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ABSTRACT
One aim of component-based software engineering (CBSE)
is to enable the prediction of extra-functional properties,
such as performance and reliability, utilising a well-defined
composition theory. Nowadays, such theories and their ac-
companying prediction methods are still in a maturation
stage. Several factors influencing extra-functional properties
need additional research to be understood. A special prob-
lem in CBSE stems from its specific development process:
Software components should be specified and implemented
independent from their later context to enable reuse. Thus,
extra-functional properties of components need to be spec-
ified in a parametric way to take different influence factors
like the hardware platform or the usage profile into account.
In our approach, we use the Palladio Component Model to
specify component-based software architectures in a para-
metric way. This model offers direct support of the CBSE
development process by dividing the model creation among
the developer roles. In this paper, we present our model
and a simulation tool based on it, which is capable of mak-
ing performance predictions. Within a case study, we show
that the resulting prediction accuracy can be sufficient to
support the evaluation of architectural design decisions.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.4 [Performance of Systems]; I.6.5 [Simulation and
Modelling]: Model Development
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1. INTRODUCTION
In CBSE, a central idea is to build complex software sys-
tems by assembling basic components. The initial goal of
CBSE was to increase the level of reuse. However, com-
posite structures may also increase the predictability of the
system during early design stages, because models of indi-
vidual components can be certified and then be composed,
enabling system architects to reason on the composed struc-
ture. This is important for functional properties, but also for
extra-functional properties like performance (i.e., response
time, throughput, resource utilisation) and reliability (i.e.,
mean time to failure, probability of failure on demand).

Prediction methods for performance and reliability of gen-
eral software systems are still limited and seldomly used in
industry [2, 4]. Especially for component-based systems fur-
ther challenges arise. Opposed to object-oriented system
development and performance prediction [21], where devel-
opers design and implement the whole system, several in-
dependent developer roles are involved in the creation of a
component-based software system. Component developers
produce components that are assembled by system archi-
tects and deployed by system allocators. The diverse infor-
mation needed for the prediction of extra-functional prop-
erties is thus spread among these developer roles.

Most existing methods for component-based performance
prediction require system architects to model the system
based on specifications of single components. Often, it is
assumed that the system architect can provide missing in-
formation. This assumption is necessary because of today’s
incomplete component specifications. For example, in [5]
system architects model the control flow through the com-
ponent-based architecture, which is impossible if compo-
nents are black boxes and the dependencies between pro-
vided and required interfaces are unknown. Thus, a special
component specification is needed.

Other approaches neglect factors affecting the perceived
performance of a software component like influences by ex-
ternal services [20, 9], changing resource environments [12,
17, 6], or different input parameters [5]. However, for accu-
rate predictions, these dependencies have to be made explicit
in component specifications.

With the Palladio 1 Component Model, a meta-model al-

1Our component model is named after the Italian renais-
sance architect Andrea Palladio (1508-1580), who, in a cer-
tain way, tried to predict the aesthetic impact of his build-
ings in advance.



lowing the specification of performance-relevant information
of a component-based architecture, we provide an initial at-
tempt to address the identified problems. First, our model
is designed with the explicit capability of dividing the model
artefacts among the different roles involved in a CBSE de-
velopment process. These modelling artefacts can be con-
sidered as domain specific modelling languages, which cap-
ture the information available to a specific developer role.
Second, the model reflects that a component can be used
in changing contexts with respect to the components it is
connected to, the allocation of the component on resources,
or different usage contexts. This is done by specifying para-
metric dependencies, which allow deferring context decisions
like assembly or allocation.

For an initial validation, we have developed a tool capable
of simulating instances of the Palladio Component Model to
obtain performance metrics. We used this tool in a case
study to simulate the performance of a component-based
online shop. Comparing the simulation results with mea-
surements made on an implementation of the architecture
enabled estimating the accuracy of our simulations.

The contribution of this paper is a component meta-model
based on a CBSE role concept which allows parametric spec-
ifications done by different developer roles in the CBSE
development-process. Additionally, we present mathemat-
ical model concepts of our component model, which allow
to use arbitrary stochastic distribution functions for these
types of specifications. A case study which applies our sim-
ulation tool for instances of our meta-model to the imple-
mentation of the modelled architecture finally shows the ex-
pressiveness of our model. Assumptions we made in earlier
work [15] have been weakened in this case study but still
without significant loss of prediction accuracy.

This paper is structured as follows: In section 2, we briefly
review related work. Section 3 introduces our CBSE role
concept and provides details of the component meta-model.
Examples of how the parametric dependencies can be spec-
ified and evaluated are given in section 4. Section 5 details
on the developed simulation tool. Assumptions and limita-
tions of our work are discussed in section 6. In section 7, a
case study applying our simulation tool to a model instance
is presented. Finally, we conclude our paper and outline
future work.

2. RELATED WORK
The approach presented in this paper is related to perfor-
mance meta-models, component models, usage modelling in
performance prediction, and simulations.

Three recent performance meta-models are compared by
Cortellessa in [7]: The performance domain model of the
UML SPT profile [18], the Core Scenario Model from Wood-
side et al. [23], and the Software Performance Engineer-
ing (SPE) meta-model [21] are designed for general software
systems. Another meta-model is KLAPER from Grassi et
al. [11], which, like our model, is designed for component-
based software systems. KLAPER reduces the complexity
of other models with a unifying concept for resources and
components. The Palladio Component Model reduces mod-
elling complexity by providing different models for different
CBSE developer roles.

Besides models designed specifically for the runtime per-
formance prediction of a software system, several other com-
ponent models have been proposed. Each model has its

own special focus on a set of particular aspects depend-
ing on the respective analysis methods. Recent component
models are often divided into two types: industrial- and
research-oriented models. Industrial models (like EJB or
COM) have been designed to support specific implementa-
tion tasks. They often lack the support of broad analysis
capabilities w.r.t. extra-functional properties. Research ori-
ented models (like SOFA) are often accompanied with a spe-
cial analysis method for a set of system properties. A recent
taxonomy of the models used today is presented in [16].

Other approaches have put emphasis on accurate usage
modelling for performance predictions. Hamlet et al. [12]
execute components and measure how they propagate re-
quests in order to gain accurate performance predictions.
In our approach, we require component developers to spec-
ify these propagations, because components are often not
available for measurements when including them into pre-
dictions. Bondarev et al. [6] model cost functions depending
on input parameters, but do not use stochastic characterisa-
tions of these parameters. Sitamaran et al. [20] use extended
Big-O Notations to specify the performance of software com-
ponents depending on input parameters. Bertolino et al.
extend the SPE approach for component-based systems in
[5], but do not model input parameters.

Simulation techniques are often used to evaluate perfor-
mance models such as queueing networks, stochastic Petri
nets, and stochastic process algebras. In a survey on model-
based performance predictions techniques by Balsamo et al.
[2], simulations models by [8] and [1] are described. The
UML-PSI tool by Marzolla [3] derives an event-driven sim-
ulation from UML models, but is not specifically designed
for component-based systems.

3. COMPONENT-BASED PERFORMANCE
MODELLING

The Palladio Component Model is a meta-model for the de-
scription of component based software architectures. The
model is designed with a special focus on the prediction of
Quality-of-Service (QoS) attributes, especially performance
and reliability. In the following, we give some details on
our envisioned CBSE development process and the partici-
pating roles. Afterwards, we highlight some concepts of our
meta-model omitting concepts not used in this paper.

3.1 CBSE Development Process
In the CBSE development process (see also [14]), we dis-
tinguish four types of developer roles involved in producing
artefacts of a software system (see Figure 1).

Component developers specify and implement the compo-
nents. The specification contains an abstract, parametric
description of the component and its behaviour. System
architects assemble components to build applications. For
the prediction of extra-functional properties, they retrieve
component specifications by component developers from a
repository.

System deployers model the resource environment and af-
terwards the allocation of components from the assembly
model to different resources of the resource environment.
Business domain experts, who are familiar with the cus-
tomers or users of the system, additionally provide usage
models describing critical usage scenarios as well as typical
parameter values.
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Figure 1: Process

The complete system model can be derived from the par-
tial models specified by each developer role and then extra-
functional properties can be predicted. Each developer role
has a domain specific modelling language and only sees and
alters the parts of the model in its responsibility. The in-
troduced partial models are aligned with the reuse of the
software artefacts.

3.2 Fundamental Concepts
Several concepts in the Palladio Component Model have
counterparts in the UML2 meta-model. Hence, we keep
the description of these concepts brief. We do not define
a profile for UML2, because we want to avoid ambiguities
in the UML2 meta-model and restrict the specification only
to those constructs that can be handled by our evaluation
method.

Components are generally specified via provided and re-
quired interfaces. An interface serves as contract between a
client requiring a service and a server providing the service.
Components implement services specified in their provided
interfaces using services specified in their required interfaces.

In its most basic form, an Interface consists of a list of
service Signatures. A signature has a name, a sorted list
of parameters, a return type and an unsorted list of excep-
tions it might raise during its execution. This is similar to
the Corba Interface Definition Language (IDL). Interfaces
are first-class entities in the Palladio Component Model and
themselves neither providing nor requiring. Only their rela-
tions to components define their roles. We call this relation
Provided- or Required Role, respectively.

Components and their roles can be connected to build an
Assembly using assembly connectors. An assembly connec-
tor connects a required role of a component with a provided
role of another component. This means that any call emit-
ted by the component requiring a service of the required role
is directed to the connected component providing that ser-
vice. For connectors it is important that the required and
provided interfaces match, e.g., that the service is provided
as expected by the requiring component. As mentioned ear-
lier, the assembly model is specified by the system architect
in a domain specific modelling language referring to specifi-
cations of individual components from component develop-
ers.

3.3 Service Effect Specification
To each provided service of a component, component de-
velopers can add a so-called ServiceEffectSpecification

(SEFF), which describes how the provided service calls the
required services of the component. In former approaches
(e.g., [19]), SEFFs have been described as automata mod-
elling the order of calls to required services thus being an
abstraction of the control flow through the component.

For performance analysis, the mere sequence of external
calls is not sufficient. Thus, we extend SEFFs to so-called
ResourceDemandingSEFFs. Besides the sequence of called re-
quired services, a ResourceDemandingSEFF contains resource
usage, transition probabilities, loop iteration numbers, and
parameter dependencies to allow accurate performance pre-
dictions. Its meta-model will be described in the following.
It can be considered as a domain specific modelling lan-
guage for the component developer to specify performance
related information for a component service. For clarity, we
spread the description over multiple figures. Examples for
ResourceDemandingSEFFs follow in figures 8-13.

AbstractAction

ParametricParameterUsage

ParametricResourceDemand
demand : String
unit : String

ResourceDemandingBehaviour

ResourceDemandingSEFF

ServiceEffectSpecification
seffTypeID : EString

Signature
serviceName : EString

transition0..1

+ successor_AbstractAction

0..1

+ predecessor_AbstractAction

1

*

1 *

1

*

*

1

Figure 2: Behaviour

Figure 2 shows that a ResourceDemandingSEFF extends
a ServiceEffectSpecification, which itself references the
Signature of a service, and a ResourceDemandingBehav-

iour. A ResourceDemandingBehaviour consists of a number
of AbstractActions, a number of ParametricResourceDe-

mands, and a number of ParametricParameterUsages.

AbstractAction

AbstractResourceDemandingActionExternalCallAction ParametricResourceDemand

demand : String
unit : String

ParametricParameterUsage

PassiveResourceType

ProcessingResourceTypeAquireAction ReleaseAction

Signature

serviceName : EString

transition
0..1

+ successor_AbstractAction

0..1

+ predecessor_AbstractAction

1 *1

*

1

1
+ calledService_ExternalService

1
1

1

1

1

1

Figure 3: Abstract Actions

An AbstractAction (Figure 3) can be specialised to be an
AbstractResourceDemandingAction or an ExternalCall-

Action to a required service. ResourceDemandingActions
can place loads on the resources, which the component is
using (e.g., CPU, harddisk, network connection, etc.). De-
mands can be specified as distribution functions, addition-
ally their unit (e.g., CPU operations, harddisk accesses, etc.)
has to be specified. Because the actual resources used by



the component are not known during component specifica-
tion, the component developer specifies the resource demand
only for abstract resource types (in this case Processing-

ResourceTypes) and not for concrete resource instances.
Passive resources, such as threads or semaphors, have

to be acquired before using them, and released afterwards.
This can be modelled with the AcquireActions and Re-

leaseActions that are associated with a PassiveResource-

Type.
The resource usage generated by executing a required ser-

vice with an ExternalCallAction has to be specified in the
SEFF of that required service, and is not part of the SEFF
of the component requiring it. An ExternalCallAction is
always associated with the signature of another service. Pa-
rameters can be passed with ExternalCallActions. If they
influence QoS properties, they should be characterised by a
ParametricParameterUsage (see section 4.4 for further de-
tails).

AbstractResourceDemandingAction

BranchAction

BranchTransition

branchCondition : EString

ForkActionInternalAction

LoopAction

iterations : String

StartAction

StopAction

ResourceDemandingBehaviour

1

*

1 1

1

*

1

1

Figure 4: Actions

Figure 4 shows different specialisations of AbstractRes-

ourceDemandingAction. An InternalAction models com-
ponent-internal computations of a service possibly combin-
ing a number of operations in a single model entity. The
algorithms executed internally by the component are thus
not visible in the SEFF to preserve the component black-
box principle.

Furthermore, each ResourceDemandingBehaviour has one
StartAction with only successors and possibly several Stop-
Actions with only predecessors. AbstractActions are ar-
ranged into sequences by associating each one with its pre-
decessor and successor. Common control flow primitives,
such as branch, loop, and fork can also be used to connect
AbstractActions.

LoopAction, BranchTransition, and ForkAction contain
inner ResourceDemandingBehaviours, which again can be
modelled with ResourceDemandingActions. Modelling inner
behaviours reduces the amount of ambiguities in the speci-
fication and eases the later analysis. For example, merging
formerly branched control flow paths is well-defined with
inner behaviours.

A BranchAction consists of a number of BranchTransi-

tions, which are attributed with branch probabilities.
A LoopAction is attributed with the number of iterations.

Control flow cycles always have to be modelled explicitly
with LoopActions, thus an AbstractAction is not allowed
to have another action as one of its predecessors and at
the same time one of its successors. This way, it is dis-
allowed to specify loops with a probability of entering the
loop and a probability of exiting the loop as it is done for
example in Markov models. Loops in Markov models are

restricted to a geometrically distributed number of itera-
tions, whereas our evaluation model supports a generally
distributed or even fixed number of iterations, which allows
analysing many loops more realistically (for more details on
loop modelling, see [13]).

So far, we require component developers to model SEFFs
manually by examining the code of their components. In the
future, we aim at developing static code analysis techniques
and tools assisting in generating these specifications semi-
automatically from component source code.

3.4 Usage Model
As the usage of a component-based system is relevant for
QoS analyses, the Palladio Component Model contains an
usage model, which allows describing workloads and usage
scenarios. It is a domain specific modelling language in-
tended for business domain experts, who are able to describe
the expected user behaviour of the system. System archi-
tects may also construct usage models from requirements
documents.

ClosedWorkload

population : EInt
thinkTime : EDouble

OpenWorkload

arrivalRate : EDouble

ScenarioBehaviour

UsageModel UsageScenario Workload

1

1

1 * 1 1

Figure 5: Usage Model

The UsageModel (Figure 5) consists of a number of Usage-
Scenarios, which in turn consist of one ScenarioBehaviour
and one Workload meaning that the ScenarioBehaviour

is executed with the respective Workload. Workloads de-
scribe the usage intensity of the system. They can be Open-

Workloads, modelling users that enter with a given arrival
rate and exit the system after they have executed their sce-
nario. Or they can be ClosedWorkloads, modelling a fixed
number of users (population), that enter the system, exe-
cute their scenario and then re-enter the system after a given
think time. This resembles the common modelling of work-
loads used in performance models like queueing networks.

AbstractUserActionBranchActionBranchTransition

branchCondition : EDouble

ScenarioBehaviour

SystemCallAction

StartAction StopActionParameterUsage

LoopAction
iterations : String

0..1

+ predecessor

0..1
+ successor

1

*

1*

1

1

1

1 + bodyBehaviour_Loop

1

*

Figure 6: Scenario Behaviour

A ScenarioBehaviour (Figure 6) consists of a sequence
of AbstractUserActions (notice the predecessor, successor
association). These can be specialised into control flow prim-
itives (BranchAction and LoopAction) or SystemCallAc-

tions, which are calls to component interfaces directly acces-
sible by users (on the entry level of the architecture). Forks



in the user control flow are not possible, as it is assumed
that one user can only execute a single task at a time. A
ScenarioBehaviour does not contain resource usage, which
only can be generated by components.

SystemCallActions contain a number of ParameterUs-

ages to characterise actual parameters.

3.5 Parameter Model

CollectionParameterCharacterisation

type : CollectionParameterCharacterisationType

CollectionParameterUsageCompositeParameterUsage

PrimitiveParameterCharacterisation

type : PrimitiveParameterCharacterisationType

ParameterUsage

«enumeration»
PrimitiveParameterCharacterisationType

VALUE
BYTESIZE
DATATYPE

Parameter

parameterName : EString

«enumeration»
CollectionParameterCharacterisationType

NUMBER_OF_ELEMENTS
STRUCTURE

RandomVariable

specification : String

*

1
*

1
*

1

Figure 7: Parameter Usage

In addition to formal parameters (Parameter), actual pa-
rameters can be characterised with ParameterUsages (Fig-
ure 7). These characterisations have been modelled espe-
cially for QoS analyses. ParameterUsages of primitive pa-
rameters (such as int, float, char, boolean, etc.) can be
characterised by their value, bytesize and type.

CollectionParameterUsages (for arrays, lists, sets, trees,
hash maps, etc.) are ParameterUsages themselves and can
additionally be characterised by the number of inner ele-
ments and their structure (e.g., sorted, unsorted etc.). They
contain ParameterUsages to abstractly characterise their in-
ner elements.

In a CompositeParameterUsage different primitive and
collection parameters can be grouped together with an inner
ParameterUsage for each of the grouped parameters. With
this abstraction, more complex parameters (such as records,
objects, etc.) can be modelled.

The different attributes like value or bytesize can be spe-
cified as random variables, allowing for example to specify
a distribution function for the bytesizes of inner elements of
a collection.

3.6 Resource Model
The Palladio Component Model differentiates between three
types of resources: active resources, passive resources, and
linking resources. Active resources process jobs on their own
(e.g., a CPU processing jobs or a hard disk processing read
and write requests). Opposed to this, passive resources do
not process jobs on their own. Instead, their possession
is important as they are limited. For example, if there is
only one database connection it can only be used by one
component and all other components in need for the same
connection have to wait. Linking resources enable modelling
of communication. It can be any kind of network connection
but also some abstraction of it, like a RPC call.

Active and passive resources are bundled in resource con-
tainers. A resource container is similar to a UML2 deploy-
ment node. Resource containers are connected by linking re-
sources. The complete resource model is specified by system

deployers, who also assign components to specific resources.
In the future, a more refined resource model could be de-
signed according to the General Resource Model (GRM) of
the UML SPT profile [18].

4. PARAMETRIC DEPENDENCIES
The performance of a software component is influenced by
its usage [12]. The resource demand may vary depending
on input parameters (e.g., uploading larger files with a com-
ponent service produces a higher demand on hard disk and
network). Different required services can be called as a result
of different inputs, thus the branch probabilities in the SEFF
are most often linked to the usage profile (e.g., required ser-
vice A is called if some integer parameter is larger than zero,
otherwise service B is called). Furthermore, the parameters
passed to required services (forming a usage model for the
required component) may also depend on a service’s own
input parameters.

The central dilemma of the component developer is that
during component specification it is unknown how the com-
ponent will be used by third parties. Thus, in case of vary-
ing resource demands or branch probabilities depending on
user inputs, the component developer cannot specify fixed
values. However, to help the system architect in QoS pre-
dictions, the component developer can specify the depen-
dencies between input parameters and resource demands,
branch probabilities, or loop iteration numbers in SEFFs.
If an usage model of the component has been specified by
business domain experts or if the usage of the component
by other components is known, the actual resource demands
and branch probabilities can be determined by the system
architect by solving the dependencies.

In the Palladio Component Model, we use random vari-
ables to express resource demands or numbers of loop iter-
ations. Mathematically, a random variable is defined as a
measurable function from a probability space to some mea-
surable space. More detailed, a random variable is a function
X : Ω → R with Ω being the set of observable events and
R being the set associated to the measurable space. Ob-
servable events in the context of software models can be for
example response times of a service call, the execution of a
branch, the number of loop iterations, or abstractions of the
parameters, like their actual size or type.

A random variable X is usually characterised by stochas-
tical means. Besides statistical characterisations, like mean
or standard deviation, a more detailed description is the
probability distribution. A probability distribution yields
the probability of X taking a certain value. It is often ab-
breviated by P (X = t). For discrete random variables, it
can be specified by a probability mass function (PMF), as
used in our component model. The event spaces Ω we sup-
port include integer values N, real values R, boolean values
and enumeration types (like ”sorted” and ”unsorted”).

Additionally, it is often necessary to build new random
variables using other random variables and mathematical
expressions. For example, to denote that the response time
is 5 times slower, we would like to simply multiply a ran-
dom variable for a response time by 5 and assign the result
to a new random variable. For this reason, our specifica-
tion language supports some basic mathematical operations
(∗,−,+,/,...) as well as some logical operations for boolean
type expressions (==,>,<,and,or,...).

We use the introduced random variables in the following



to provide several examples for specifying dependencies be-
tween input parameters and QoS-related specifications. We
also use random variables in the case study to characterise
the parameters of the calls issued to the system.

4.1 Branch Conditions
In Figure 8, the ResourceDemandingSEFF of the service Han-
dleShipping from an online-store component is depicted. It
has been specified by a component developer in a paramet-
rised form. The service calls required services shipping a cus-
tomer’s order with different charges depending on its costs,
which it gets passed as an input parameter. If the order’s
total amount is below 100 Euros, the service calls a service
preparing a shipment with full charges (ShipFullCharges). If
the costs are between 100 and 200 Euros, the online store
grants a discount, so ShipReducedCharges is called. Orders
priced more than 200 Euros are shipped for free with the
ShipWithoutCharges service.

<<ResourceDemandingBehaviour>>

<<ResourceDemandingBehaviour>><<ResourceDemandingBehaviour>>

<<ExternalCallAction>>
ShipReducedCharges

<<ExternalCallAction>>
ShipFullCharges

<<ExternalCallAction>>
ShipWithoutCharges

<<BranchTransition>>
branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)<100

<<BranchTransition>>
branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)>=100

<<BranchTransition>>
branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)>=200

<<BranchTransition>>
branchCondition =
PrimitiveParameter(„costs“).
primitiveParameterValue(VALUE)<200

<<Parameter>>
parameterName=“costs“

<<ResourceDemandingSEFF>>
HandleShipping

<<BranchAction>>

<<BranchAction>>

Figure 8: Branch Condition Example

The ResourceDemandingSEFF in Figure 8 is an abstract
representation of the control flow through the component.
Internal computations as well as resource demands of the
service have been abstracted away, because they are not
relevant for QoS analysis in this case.

Once a domain expert specifies the value of the param-
eter costs, it can be derived which of the services will be
called. In this example, the domain expert has specified the
value as a PMF (Table 1) according to a customer analy-
sis. The PMF is used in order represent a whole group of
customers using the service. It has been specified within
an UsageModel, which is not illustrated here for brevity. In
this case, the sample space Ω of the PMF consists of integer
values N representing the costs of an order. Note, that the
specification of the domain expert only refers to parame-
ters visible at the service interface. The usage specifications
can be made without referring to internals of the component
thus preserving the black box principle.

Costs (Euro) Probability
0-49 0.35
50-99 0.25

100-149 0.20
150-199 0.15

200- 0.05

Table 1: Probability of costs; specified by Domain
Expert

To determine the branch probabilities which are required
for the QoS analysis, random variables associated with the
branches have to be evaluated. For the first branch node,
the left and right branch conditions are denoted as A and B,
where A is the event that costs are below 100 Euro and B the
event that costs are larger than 100 Euros. With the usage
profile by the domain expert, their probabilities of becoming
true can be computed as: P (A) = 0.35 + 0.25 = 0.6 and
P (B) = 0.20 + 0.15 + 0.05 = 0.4.

After any branching event X has occured, the sample
space Ω on subsequent nodes is restricted to Ω′ = Ω ∩ X.
This has to be considered by the following evaluations. In
the example, this situation occurs at the second branch
node. The left and right branch conditions are denoted as
C and D, where C is the event that the costs are below
200 Euros and D the event that the costs are larger than
200 Euros. When computing the probabilities, it has to be
taken into account, that the sample space has been restricted
by B. Thus, a new sample space Ω′ = Ω ∩ B has been
created. Using the usage profile from the domain expert,
the conditional probabilities are computed as: P (C|Ω′) =
P (C ∩Ω′)/P (Ω′) = 0.35/0.4 = 0.875 and P (D|Ω′) = P (D∩
Ω′)/P (Ω′) = 0.05/0.4 = 0.125.

4.2 Loop Iterations
In the Palladio Component Model, it is possible to assign a
number of iterations to a loop. This can be done in a pa-
rameterisable form, as illustrated by the following example.
Figure 9 shows the ResourceDemandingSEFF of the service
UploadFiles. It gets an array of files as input parameter and
calls the external service HandleUpload within a loop for each
file. As an example, the component shall be used in a new
architecture for an online music repository. Users shall up-
load music albums via the service, which are then stored
one by one in a database that is connected to the service
HandleUpload.

<<LoopAction>>

<<ResourceDemandingBehaviour>>

<<ExternalCallAction>>
HandleUpload

iterations=
CollectionParameter(„files“).
CollectionParameterCharacterisation
(NUMBER_OF_ELEMENTS)

<<Parameter>>
parameterName=“files“

<<ResourceDemandingSEFF>>
UploadFiles

Figure 9: Loop Example

A domain expert has analysed user behaviour and found



Number of Files Probability
8 0.1
9 0.1
10 0.2
11 0.4
12 0.2

Table 2: Probability for number of files; specified by
Domain Expert

that users usually upload albums with 8-12 music files. Thus,
a PMF for the number of files in the input parameter files
has been specified (Table 2).

With the specified dependency to the number of elements
in the input collection, the probability distribution of ran-
dom variable Xiter for the number of loop iterations in the
ResourceDemandingBehaviour can be determined. The re-
quired service HandleUpload will be called 8 times (probabil-
ity 0.1), 9 times (0.1), 10 times (0.2), and so on (see Table 2).
If the dependency had not been specified, it would not have
been known from the interfaces how often the required ser-
vice would have been called. Thus, with the specified PMF,
a more refined prediction can be made for varying usage
contexts.

4.3 Parametric Resource Demand
Besides branch conditions and loop iterations, resource de-
mands can be specified in a parameterised form. In many
cases, this is the most influencing factor for varying response
times. In Figure 10, the component service ProcessFile re-
ceives an input parameter, which is processed internally.
The component developer has specified that the resource
demand of this service depends on the size of the input file,
in particular 3 CPU operations are executed for each byte
of the file.

<<InternalAction>>

<<ParametricResourceDemand>>
demand = PrimitiveParameter(„file“).
PrimitiveParameterCharacterisation(
BYTESIZE) * 3
unit = „CPU instructions“

<<Parameter>>
parameterName=“file“

<<ResourceDemandingSEFF>>
ProcessFile

Figure 10: Resource Demand Example

Because of varying file sizes due to varying usages, the
domain expert has specified a PMF for the size of the input
file. After analysing a large number of usage traces from a
similar system, a fine grain distribution function could be
specified, which is shown in Figure 11. Note, that in this
example the size of the file is the only attribute relevant for
the QoS analysis. Other attributes of the file parameter,
such as the value or the type of the file, are irrelevant in
this case and need not to be specified. This is an example of
abstracting unnecessary details from the model and in many
cases such abstractions model reality good enough to make
sufficiently accurate predictions.

To compute the actual resource demand on the CPU from
the specification in Figure 10, the underlying PMF can be

Figure 11: File Sizes (PMF), from Domain Expert

obtained by multiplying the PMF for the file sizes by a factor
of 3, thus streching the PMF as depicted in Figure 12. In-
stead of file sizes, the PMF now denotes the probabilities for
the number of CPU operations, which are executed for the
given usage context. Once the actual CPU is known from
the allocation model, on which the component is deployed,
the time for executing service ProcessFile can be computed
after specifying the execution time for a single CPU opera-
tion.

Figure 12: CPU operations (PMF), computed

4.4 Parametric Parameter Usage
When calling required services, component services may pass
parameters. In many cases, these parameters can be fixed in
the implementation. However, sometimes, input parameters
for required service calls actually depend on the provided
service’s own input parameters. In the Palladio Component
Model, such a dependency can be expressed by attaching a
ParametricParameterUsage to an ExternalCallAction.

<<ExternalCallAction>>
SendFile

<<InternalAction>>
CompressFile

<<ResourceDemandingSEFF>>
SendCompressed

<<Parameter>>
parameterName=“file“

<<ParametricParameterUsage>>
PrimitiveParameter(„fileToSend“).
PrimitiveParameterCharacterisation(BYTESIZE) = 
0.5 * PrimitiveParameter(„file“).
PrimitiveParameterCharacterisation(BYTESIZE)

Figure 13: Parametric Parameter Usage Example

As an example, in Figure 13, the ResourceDemandingSEFF
of the service SendCompressed is shown. It receives a file

as an input parameter, compresses it using a ZIP algorithm,
and then passes it to another component by calling the ser-
vice SendFile. The component developer has specified that
the compression reduces the size of the input files by 50%.



If a domain expert specifies the input file size, or if it has
been specified in the ParametricParameterUsage of another
component calling this component, the file size for the input
parameter of the ExternalCallAction can be determined.
If the file size has been specified as a PMF (like in the pre-
vious example), its domain values have to be multiplied by
a factor of 0.5, thus contracting the PMF.

5. SIMULATION FRAMEWORK
To evaluate the model concepts introduced in the previous
sections, we have built a prototypical simulation tool. This
tool takes an instance of the Palladio Component Model and
builds a simulation in order to get the response times of the
specified workloads. In so doing, we validate two things.
First, if the meta model is appropriate and can be used
to model an example system, e.g., if all necessary model
concepts are available. Second, by comparing the predicted
values to measured values of an implemented architecture,
we can evaluate if the introduced parametric specifications
can be used to give realistic predictions. The latter are
presented in the next section. This section briefly gives some
details on the implementation of our simulation.

5.1 Technical foundation
The simulation is implemented as a stand-alone Java appli-
cation using the Java simulation framework Desmo-J [22].
The simulation reads an instance of the Palladio Component
Model. The construction of simulated (active and passive)
resources and loading the configured workload model starts
the simulation. The software architecture is evaluated on
the fly using visitors as depicted in the following.

5.2 Visitors
The workloads stored in the model instance are transformed
into simulated workload drivers, which simulate the specified
workload scenario. This is done by traversing the specified
usage scenario from the start action to any stop action for
the specified number of clients. The behaviour of a compo-
nent’s service is simulated analogously traversing it from its
start to its stop actions. Sensors in the simulation environ-
ment record the execution times during the simulation. The
results of the simulation run are reported when the simula-
tion ends.

Depending on the type of workload, i.e., closed workload
or open workload, workload drivers are instantiated accord-
ing to the respective workload’s semantics. For closed work-
loads, the behaviour of each simulated user is executed, then
the workload driver waits for the given think time and af-
terwards starts from the beginning. For open workloads,
the workload driver starts a simulation of the workload be-
haviour to meet the specified arrival rate.

The traversal of the behaviour is implemented using the
Visitor design pattern [10, p. 331]. A visitor visits the ac-
tions of a behaviour until it reaches a stop action. At each
node simulation code is executed which simulates the spec-
ified action in this node. At control flow nodes (branch,
loop, ...) the corresponding inner behaviour is executed us-
ing a new visitor started at the inner start node. At external
calls the simulation looks up the respective required inter-
face and the connected component. A new visitor is then
started simulating the external service’s behaviour.

At internal actions the resource demand is determined
and a respective demand is put on the simulated resources.

For active resource - at present - we only support a FIFO
strategy. Thus, if the resource is busy, the request is put
into a wait queue until the resource becomes available.

Several specifications in the SEFF like number of loop
iterations, branch conditions, and resource demand depend
on other random variables, i.e., parameter abstractions. A
sample of this random variable is generated by the evalua-
tion of the definition as outlined in section 4. For this, the
specification of the random variable is parsed. The parse
tree is evaluated afterwards. For any random variable in
the parse tree the simulation framework’s random number
generators are used to get samples. Mathematical opera-
tions are evaluated using their normal semantics. The re-
sult of the evaluation is the desired sample of the depending
random variable.

5.3 Simulated Stack-Frame
Special treatment is required for parameter abstractions,
since they are only valid during the execution of the called
method. To simulate this behaviour, we introduced simu-
lated stack frames in alignment with the real execution of a
software system.

<<InternalAction>><<ExternalCallAction>>

<<ResourceDemandingSEFF>>

Vi
si

to
r

<<Parameter>>
parameterName=“files“

<<ParametricResourceDemand>>
demand = file.Bytesize
unit = „CPU operations“

StackFrame
file.Bytesize 20
files.Number_Of_Elements 23
… ...

Figure 14: A behaviour visitor and the simulated
stack frame

Whenever an external call is to be simulated, a new sim-
ulated stack frame is built analogously to the methods stack
frame. To initialize a stack frame the random variables char-
acterising the parameters of the called service are evaluated
and the result is stored in the stack frame. It is then passed
over to the visitor for the called behaviour (c.f. figure 5.3).
In so doing, we simulate the performance relevant part of
the usage context of the components.

When the simulated control flow returns to the caller the
evaluation is continued after the external call using again
the old call stack.

5.4 Simulation End
The simulation should come to an end as soon as the PMF
of the workload scenario’s execution time has been approx-
imated in a way that new simulated measurements don’t
change the distribution significantly. This can be done by
evaluating the mean and standard deviation of the result-
ing PMF. If the change in these characterising attributes of
the PMF is below a certain configurable threshold after new
simulated measurements are added, the simulation stops.
Meanwhile the simulation supports live updates of its sen-
sors, so that the system architect can watch the simulation



proceed and cancel it in advance if the results are sufficient
for the analysis.

6. LIMITATIONS / ASSUMPTIONS
There are several assumptions and limitations in the current
version of the Palladio Component Model and the simulation
tool. We briefly summarize the most important ones in the
following.

Static architecture: The modelled architecture is as-
sumed to be static. This means that neither the connectors
change nor that the components can move like agents to
different hardware resources.

Abstraction from state: It is assumed that the be-
haviour of the system is determined by the parameters of
the service calls only. No internal state of components or
the runtime environment is regarded.

Information availability: Is is assumed that the neces-
sary model information like service effect specifications and
parametric dependencies are available and have been spec-
ified by the component developer, system architect, system
deployer and domain expert. Future work is directed to re-
trieve as much information as possible from the automated
analysis of component code.

Limited support for concurrency: Quality properties
of concurrent systems are hard to predict. Especially on
multi-core processor systems several effects like the CPU
caches lead to differences between an observed system timing
behaviour and an appropriate prediction in our experience.

Limited support for modelling the runtime envi-
ronment: Our resource model assumes that processing re-
sources can be described by a processing rate only. But often
more than a single influence factor is important. For exam-
ple, to characterize modern CPUs by the clock frequency
alone, is often not sufficient any more. The CPU architec-
ture, pipelining strategy, or the cache sizes as well as the
runtime and middleware platform and their configurations
can have a significant influence on the execution time (of an
operation) [17].

Parameter immutability: Parameters of methods are
treated as being read only during a single method execution.
Hence, a parameter abstraction is not changeable during the
evaluation of a single behaviour.

No return values: Service call return values are not yet
modelled. Hence, for behaviours which depend on the result
of an external call, the accuracy of the prediction might be
insufficient.

Mathematical assumptions: Some random variables
are assumed to be independent. For example, during the
evaluation of a loop iterating through a collection, the char-
acteristics of collection’s inner elements are not kept con-
stant. This limitation is subject to future model enhance-
ments.

7. CASE STUDY
In the following, we report on an initial case study to vali-
date predictions made by simulating instances of the Pal-
ladio component model. This case study is meant as a
proof-of-concept evaluation, not as a sound experimental
evaluation of the approach on an industrial sized applica-
tion, which is planned for the future. We compare pre-
dictions based on architectural specifications with measure-
ments made with an implementation of the architecture.
The case study involves an online shop, which allows users

uploading and downloading music files [15]. Several param-
eter dependencies, which will be explained in the following,
can be found in the architecture, so we can test the mod-
elling capabilities of our component model.

As we want to support early design decisions with our
approach, we modelled and implemented two design alter-
natives for the online shop. Before the case study, we raised
the following questions:

1. Are the predictions based on our simulation model
good enough to support the decision for the design
alternative with the actual best performance given a
specified usage model?

2. Can the errors made by the predictions be quantified
and explained? To answer this question, we analysed
deviations between predictions and measurement in
more detail.

7.1 Architecture
The architecture of the ”Web Audio Store” (Figure 15) con-
sists of three tiers (client, application server, database) [15].
Customers interact with the store via web browsers that ac-
cess the component WebForm using DSL lines with a through-
put of 128 KBits/s. Several components are located on
the application server in the middle tier: The component
WebForm is connected to the AudioStore component, which
controls and manages the whole store. It interacts with a
user management component and a database adapter that
handles the connection to a MySQL server on the database
tier. The network between the application server and the
database is a dedicated line with a maximum throughput of
512 KBit/s.

As a performance critical use case, the response times
for uploading music files to the store shall be analysed and
improved. It is possible for users to upload multiple files
at once to add complete music albums to the store. This
usage scenario is described in Figure 16(a). In this case,
users upload 8-12 files with the probabilities found in the
Figure 16(b) (as ”iterations=...”) and files sizes between
3500 and 4500 KBytes. Upon clicking the button ”Upload
Files” the service UploadFiles of the WebForm component
is invoked, whose behaviour is shown in Figure 16(b). This
behaviour in turn invokes services from the AudioStore com-
ponent. The parametric dependencies for the loop and the
byte size of subsequent input parameters are shown in the
figure. For example, the number of loop iterations depends
on the number of input files. Other annotations needed for
the simulation are omitted in the illustration for brevity.

Because response times of this use case are considered too
high, the system architect has come up with a design alter-
native, which is shown within the dashed box in Figure 15
and which is transparent for the clients. It is proposed to
insert an encoder component (OggEncoder) into the archi-
tecture using an adapter (EncodingAdapter), which imple-
ments the IAudioDB interface. The SEFFs of these com-
ponents are illustrated in Figure 17(a)-17(b). The encoder
is able to reduce the size of the music files by a factor of
2/3. Thus, the time for using the network connection to the
database server can be reduced, because smaller files have
to be sent. However, encoding the files is computational
intensive and hence, costs an amount of time. With the
performance prediction, the tradeoff between faster network
transfer and reencoding overhead shall be evaluated.
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MySqlClient MySqlDB

<<ResourceContainer>>
Application Server

<<ResourceContainer>>
Database Server

<<ResourceContainer>>
Client

<<LinkingResource>>
throughput = 128
unit = KBit/s

<<LinkingResource>>
throughput = 512
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<<Interface>>
HTTP

<<Interface>>
IEncoder

<<Interface>>
IAudioDB

<<Interface>>
IAudioStore

<<Interface>>
IUserManagement

<<Interface>>
IUserDB

<<Interface>>
ICommand
IConnection
IDataReader

Figure 15: Web Audio Store Architecture

<<SystemCallAction>>
WebForm.UploadFiles

<<LoopAction>>
<<ResourceDemandingBehaviour>>

<<SystemCallAction>>
SelectFiles

iterations = 
(8, 0.1; 9, 0.1; 10, 0.2; 11, 0.4; 12, 0.1)

PrimitiveParameter(„file“).PrimitiveParameterCharacteri
sation(BYTESIZE) = (3500, 0.1; 4000, 0.6; 4500, 0.3)
CollectionParameter(„files“).CollectionParameterCharac
terisation(NUMBER_OF_ELEMENTS)=iterations

<<ScenarioBehaviour>>

(a)

<<ResourceDemandingSEFF>>
WebForm.UploadFiles

<<ExternalCallAction>>
IAudioStore.FinalizeUpload

<<LoopAction>>

<<ExternalCallAction>>
IAudioStore.HandleUpload

iterations = 
CollectionParameter(„files“).CollectionParameter
Characterisation(NUMBER_OF_ELEMENTS)

PrimitiveParameter(„fileToUpload“).Primitive
ParameterCharacterisation(BYTESIZE)=
PrimitiveParameter(„file“).PrimitiveParameter
Characterisation(BYTESIZE)

<<Resource
Demanding

Behaviour>>

(b)

Figure 16: Original Design: Usage Model, SEFF

7.2 Results
First, we modelled and simulated both design alternatives,
then we also implemented both alternatives in C# using
ASP.NET. Using the workloads from the models, the re-
sponse times for the described use case of the implementa-
tions were measured.

Compared to [15], we only used measured time consump-
tions in our prediction model for calls to the database, i.e.,
for submitting uncompressed files. The time consumption of
submitting compressed files as well as the encoding of files
had been specified parametric as introduced in the previous
section. In so doing, we further weakened the assumptions
which we made when we did the predictions in [15].

For the original design without encoder, the simulation
results and the measured time consumptions are presented
in Figure 18. To allow a visual comparison of the results, we
show both histograms in a single diagram by putting them
on top of each other. The simulation results are drawn in
light grey and the measured results in dark grey. Overlaps
of both functions result in medium grey bars.

Both functions match to a large extent. Hence, our sim-
ulation is capable to predict the response time behaviour of
this design alternative based on a system model. In this vari-
ant of the architecture, the main influence on the response
time is created by the amount of files in a batch upload. As

<<ExternalCallAction>>
IEncoder.EncodeFile

<<ResourceDemandingSEFF>>
EncodingAdapter.

InsertAudioFile

<<ExternalCallAction>>
IAudioDB.InsertAudioFile

PrimitiveParameter(„fileToEncode“).
PrimitiveParameterCharacterisation 
(BYTESIZE) = 
PrimitiveParameter(„file“).
PrimitiveParameterCharacterisation 
(BYTESIZE)

PrimitiveParameter(„fileToDB“).
PrimitiveParameterCharacterisation 
(BYTESIZE) = 
PrimitiveParameter(„encodedFile“).
PrimitiveParameterCharacterisation 
(BYTESIZE)

(a)

<<InternalAction>>
WriteFileToDisk

<<ResourceDemandingSEFF>>
OggEncoder.
EncodeFile

<<InternalAction>>
ReadEncodedFileFromDisk

<<InternalAction>>
ExecuteEncoder

PrimitiveParameter(„encodedFile“).
PrimitiveParameterCharacterisation 
(BYTESIZE) = 0.667 * 
PrimitiveParameter(„fileToEncode“).
PrimitiveParameterCharacterisation 
(BYTESIZE)

(b)

Figure 17: Design Alternative: Encoding Adapter

we modelled the distribution of the amount of files accord-
ing to what we actually used when we measured our system,
this result was expected.

For the design alternative with the encoder, we first com-
pared the simulation results of the call to EncodeFile with
the measured values as we used a parametric dependency
on the bytesize of the file to encode. The dependency was
derived by a rough guess looking at a few sample encoder
runs. The result is depicted in Figure 19.

It can be seen that our estimated dependency is not ex-
actly matching, but still quite good. Using the estimated
times of EncodeFile and the compression rate of 2/3 we
simulated the whole system. The results are shown in figure
20.

Although we used the mentioned approximations of the
parametric dependencies, the measured and the simulation
results still match quite good. Moreover, we are able to
see that the design alternative with the encoder is approx-
imately 200 seconds faster. Our result favoured the design
alternative with the encoder, which is indeed the faster one
as validated by the measurements.

To answer the question whether observable prediction er-
rors can be explained, we take a closer look at figure 20 which
has such prediction errors. It can be seen that the measured



Figure 18: Measured and simulated results for the
response time of UploadFiles in the design alterna-
tive without encoder

Figure 19: Measured and simulated response times
of EncodeFile

values are a bit lower (approx. 10 seconds) than the pre-
dicted values. This can be explained by two issues. First,
the guessed dependency for EncodeFile is not as accurate
as it could be. A linear regression based on some measured
time consumptions for different bytesizes could help to build
a better estimation of the actual dependency. Second, the
mathematical assumptions on the independence of random
variables (c.f. section 6) is violated. The bytesize of the file
being uploaded to the database depends on the bytesize of
the file being sent to the encoder (we know that it is 2/3 of
that size). The latter is a shortcoming of our current model
abstraction and will be addressed in future work by allowing
to specify correlating random variables.

8. CONCLUSIONS
This paper presents a meta-model designed to support the
prediction of extra-functional properties of component based
software architectures. Different possible usage contexts of
a component are supported by this model. Additionally,
parametric context dependencies to system resources and
dependencies to parameter usages can be modelled. The
soundness of the model concepts is validated by a simulation
tool capable of simulating model instances. The results of
the simulation are validated in a case study.

The presented method is designed to support early design
time quality evaluations of component based software archi-
tectures. Based on models, a system architect can evaluate

Figure 20: Measured and simulated results for the
response time of UploadFiles (architecture with en-
coder)

the quality of the modelled system. The evaluation of design
alternatives can be performed by changing the input models
and re-running the simulation tool. The focus on system
models enables a quick feedback cycle by the use of MDD
ideas.

Our work will be extended in the future into several direc-
tions. The Palladio Component Model serves as a basis for
further model transformations. Especially the generation of
code skeletons for different industrial component models is
an important research topic. Additionally, we try to gener-
ate application prototypes from model instances which offer
similar QoS properties by enriching the aforementioned code
skeletons with time consuming dummy functions.

The simulation tool is implemented as a prototype. This
prototype can be extended to support all model concepts
of our component model and to address some of the known
limitations. Especially for systems with a lot of concurrency
the simulation can serve as a basis for experiments and com-
parisons with running systems.

The specification of the model concepts as well as their
intended semantics is still an ongoing activity. Especially
the concept of using random variables for the specification
of parametric dependencies is still a fairly new concept and
needs further validation. Additionally, we are developing
tools to ease the creation of model instances of the Palladio
Component Model by the implementation or generation of
graphical editors based on the Eclipse platform. These edi-
tors allow the specification of model instances in a graphical
way.

Last but not least, we also plan to extend our mathemat-
ical analysis model to support additional concepts of the
Palladio Component Model. Our model which is based on
stochastical regular expressions should also be included into
a MDD process which allows to derive it directly from in-
stances of the Palladio Component Model.
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