requests that is characterized by statistically indistinguish-
able resource demands. 10, 23, 25, 43, 88

resource demand in units of time or capacity is the consumption of physical or virtual
resources induced by processing a single request. 10, 23, 24, 87

resource utilization is the fraction of time that the resource is busy. [Kou05]. 10, 11, 24

response time is the time it takes a system to react to a request and is composed of
congestion time(s) and service time(s). [Kou05]. 9–11, 24, 64, 70, 87

scalability A computing system consisting of an execution platform and applications is
scalable if both platform scalability and application scalability are fulfilled. These
properties imply the absence of bottlenecks in both active and passive resources.
Scalability of a computing system can be limited by an upper bound of workload
intensity or resource pool size. [KHvKR11]. 9, 10, 87

software service is offered by a computing system to the users of the system, which can be
human persons via an interface or computing machines. In our context, a software
service can be seen as a deployed software component. 10, 87

87



throughput is the rate at which requests are completed by a computer system (measured
in operations per unit of time). [Kou05]. 9–11, 24, 87

time series X is a discrete function that represents real-valued measurements xi ∈ R
for every time point ti in a set of n equidistant time points t = t1, t2, ..., tn: X =
x1, x2, ..., xn as described in [Mit09]. A time series may have a finite capacity. The
time between to time series points is defined by a value and a time unit. The number
of time series points, that add up to a higher time unit or another obvious period
is the frequency of a time series. The frequency attribute of a time series is an
important start value for the search of seasonal patterns.. 11–13, 23–25, 27–29, 88

time series of request arrival rates is a time series that contains ni ∈ N sums of unique
request arrivals during the corresponding time interval [ti, ti+1). 11, 23, 25–28, 88

usage scenario is an instance of a workload model that defines the rates and order of
service requests and is used for early performance predictions in the context of the
Palladio Component Model (PCM) as described in [RBH+07]. 10

virtualized elastic system is an execution platform that is elastic in terms of the given def-
inition and makes use of virtualization technologies. By using virtualization technol-
ogy the underlying physical resources can be mapped transparently and dynamically
to virtual resources. 10

workload is the physical (not modeled) usage of a system over time containing requests
of one or more request classes. A workload can contain usage patterns that enable
load forecasting, provisioning, planning or anomaly analysis. This definition deviates
from the definition in [TL10] on page 2, where a workload is a more general term
capturing applications and their service level agreements additionally. 10, 88

workload category is a coarse-grained group of workloads and divided into four basic ap-
plication and technology domains broadly used for market segmentation and analysis.
The four categories are:

• Database and Transaction Processing

• Business Process Applications

• Analytics and High Performance Computing

• Web Collaboration and Infrastructure

as in [TL10] on page 13. 10

workload intensity behavior is a description of a workload’s characteristic changes in in-
tensity over time like seasonal patterns, trends, noise, burstiness, level and more like
positivity or burstiness. The workload intensity behavior can be extracted from a
corresponding time series of request arrival rates. 11, 13, 15, 16, 23–25, 27–30, 33,
35–37, 43, 47–49, 52, 55, 56, 64, 67, 68, 73, 88

workload model is a representation that captures the main aspects of the real workload
that has effect on the performance measures of interest. [Kou07]. 10, 11, 88
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