
NMF: A multi-platform Modeling Framework

Georg Hinkel

FZI Research Center of Information Technologies (FZI)
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany, hinkel@fzi.de

Abstract For its promises in terms of increased productivity, Model-
driven engineering (MDE) is getting applied increasingly often in both
industry and academia. However, most tools currently available are based
on the Eclipse Modeling Framework (EMF) and hence based on the Java
platform whereas tool support for other platforms is limited. This leads
to a language and tool adoption problem for developers of other plat-
forms such as .NET. As a result, few projects on the .NET platform
adopt MDE. In this paper, we present the .NET Modeling Framework
(NMF), a tool set for model repositories, model-based incrementalization,
model transformation, model synchronization and code generation that
is now available for a multitude of different operating systems, including
Windows, Linux, Android, iOS and Mac. The framework makes intensive
use of the C# language as host language for model transformation and
synchronization languages, whereas the model repository serialization is
compatible with EMF. This solves the language adoption problem for
C# programmers and creates a bridge to the EMF platform.

1 Introduction

Model-driven engineering (MDE) is getting applied increasingly often both in
industry and academia. Dedicated support to use models for analysis or transfor-
mation purposes reduces manual development efforts as repetitive infrastructure
code can be reused. Most of the existing tools that support MDE are currently
based on the Java platform. As a consequence, legacy software built on other
platforms can hardly be reused.

Furthermore, MDE is increasingly applied on mobile platforms [1] where tra-
ditional tools such as Eclipse are difficult to operate and alternatives are nec-
essary. Ideally, such alternative modeling environments should support as many
platforms as possible to reduce the code duplication in the support for multiple
platforms.

In this paper, we present the .NETModeling Framework (NMF), a framework
of libraries, tools and languages to support model-driven engineering on the .NET
platform. The framework is dedicated to process existing models through analy-
sis, transformation and synchronization. NMF contains tools to generate model
representations compliant with EMF, supports a model management repository
system and allows developers to specify model analyses, model transformations
and model synchronizations. To minimize both the language adoption problem



Georg Hinkel

and the tool support problem, NMF is entirely based on internal languages that
use C# as a host language.

Since December 2017, the runtime libraries of NMF all support the .NET
Standard 2.0 and are therefore usable not only in Windows but also on various
other platforms such as Linux and Mac through .NET Core1, but also Android
and iOS through the Xamarin platform2. In particular, NMF allows to create
model-based libraries that can be shared across all of these platforms.

An introductory tutorial for NMF can be found on YouTube3.
The remainder of this paper is structured as follows: Section 2 presents the

meta-metamodel used in NMF and discusses serialization. Section 3 explains the
support for model repositories and how they are used. Section 4 describes the
support for implicit incremental model analyses that is built into NMF. Section
5 introduces the model transformation language NTL. Section 6 shows how the
concepts are combined in a language for the synchronization of heterogeneous
metamodels. Finally, Section 7 concludes the paper.

2 Meta-Metamodel

NMF contains its own meta-metamodel called NMeta. NMeta is similar to Ecore
but contains dedicated support for type system features widely used on the .NET
platform such as structures or events. Furthermore, it also supports an extension
mechanism closely related to stereotypes as well as refinements. The semantics
of NMeta is clearly defined through a mapping to category theory. Though there
is a high semantic overlap with the Essential Meta Object Facility (EMOF) stan-
dard, there are also some features that do not have a counterpart in NMeta, in
particular factories and generic types.

However, since Ecore is the meta-metamodel most often used in MDE, NMF
contains a model transformation from Ecore to NMeta. This transformation is
based on the extensible Model Transformation Language NTL (cf. Sec. 5 or
[2]) and thus support for other types can be easily added.

The resulting NMeta metamodel is compliant with the original Ecore meta-
model if the latter only contains basic structures (packages, classes, attributes
and references). Here, compliant means that serialized instances of the original
Ecore metamodel can be deserialized with the NMeta metamodel (if no custom
XMI handlers are used) and vice versa. In particular, the XMI serialization of
the metamodels is equivalent and the NMF serializer uses the same addressing
scheme for cross references as the EMF serializer uses for Ecore.

Similar to Ecore, NMeta is bootstrapped and the classes ModelElement and
Model are the only ones with a custom implementation, the implementation of
all other classes originate directly from the code generator.

1 A list of supported linux distributions is available under https://github.com/dotnet/
core/blob/master/release-notes/2.0/2.0-supported-os.md

2 http://www.xamarin.com/platform
3 https://youtu.be/NIMYuwTltVs

https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
http://www.xamarin.com/platform
https://youtu.be/NIMYuwTltVs


NMF: A multi-platform Modeling Framework

3 Model Repositories

In NMeta, all model elements have both an absolute and a relative URI that allow
developers to easily reference model elements in a defined way. The addressing
scheme is based on the containment hierarchy where the elements are identified
by their identifier or by the collection index. The syntax is the same as used in
the EMF serializer to push interoperability to EMF.

NMF is able to resolve URIs from different sources, including files, embed-
ded resources and network streams. To resolve a model, NMF uses a singleton
meta repository (which itself is a model repository) where all metamodels are
loaded and linked to the implementation, if available. The registration of model
representation code is done simply through an assembly annotation that links a
namespace to an assembly embedded resource where the metamodel is formally
described. Here, assemblies are the components of the .NET component model.
When the meta-repository is loaded for the first time, it iterates through the
loaded assemblies and finds all metamodels registered, so that a repository is
able to load a model just in case the assembly containing the model representa-
tion classes is referenced.

4 Model-based Incrementalization

Again similar to EMF, NMF provides elementary change notifications, offered
through the industry standard interfaces INotifyPropertyChanged and INotify-

CollectionChanged. These interfaces are required by many modern user interface
libraries, hence the model representation code can directly be used for these
techniques.

However, NMF is also able to combine these elementary change notifications
to determine when the result of analyses based on a model has changed. Fur-
thermore, an incremental algorithm is inferred to recalculate the analysis upon
a model change more efficiently by the implicit introduction and management
of buffers to save intermediate results. This incrementalization works online, i.e.
the model needs to be kept in memory and changes must be made on the model
elements in memory.

The incrementalization has a sound theoretical foundation based on category
theory and is implemented in NMF Expressions. NMF Expressions operates
on lambda expressions, supported by many .NET languages such as C# and
VB.NET in their regular syntax. To realize the incrementalization, the abstract
syntax tree is converted into a dynamic dependency graph on a high abstraction
level. Changes of the model under analysis are then propagated through the
dependency graph, ultimately updating the analysis result.

1 var faultyPositions = from route in routes

2 where route.Entry != null && route.Entry.Signal == Signal.GO

3 from swP in route.Follows

4 where swP.Switch.CurrentPosition != swP.Position

5 select swP;

Listing 1. Query to find inaccurate switch positions in a collection of routes



Georg Hinkel

As an example, consider the code in Listing 1, taken from the NMF solution
of the TTC Train Benchmark [3]. NMF allows the user to specify queries like
this in regular C# code with all of the tool support provided for this language
and is able to implicitly deduct an incremental evaluation.

The high abstraction level in the dynamic dependency graph is achieved by a
manual incrementalization of analysis operators yielding valid results as a conse-
quence of the underlying formalization as a categorial functor. NMF Expressions
includes a library of such manually incrementalized operators, including most of
the Standard Query Operators (SQO)4. As a consequence, developers can spec-
ify query analyses conveniently through the query syntax such as used in Listing
1.

5 Model Transformation

To support model transformation, NMF contains the NMF Transformations Lan-
guage (NTL) [4], an internal model transformation language integrated in C#,
reusing the tool support for C# [5]. This transformation language allows to
specify extensible rule-based model transformations with explicit dependencies
between the transformation rules. The underlying transformation engine is not
restricted to NMeta models as input or output models such that also arbitrary
CLR objects can be transformed where the CLR denotes the .NET virtual ma-
chine, similar to the JVM in Java.

Model transformations in NTL are essentially classes whose transformation
rules are inferred by the public nested classes. These are encoded also as sepa-
rate classes that inherit from a set of generic base classes and the generic type
parameters specify the source and target model elements. These transformation
rule classes may override a method to define their dependencies. Inside this
method, transformation rules may define dependencies to other transformation
rules, their instantiation or patterns that declaratively specify when the trans-
formation rule should be called. Other than that, the transformation rules may
override a method that is called to initialize the transformation rule result. Simi-
lar to ATL, NTL also allows transformations to be based on other transformation
rules overriding some of their transformation rules. This technique is called su-
perimposition in ATL [6], in NTL it is called transformation rule inheritance as
it is realized in inheriting the transformation rule classes.

6 Model Synchronization

Based on NTL and NMF Expressions, NMF also contains a language to syn-
chronize models of heterogeneous metamodels, named NMF Synchronizations
[7]. Like NTL, it is also implemented as an internal DSL so that developers can
familiarize quickly. This synchronization language is able to support 18 different

4 http://msdn.microsoft.com/en-us/library/bb394939.aspx

http://msdn.microsoft.com/en-us/library/bb394939.aspx


NMF: A multi-platform Modeling Framework

operation modes out of a single specification: One may choose between three dif-
ferent change propagation modes (none, one-way and two-way) and six different
directions (left-to-right and right-to-left in three different variants each).

Similar to NTL, a synchronization rule in NMF Synchronizations is repre-
sented by a class, inferring the synchronization rules by the public nested classes.
The synchronization rules each define an isomorphism between the classes they
are to synchronize, referred to as left-hand-side (LHS) and right-hand-side (RHS)
class. These classes are passed as generic type parameters.

7 Conclusion

In this paper, we have given an overview on NMF, a framework to support model-
driven engineering on the .NET platforms. Through the support of .NET Stan-
dard, NMF is available on most modern platforms, including Windows, Linux,
Android, iOS and Mac. The framework is largely compatible with EMF such
that EMF models (metamodels and instance models) can be reused. Further,
the framework provides tools to generate model representation code and ana-
lyze, transform and synchronize the models, also incrementally.

References

[1] D. Vaquero-Melchor, J. Palomares, E. Guerra, and J. de Lara, “Active domain-
specific languages: Making every mobile user a modeller,” in 2017 ACM/IEEE
20th International Conference on Model Driven Engineering Languages and
Systems (MODELS), IEEE, 2017, pp. 75–82.

[2] G. Hinkel and L. Happe, “Using component frameworks for model transforma-
tions by an internal DSL,” in Proceedings of the 1st International Workshop on
Model-Driven Engineering for Component-Based Software Systems co-located
with ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages & Systems (MoDELS 2014), ser. CEURWorkshop Proceedings,
vol. 1281, CEUR-WS.org, 2014, pp. 6–15.

[3] ——, “An NMF Solution to the TTC Train Benchmark Case,” in Proceed-
ings of the 8th Transformation Tool Contest, a part of the Software Technolo-
gies: Applications and Foundations (STAF 2015) federation of conferences,
ser. CEUR Workshop Proceedings, vol. 1524, CEUR-WS.org, 2015, pp. 142–
146.

[4] G. Hinkel, “An approach to maintainable model transformations using an
internal DSL,” Master’s thesis, Karlsruhe Institute of Technology, 2013.

[5] G. Hinkel and T. Goldschmidt, “Tool Support for Model Transformations: On
Solutions using Internal Languages,” in Modellierung 2016, 2016.

[6] D. Wagelaar, R. Van Der Straeten, and D. Deridder, “Module superimposition:
A composition technique for rule-based model transformation languages,”
Software & Systems Modeling, vol. 9, no. 3, pp. 285–309, 2010.

[7] G. Hinkel and E. Burger, “Change Propagation and Bidirectionality in Inter-
nal Transformation DSLs,” Software & Systems Modeling, 2017.



Georg Hinkel

A Tutorial of NMF

The following instructions will describe how to set up a project with NMF and
create a model transformation from state machines to Petri nets. Although the
tutorial is specifically written for a usage in Visual Studio, the tutorial can be
adapted to any IDE on the .NET platform. The tutorial also assumes that you
have already started to create a metamodel and some instances of it in EMF, i.e.
Eclipse.

If you get stuck at any point, there is a ready-made solution available on
GitHub5 that can be just downloaded and tried. Furthermore, there is a YouTube
video available6 demonstrating creating a new project, loading, altering and sav-
ing a model.

A.1 Create a Project

NMF is a framework that can be easily installed through the NuGet Package-
manager7. Therefore, first create a new project. In Visual Studio, click on File
→New → Project, select a C# console application as project type and name it
as you wish, though in the remainder we will assume the name NMFDemo. Note
that NMF is generally not restricted to console applications nor to C#, you can
use it in any .NET project.

To import NMF, go to Tools→NuGet Package-manager→Manage NuGet
packages for this project and search for NMF. You should find the packageNMF-
Basics. Install it by hitting the Install button while your project is selected.

Alternatively, there is also a NuGet console at the bottom, where you can
install NMF as follows:

1 PM> Install-Package NMF-Basics

NuGet will download the package for you together will all of its dependencies
and add all the contained libraries as references into the current project. There
is no strict 1:1-mapping from NuGet packages to libraries so there are multiple
libraries being installed that may be not needed.

A.2 Import Metamodels from Ecore

Metamodels are at the core of any model-driven development process. Thus, as
a first step, we will generate code in order to be able to load any models for a
given metamodel in our .NET application. For this, the NuGet package NMF-
Basics contains the console application Ecore2Code. After a restart of Visual
Studio, NuGet will automatically add Ecore2Code to the Path variable used
inside Visual Studio, so you can just use the NuGet Package-manager console. If
run without any arguments, this application prints a help information showing
its correct usage (cf. Fig. 1).
5 https://github.com/NMFCode/NMFDemo
6 https://youtu.be/NIMYuwTltVs
7 http://www.nuget.org

https://github.com/NMFCode/NMFDemo
https://youtu.be/NIMYuwTltVs
http://www.nuget.org


NMF: A multi-platform Modeling Framework

Figure 1. The console application Ecore2Code to generate model representation code.

Now, use this tool to generate the code for the state machine metamodel and
the Petri net metamodel. You can download these metamodels from our examples
project8. First copy the metamodels into your project folder, then generate the
code for them. The complete commandline for the latter is as follows:

1 PM> Ecore2Code -f -n NMFDemo.Metamodels -m fsm.nmf -o Metamodels\FiniteStateMachines fsm.ecore

2 PM> Ecore2Code -f -n NMFDemo.Metamodels -m pn.nmf -o Metamodels\PetriNets pn.ecore

The generated code now has to be added to your project. Thus, first display
all files in the projects folder by clicking on Show All Files in the project ex-
plorer, then include the generated folder Metamodels and the generated NMeta
metamodels into your project (right-click and Include In Project).

As soon as the generated code is added to the project, it is already possible
to programatically create and save models. However, the metamodel is not yet
registered and thus no models can be loaded. To register the metamodel, we first
need to include the NMeta metamodel in the assembly as an embedded resource
and then register the metamodel. To make the metamodel an embedded resource,
simply change its Build Option to Embedded Resource in the properties view
while the metamodel is selected.

The metamodel registration is done through an assembly-wide attribute,
which can be specified anywhere in the project. The typical place for this regis-
tration, however, would be the AssemblyInfo.cs file in the properties folder. At
the top of this file, add the following two lines:

1 [assembly: NMF.Models.ModelMetadata("http://github.com/NMFCode/Examples/FiniteStateMachines", "NMFDemo.

fsm.nmf")]

2 [assembly: NMF.Models.ModelMetadata("http://github.com/NMFCode/Examples/PetriNets", "NMFDemo.pn.nmf")]

This is all there is, even if you compile your project not as an executable but
as a reusable library. As a reason, when loading the serializer, NMF looks for
8 https://github.com/NMFCode/NMFDemo

https://github.com/NMFCode/NMFDemo


Georg Hinkel

these attributes in all assemblies referenced by the executing assembly and loads
any metamodel registrations it can get.

A.3 Loading a Model

In NMF, models are loaded by resolving their URI in a model repository. If
the repository does not contain a model with the given URI, then the model
is automatically loaded into the repository, provided NMF is able to locate it.
Repositories are closed under cross-reference, meaning that all references to other
model elements are always resolved within the repository or its parent repository.

To create a repository, we simply need to create an object of type ModelRe-

pository. With the default configuration, this repository is able to deserialize
any models conforming to metamodels registered in referenced assemblies, as all
repositories implicitly use the meta repository where the metamodels are loaded
into.

1 var repository = new ModelRepository();

2 var model = repository.Resolve("Example.fsm");

3 var fsm = model.RootElements[0] as FiniteStateMachine;

Listing 2. Loading Models in NMF

For example, the code needed to load a model from the file Example.fsm9

representing a small order process is depicted in Listing 2. Add these lines to the
main method. You can now launch the application and validate that the model
can be loaded successfully.

A.4 Incrementalization

The generated model representation classes for the metamodel support change
notifications through the .NET de-facto standard interfaces INotifyProperty-

Changed and INotifyCollectionChanged. Thus, the generated classes raise events
whenever some properties have been changed or elements have been added to
or removed from collections. NMF is able to combine these elementary change
notifications to deduct when the value for a combined expression has changed.

For example, let us analyze hubs in the finite state machines, i.e. states that
have the maximum incoming transitions. A set of such states can be deducted
through the analysis depicted in Listing 3.

1 var stateHubs = from s in fsm.States

2 where s.Incoming.Count == fsm.States.Max(s2 => s2.Incoming.Count)

3 select s.Name;

Listing 3. Analyzing which states are hubs

Verify that the variable stateHubs is of type IEnumerable<string>, i.e. a stan-
dard collection of strings. Now, we need to add a using statement at the top
of the program file to the query implementation of NMF Expressions. Add the
code from Listing 4 to the top of the program file.
9 https://github.com/NMFCode/NMFDemo/blob/master/Example.fsm

https://github.com/NMFCode/NMFDemo/blob/master/Example.fsm


NMF: A multi-platform Modeling Framework

1 using NMF.Expressions.Linq;

Listing 4. Registering the query implementation of NMF Expressions

As a consequence, the query implementation of NMF Expressions is used and
thus, the variable stateHubs has the type IEnumerableExpression<string>. This
adds a method to obtain an incrementalized version of the query through the
AsNotifiable method.

1 stateHubs.AsNotifiable().CollectionChanged += (o,e) => {

2 if (e.NewItems != null)

3 for (string name in e.NewItems) { Console.WriteLine("{0} is a new hub", name); }

4 if (e.OldItems != null)

5 for (string name in e.OldItems) { Console.WriteLine("{0} is no longer a hub", name); }

6 };

Listing 5. Adding handlers when the analysis results have changed

To verify the change propagation, visualize changes made to the state hub
analysis through the code shown in Listing 5. Normally, the method AsNotifiable

is a very expensive operation, thus one would save the return value.

1 var checkStock = fsm.States[1];

2 checkStock.Outgoing.Add(new Transition() {

3 Input = "items are for free",

4 Target = fsm.States[2]

5 });

Listing 6. Adding a new transition to imply a new hub

Add some change operations after registering the handler, step through the
console application and see how new hubs are immediately shown in the console.
For example, you can use the code listed in Listing 6 to create a new transition
to skip payment when items of the order process are for free. As a consequence
of this change, a message will pop up in the console that a new hub has been
detected directly after Line 2-5 of Listing 6 have been executed.

A.5 Creating a Model Transformation

Now, we are going to transform the state machine model into a different model,
for instance in a Petri net.

At first, we need to add the libraries to run model transformations in NTL.
The easiest way to get them is to download them as another NuGet package.
Install NMF Transformations through the NuGet command shown in Listing 7
or again through the GUI.

1 PM> Install-Package NMF-Transformations

Listing 7. Installing NMF Transformations

A model transformation in NMF Transformations is a special class, inherit-
ing from ReflectiveTransformation. Thus, create a new class by adding a new
class to the project. Download the model transformation FSM2PN from finite state



Georg Hinkel

machines to Petri nets from the examples page10 and copy its contents into the
new file.

To run this model transformation, we need to instantiate the model trans-
formation, initialize it and run it. The initialization can be reused for multiple
passes of a model transformation, in case the model transformation initializa-
tion is costly. To apply the model transformation, we need to pass the source
and target model type as generic parameters. The transformation then selects
an appropriate rule to start with and traverses the transformation through the
rule dependencies. Thus, we can ask the transformation to transform states or
entire state machines.

1 var transformation = new FSM2PN();

2 var context = new TransformationContext();

3 var petriNet = TransformationEngine.Transform<StateMachine, Net>(fsm, context);

Listing 8. Running NMF Model Transformations

After the transformation, the context object can be used for tracing purposes.

A.6 Saving result model to a file

In NMF, the serialization information of model elments is attached directly to
the model representation classes. The NMF serializer uses this information and
interprets how the model should be serialized to XMI. To serialize the Petri net,
we simply save it into our model repository (or create a new one). Any referenced
model element already contained in another existing file is referenced through a
fully qualified reference.

1 repository.Save(petriNet, "Example.pn");

Listing 9. Serializing models in NMF

To save a model element to a file, it is sufficient to call the Save method on
the repository such as shown in Listing 9. Verify that you can open this file in
Eclipse.

10 https://github.com/NMFCode/NMFDemo/blob/master/FSM2PN.cs

https://github.com/NMFCode/NMFDemo/blob/master/FSM2PN.cs

	NMF: A multi-platform Modeling Framework

