
A Methodology for Domain-spanning
Change Impact Analysis

Robert Heinrich, Kiana Busch, Sandro Koch

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {robert.heinrich, kiana.busch, sandro.koch}@kit.edu

Abstract—When modifying a cyber-physical system, the con-
sequences of changes need to be understood beforehand to
adequately assess risks and costs. Model-based change impact
analysis is key for estimating the impact of a change before
actually modifying the system. Existing change impact analysis
approaches apply very similar algorithms for change propaga-
tion to instances of domain-specific metamodels. However, they
lack fundamental concepts for domain-spanning change impact
analysis. In this paper, we propose a generic methodology for
domain-spanning change impact analysis to address limitations
of existing approaches. Evaluation results show the relevancy and
comprehensives of the methodology for several domains.

Index Terms—Change Impact Analysis, Reuse, Consistency

I. INTRODUCTION

As cyber-physical systems are long-living systems, main-
tainability is one of their most important quality aspects.
Maintainability is commonly understood as the capability of a
system to be changed [1]. Thus, maintainability refers to the
efforts required for implementing changes in the system. While
changing a system, the impact of a change to one artifact on
the other artifacts need to be understood. Different ways of
implementing a change request may lead to different efforts in
adapting the system. Estimating the effort before implementing
a certain change request is essential to make decisions in which
way to implement changes [2].

For representing a cyber-physical system in form of a
model, a modeling language (often defined by a metamodel)
is required. A metamodel is a model, which defines the
structure and characteristics of other models. Model-based
change impact analysis is key for maintainability assessment in
various domains. These approaches allow for automatic change
propagation in a system. Existing approaches to change impact
analysis apply very similar algorithms for change propagation
to instances of domain-specific metamodels. However, they are
often restricted to a specific domain [2], [3], [4].

In this paper, we propose a generic methodology for domain-
spanning change impact analysis to address limitations of
existing approaches. We generalize the approach Karlsruhe Ar-
chitectural Maintainability Prediction (KAMP) for architecture-
based change impact analysis in different domains (cf. [2], [3])
by extracting commonalities in modeling and analysis into the
methodology. The methodology is part of a broader research
vision proposed in [5]. Contributions of this paper are as
follows: i) The methodology represents a generic frame, which

can be instantiated to specify domain-specific change impact
analysis approaches. Thus, it facilitates the creation of domain-
specific change impact analysis by providing basic concepts in
terms of metamodels and algorithms. The metamodels and
algorithms can be reused and tailored for change impact
analysis in specific domains. ii) The methodology ensures
compatibility of domain-specific analyses, as they rely on the
same fundamental concepts. Thus, the methodology supports
domain-spanning change impact analysis. iii) We instantiate
the methodology to different domains. Each instantiation
automatically predicts the impact of a change request in a
given system model. Evaluation results show the relevancy and
comprehensiveness of the methodology for the instantiations.

The following section discusses the state of the art. The
methodology for domain-spanning change impact analysis
is given in Sec. III. Sec. IV describes the evaluation of the
methodology. The paper concludes in Sec. V.

II. STATE OF THE ART

The state of the art related to the topic of the paper comprises
change impact analysis approaches in the domain of Informa-
tion Systems (IS), Business Processes (BP), and automated
Production Systems (aPS), which are listed in [2], [3], and
[4], respectively. However, most of the related approaches are
limited to a certain domain and mostly neglect the impact of
changes in one domain on another, which is crucial for adequate
change impact analysis. When applying existing approaches to
different domains it is hard to compare and aggregate the results
due to the heterogeneity of the approaches for modeling and
change propagation analysis in the different domains. A more
generic approach for domain-spanning change impact analysis
is required to address limitations of existing approaches.

III. A GENERIC METHODOLOGY FOR DOMAIN-SPANNING
CHANGE IMPACT ANALYSIS

In this section, we propose the methodology for domain-
spanning change impact analysis to address the limitations of
existing approaches. The methodology represents a generic
frame defining the domain-independent concepts that need
to be instantiated to define domain-specific change impact
analysis. The input of a domain-specific change impact analysis
is a system model and an initial change, hereafter referred
to as seed modification [2]. Based on the input and a set of



Domain-independent
Metamodel 

of ModificationD
om

ai
n

In
de

pe
nd

en
t

Change Propagation Analysis for the Elements 
of the Structural Metamodel

Metamodel of
System

Domain-specific Metamodel
of Modification

Algorithm of Change
Propagation Analysis

D
om

ai
n

Sp
ec

ifi
c

Change Propagation Analysis for the Elements 
of the Non-Structural Metamodel

Metamodel for Non-
structural Elements

Metamodel of
Task Type

Algorithm of Non-
structural Task List

Algorithm of Diff-
erence Calculation

Algorithm
of Decision Supporting

Decision Supporting

Metamodel
of Decision Supporting

Algorithms for 
Derivation of Task Lists

Duplicatie 
Elimination Algorithm

Task List
Sorter Algorithm

Task List Algorithm

Fig. 1: Overview of the methodology for the domain-spanning change propagation analysis

predefined change propagation rules, the methodology instance
calculates a list of maintenance tasks, hereafter called task
list [2], [6]. Each task references an element of the domain-
specific metamodel and has a task type [6]. A example of
a task is “delete interface I”. A task type describes how to
change the corresponding element [6]. Here, the task type is
“DELETE” and the affected element is “interface I”.

The methodology generalizes the KAMP approach for any
domain, which fulfills the following criteria: (i) The system
can be described as a set of structural elements connected to
each other. For example, in a component-oriented fashion with
interfaces and component composition. By adhering to this
basic paradigm the methodology can be applied regardless of
the type of component (e.g., software, electrical, or mechanical
component) and the type of interface (e.g., communication
or physical interface). (ii) The behavior of the system can
be described in terms of interconnected activities and their
compositions. Thus, the methodology can be applied despite
of whether the activity is performed by a software, mechanical
system, or others. (iii) The change propagation between the
elements of the system and/or activities of its behavior can be
represented as change propagation rule(s).

The structure and behavior of the system, as well as changes
to them are defined by a metamodel. Moreover, algorithms
handle the change propagation. A change propagation algorithm
consists of a set of change propagation rules. An overview of
the generic methodology is depicted in Fig. 1. Rectangles with
tapered corners represent metamodels, while rectangles with
rounded corners represent algorithms that work on instances of
the metamodel elements. The core elements of the methodology
are independent of a specific domain and can be used in
any instance of the methodology. Domain-specific elements
consist of metamodels and algorithms to describe the specific
characteristics of a given domain.

A. Domain-Independent Elements

Domain-independent elements of the methodology comprise
algorithms for assembling the task list and metamodels for
specifying changes. In the implementation of the methodology,
the system is represented as generics at this level and further
specified in the domain-specific metamodels. In the following,
we discuss the domain-independent elements in more detail.

1) Domain-Independent Metamodel of Modification: Model-
based change propagation analysis in different domains has
the following metaclasses in common: i) A set of all seed
modifications. ii) A set of all model elements that may be

potentially affected by a change. In a change propagation
between two elements, one element is the cause of the change,
hereafter referred to as causing element, while the other
element is affected by the change caused by the first element,
hereafter referred to as affected element. iii) Change propagation
from affected elements to further elements, hereafter referred
to as change propagation step. iv) The task list involves
seed modifications and a set of change propagation steps.
This is represented by the modification repository metaclass
in the domain-independent metamodel of modification. An
instantiation of the methodology for a specific domain has to
extend the aforementioned metaclasses.

2) Task List Algorithms: Besides the metamodels of mod-
ification, the change propagation algorithms play a central
role in the change propagation analysis. These algorithms use
instances of the metamodels to derive the task lists. In the
following the main algorithms are described:

Algorithm for Derivation of Task Lists: Central to the
methodology is an algorithm to derive task lists based on
domain-specific models. This algorithm calculates the differ-
ences between two models: base version and target version.
While the base version represents the model before the change,
the target version represents the model after the change. Given
two models, the differences between both can be identified
by a model diff. Further, the algorithm extends the task list
containing the changes to structural elements to include tasks
for maintaining the non-structural elements. Then, it calculates
the task list, removes the duplicates, and sort the task list in
order to have deterministic task lists by the same input.

Algorithm for Duplicate Elimination: The derived task lists
may contain duplicated tasks referring to the same model
element. Such tasks may be generated in different change
propagation iterations by different change propagation rules, or
due to several seed modifications [3]. Further, a task can have
subtasks. For example, the task “modify interface I” can have
the subtask “modify the corresponding signatures” [6]. Addi-
tionally, a task can have follow-up tasks. In the aforementioned
example, the task “modify interface I” can have the follow-
up task “update test cases” [6]. Thus, we have to consider
the subtasks and follow-up tasks while merging the tasks and
removing duplicates. This algorithm recursively merges all
tasks that refer to the same element and have the same type.

Algorithm for Task List Sorter: If the same change requests
affect the system, the results must be deterministic. Further, to
improve the comparability between the task lists, the results
should be in the same order [3]. This algorithm recursively



sorts the task list while considering top-level tasks (e.g., modify
interface I), as well as subtasks (e.g., modify the corresponding
signatures), and follow-up tasks (e.g., update test cases).

3) Decision Support: It may be necessary to include the
knowledge of a domain expert not contained in the models to
reason about the task list. Domain experts may be software
architects in the domain of IS, process designers in the domain
of BP, or system engineers in the domain of aPS. For example,
if the system is composed of elements that cannot be changed
(e.g., third party components), it is not reasonable to have
them in the task list. The involvement of domain experts is
also required in situations where a false positive in one of the
previous iterations propagates to more false positives in the
subsequent iterations. Therefore, we enable the domain experts
to mark model elements that cannot to be changed. Based on
their decision, the task list is recalculated and the elements
that are excluded due to expert knowledge are eliminated [3].

Metamodel of Decision Support: This metamodel includes
three basic types of human decision on a task: Confirm,
Exclude, and No Decision as enums. No Decision is
the default decision, after the task list is generated. The domain
expert can mark tasks that cannot be changed as Exclude. The
true positive tasks in the task list can be marked as Confirm.

Algorithm of Decision Support: An Excluded task can
result in follow-up tasks that also have to be Excluded. The
first iteration excludes elements that are marked by the human.
These elements can be the causing elements for further elements.
In each iteration, elements that do not have a causing element
are removed. These elements are the newly excluded elements.
The algorithm terminates, if there are not any elements in the
set of all excluded elements.

B. Domain-Specific Elements

The instantiation of the methodology for a specific domain
requires the extension of the domain-specific part of the
methodology. The domain-specific elements of the methodology
can be divided into two parts. The first part refers to metamodels
and algorithms mandatory for analyzing the architecture-based
change propagation and for deriving a task list. The second
part refers to elements that are optional in change propagation
analysis. They are illustrated in Fig. 1 by dashed rectangles.

1) Change Propagation Analysis for the Elements of the
Structural Metamodel: The mandatory part of the methodology
defines the extension points needed for instantiating the
methodology to a specific domain. It comprises a metamodel
for describing the structure of the system and a metamodel for
specifying the change propagation, hereafter called domain-
specific metamodel of modification. In addition, the domain-
specific change propagation algorithm is required. Based on an
instance of the domain-specific metamodel of modification, the
metamodel of the system, and the corresponding change prop-
agation algorithm, the instance of the methodology identifies
the model elements affected by a given seed modification.

Metamodel of System: For instantiating the methodology to
a specific domain the metamodels for describing the systems
in this domain must be created. In the following, we discuss

model elements relevant for change propagation that should
be considered while constructing domain-specific metamodels.

Structure: The structure of the system under study plays a
key role in the change propagation analysis [7]. The domain
expert has to metamodel the structure of the systems in the
domain. For example, the system can be structured using
components and their compositions as common in architectural
description languages like SysML [8] and Palladio [9].

Data Flow: Another important aspect of the change propa-
gation analysis is the propagation of changes by the data flow,
as changes may propagate due to data dependencies [10], [7].
The representation of a data is domain-specific. For example, in
the domain of IS, the data types can represent the data flow [9],
whereas signal input or output can represent the data flow in
an aPS [11]. In the BP a data may be represented by a physical
data object [3]. Consequently, a change can propagate between
two domains using the data flow, as different representations
of the data can be converted in each other.

Behavior: The behavior may also be relevant for the change
propagation, as a change to the structure of a system or the data
flows can affect the behavior of the system [7]. For example,
a change to the software can propagate to its users’ interface.
Thus, a software change may affect the users’ experience [12].

Domain-specific Metamodel of Modification: This metamodel
is an extension of the domain-independent metamodel of
modification for a specific domain. This extension involves
specifying the seed modifications, potentially affected elements
by changes, and the common causes for change propagation
steps (e.g., data dependencies) [2]. Further, the modification
repository has to be extended by the domain-specific seed
modifications and change propagation steps.

Algorithm of Change Propagation Analysis: Each rule of the
change propagation algorithm is specified for the elements
of the metamodel of the system and the domain-specific
metamodel of modification. The domain expert can specify the
change propagation rules in a general-purpose programming
language like Java. Alternatively, the rules can be specified in
our Change Propagation Rule Language (CPRL) [13]. CPRL is
a declarative language for expressing the change propagation
along the references of the metaclasses (i.e., forward, backward,
and their combinations). While the focus of this paper is on the
metamodels, details on the analysis algorithms are described
in our previous work [2], [3], [4], [14].

2) Domain-Specific Change Propagation Analysis for
Non-structural Metamodel Elements: Implementing a change
request may additionally involve organizational or technical
tasks [2]. An example for such tasks is adapting or executing
test cases in IS [2]. This part of the methodology extends the
task list by non-structural elements. As non-structural elements
might not be needed in all domains, the metamodels and
algorithms in this part of the methodology are considered as
optional. In the following, more details on the metamodels and
algorithms for non-structural elements are given.

Metamodel of Non-structural Elements: This metamodel
includes various element types that are not part of the structure
of the system. These elements can be, however, relevant for the



change propagation analysis in a specific domain [2], [4]. As
the metamodel of the system acts as the main artifact for the
change propagation analysis, the non-structural elements refer
to the metamodel of the system. For example in the IS domain,
the “test case” can refer to the “interface” metaclass [6].

Metamodel of Task Type: This metamodel represents the
domain-specific task types such as writing test cases [6]. Each
task type also refers to a non-structural elements. As not all
non-structural elements may have a domain-specific task type,
this metamodel can be considered as optional.

Algorithm of Non-structural Task List: If there are non-
structural elements in the domain under study, the change
propagation analysis estimates how they are affected by a
given change request. For example, if an interface, which has
some test cases, is removed, the test cases have to be removed,
too. In contrast, if the interface is modified, the corresponding
test cases may need to be updated and executed [2]. As this
highly depends on the domain under study, this algorithm has
to be implemented based on the domain-specific metamodels
and the change propagation rules.

Algorithm of Difference Calculation: During a modification,
it may be necessary to change the way in which the structural
elements of the system are connected to each other. Further,
new elements may be added to, or elements may be removed
from the model of the system. Thus, a further aspect is the
change propagation analysis due to changes to the structure of
the system model. After we changed the structure of the system
in a specific domain, the algorithm identifies the differences
between two versions of the system model (i.e., before and
after the change) [2]. This comparison allows for deriving
added or removed elements in addition to changed elements.

IV. EVALUATION

In this section, we instantiate the methodology to several
domains to evaluate its relevancy and comprehensiveness.

A. Evaluation Design

The Goal of the evaluation is to show the methodology is
sufficiently relevant and comprehensive when instantiated for
different domains. For evaluating the methodology we analyze
several domain-specific instantiations1. It is important to note
that the goal of the evaluation is not to show the quality of the
automatically generated task lists of the individual instances.
One reason for this is that the methodology can be instantiated
in a certain domain in different ways, which influence the
quality of the generated task lists of individual instances. Thus,
there is no unique instance of the methodology in a certain
domain. Further, the quality of the individual instances has
already been evaluated in previous studies [2], [3], [4], [14].

For evaluating the relevancy, we define Question 1: In how
many domain-specific instantiations of the methodology are the
elements of the methodology used? The more domain-specific
instantiations use the elements of the methodology, the more
relevant we consider the elements. For evaluating the coverage

1https://github.com/KAMP-Research/

of the elements common for several instantiations, we define
Metric 1 as the ratio, R, of the number of instantiations of the
methodology in which an element occurs, U , to the number
of all instantiations of the methodology, N . Thus, we can
calculate Metric 1 as R = U

N .
Furthermore, we evaluate the comprehensiveness of the

methodology by Question 2: Are there any common meta-
models or algorithms in the several instantiations, that are not
specified by the methodology? In the evaluation we consider
a metamodel or an algorithm as “common”, if it is present
in more than one instantiation of the methodology. When
instantiating the methodology in a new domain, this research
question investigates, whether there are new metamodels or
algorithms for change propagation analysis in this domain that
have not yet been considered in the methodology. The less
common metamodels or algorithms missing in the method-
ology we identify, the more comprehensive we consider the
methodology. To answer this question, we define Metric 2
as the number of common metamodels or algorithms in the
domains that are not specified by the methodology.

In the following, we describe the selected domains, which
fulfill the criteria for instantiating the methodology regarding
the system’s structure and its behavior, as well as the change
propagation between its elements (cf. Sec. III):

We chose the domain of BP, as a BP can be defined as a
set of actor steps and system steps [15]. Thus, a change to the
IS can affect the system step and thus the entire BP [3].

An aPS involves electronic, mechanical, and software parts.
All parts represent the heterogeneous structure of the aPS.
An automatic change propagation approach is appropriate for
analyzing the heterogeneous structure. The instantiation of the
methodology for aPS can be found in [4].

The initial change can be specified either at system element
or at requirement level. In the first case, the domain experts
must select the initially affected system elements based on the
change request. In the second case, a change in a requirement
triggers the change propagation. Although requirements are
not a stand-alone domain, it is often helpful to consider
requirement changes as they may trigger changes in the systems
implementing them. Details on the methodology instantiation
for requirements in the aPS domain are given in [14].

B. Evaluation Results

Tab. I summarizes the results of the evaluation for Question
1 and Question 2. To answer Question 1, we investigated for
all metamodels and algorithms of the methodology whether
they occur in the instantiations of the methodology after
implementing them. The rows in the third column of Tab. I
present the elements of the methodology. Each row in the
columns with headers IS, BP, aPS Hardware, aPS Software,
and Req shows, whether the corresponding instantiations for
these domains implement the elements of the methodology.
The number of instantiations of the methodology (i.e., N ) is
5. The last column of Tab. I presents Metric 1.

The domain-independent metamodels and algorithms were
required in all domains. Thus, the number of instantiations of



TABLE I: Commonalities of the methodology instantiation. Legend: X:used, x : not used

Metamodels & Algorithms:
Domain: IS BP aPS aPS Req Metric

Hardware Software 1
Domain-independent Metamodel of Modification X X X X X 1.0

Do Task Algorithm for Duplicate Elimination X X X X X 1.0
-main List Algorithm for List Sorter X X X X X 1.0
-inde Algorithm Algorithm for Derivation of Task List X X X X X 1.0
-pendent Decision Metamodel of Decision Supporting X X X X X 1.0

Supporting Algorithm for Decision Supporting X X X X X 1.0
Structural Metamodel of the System X X X X X 1.0

Do Change Domain-specific Metamodel of Modification X X X X X 1.0
-main Propagation Algorithm for Change Propagation X X X X X 1.0

Non-structural Metamodel of Non-structural Elements X X X X x 0.8
-spe Change Metamodel of Task Type X x X X x 0.6
-cific Propagation Algorithm of Non-structural Task List X X X X x 0.8

Analysis Algorithm for Difference Calculation X X X X X 1.0
Metric 2 Was a common element missing during the instantiation of the methodology? 0 0 0 0 0

the methodology for these elements (i.e., U ) is 5. Consequently,
Metric 1 is 1.0 for domain-independent elements. In all
domains, we had to create a metamodel describing the system,
a domain-specific metamodel of modification, and an algorithm
for change propagation. Thus, U is also 5 for these elements.
Consequently, Metric 1 is also 1.0 for all mandatory elements
of the domain-specific part of the methodology.

The instantiations of the methodology for IS, aPS hardware,
and aPS software include all optional elements of the domain-
specific part of the methodology. However, we could identify
neither metamodels regarding non-structural elements and task
types, nor the algorithm of non-structural task list in the
instantiation for requirements. For example, there are no test
cases for requirements, but for the system elements in a domain
to test whether they meet the requirements. The instantiation
of the methodology for BP includes the metamodels regarding
non-structural elements and the algorithm of non-structural task
list. However, we could not identify a task type metamodel
for the BP domain. Consequently, Metric 1 is 0.8 for the
metamodel of non-structural elements and the corresponding
algorithm for deriving the non-structural task list. Metric 1 is
0.6 for the metamodel of task types, as it is not used for BP
and requirements. This conforms to our intention to consider
these elements of the methodology as optional. Metric 1 is
1.0 for the algorithm of difference calculation, as it could be
instantiated in all domains.

If non-structural elements in a domain affect the maintain-
ability analysis of the systems in this domain, the optional
elements of the methodology can be used to consider these
elements. The optional elements allow a more precise change
propagation analysis. As they do not necessarily have to occur
in a domain, their non-existence does not affect relevance of the
methodology. In conclusion, we consider our methodology as
relevant because the evaluation results show all the mandatory
metamodels and algorithms of the methodology can be found
in domain-specific instantiations of the methodology.

Question 2 addresses metamodels and algorithms missing in
the methodology (cf. last row of Tab I). After instantiating the
methodology for the respective domain, we could not identify
any common metamodel or algorithm that was not specified
by the methodology (i.e., Metric 2 is 0). The evaluation results
show the methodology is sufficiently comprehensive.

V. CONCLUSION

This paper proposed domain-independent concepts in form of
a generic methodology that need to be instantiated for domain-
specific change impact analysis. The methodology addresses
limitations of existing approaches by ensuring compatibility of
domain-specific analyses, as they rely on the same fundamental
concepts. Thus, it supports domain-spanning change impact
analysis for the domains of IS, BP, aPS and requirements.
Evaluation results show the relevancy and comprehensives
of the methodology for domain-specific instantiations. In the
future, we will instantiate the methodology to further domains.

ACKNOWLEDGMENT

This work was partially supported by the DFG under
SPP1593 (RE1674/12-1) and the MWK in the funding line
RiSC. We thank Jakob Bach for inspiring discussions and
support during conception and tool development.

REFERENCES

[1] ISO/IEC, “25010 - Systems and software: Engineering, Quality Require-
ments and Evaluation, Quality Models,” Tech. Rep., 2010.

[2] K. Rostami et al., “Architecture-based assessment and planning of change
requests,” in QoSA’15. ACM, 2015, pp. 21–30.

[3] ——, “Architecture-based Change Impact Analysis in Information
Systems and Business Processes,” in ICSA’17. IEEE.

[4] B. Vogel-Heuser et al., “Maintenance effort estimation with kamp4aps
for cross-disciplinary automated production systems - a collaborative
approach,” in IFAC, 2017.

[5] R. Heinrich, “Tailored quality modeling and analysis of software-intensive
systems,” in SEKE, 2018.

[6] J. Stammel, “Architekturbasierte Bewertung und Planung von
Änderungsanfragen,” Ph.D. dissertation, KIT, 2015.

[7] R. Kazman et al., “Saam: A method for analyzing the properties of
software architectures,” in 16th ICSE, ser. ICSE ’94. IEEE, pp. 81–90.

[8] OMG, OMG SysML, Version 1.3, Object Management Group Std., 2012.
[Online]. Available: http://www.omg.org/spec/SysML/1.3/

[9] Reussner, Ralf et al., Ed., Modeling and Simulating Software Architectures
- The Palladio Approach. MIT Press, 2016.

[10] M. Lee et al., “Algorithmic analysis of the impacts of changes to object-
oriented software,” in TOOLS, 2000, pp. 61–70.

[11] S. Koch, “Automatische Vorhersage von Änderungsausbreitungen am
Beispiel von Automatisierungssystemen,” Master’s thesis, KIT.

[12] N. Chapin et al., “Types of software evolution and software maintenance,”
JSM, vol. 13, no. 1, pp. 3–30, 2001.

[13] K. Busch et al., “A cross-disciplinary language for change propagation
rules,” in CASE. IEEE, 2018.

[14] T. Maier et al., “An approach to requirement analysis in automated
production systems,” in 20. WSRE – DFF, 2018.

[15] R. Heinrich et al., “Integrating business process simulation and informa-
tion system simulation for performance prediction,” SoSyM, 2015.


