FESCA 2010

Systematic Refinement of Performance Models
for Concurrent Component-based Systems

Lucia Kapova !

Chair for Software Design and Quality
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Steffen Becker?

FZI Research Center for Information Technology,
Karlsruhe, Germany

Abstract

Model-driven performance prediction methods require detailed design models to evaluate the performance of software sys-
tems during early development stages. However, the complexity of detailed prediction models and the semantic gap between
modelled performance concerns and functional concerns prevents many developers to address performance. As a solution to
this problem, systematic model refinements, called completions, hide low-level details from developers. Completions auto-
matically integrate performance-relevant details into component-based architectures using model-to-model transformations.
In such scenarios, conflicts between different completions are likely. Therefore, the application order of completions must be
determined unambiguously in order to reduce such conflicts. Many existing approaches employ the concept of performance
completions to include performance-relevant details to the prediction model. So far researcher only address the application
of a single completion on an architectural model. The reduction of conflicting completions have not yet been considered. In
this paper, we present a systematic approach to reduce and avoid conflicts between completions that are applied to the same
model. The method presented in this paper is essential for the automated integration of completions in software performance
engineering. Furthermore, we apply our approach to reduce conflicts of a set of completions based on design patterns for
concurrent software systems.

Keywords: Component-based Software Engineering, Software Performance Engineering, Performance Prediction.

1 Introduction

In software performance engineering, abstract design models are used to predict and eval-
uate response time, throughput, and resource utilisation of the target system during early
development stages. To provide accurate predictions, performance models have to include
many low-level details. For example, the configuration of a message-oriented middleware
(e.g., a size of a transaction) can affect the delivery time of messages [11]. While most of
the implementation details are not known in advance, a rough knowledge about the design

L Email: kapova@ipd.uka.de
2 Email: sbecker@fzi.de

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs


mailto:kapova@kit.edu
mailto:sbecker@fzi.de

patterns that are to be used might be already available. This knowledge can be exploited for
further analysis, such as performance and reliability prediction, and for code generation.

However, the architectural models that accurately reflect the performance of the system
under study can become very complex and hard to understand. This problem of high com-
plexity, lack of standardisation, and lack of automation for performance modelling has been
clearly stated in [23]: “There is a semantic gap between performance concerns and func-
tional concerns, which prevents many developers from addressing performance at all. For
the same reason many developers do not trust or understand performance models, even if
such models are available. Performance modelling is effective but it is often costly; models
are approximate, they leave out detail that may be important, and are difficult to validate.”

In literature, the above issues are addressed by model refinements that integrate
performance-relevant details into software architectural models. In the remainder of this
paper, we call model refinements that specifically address quality attributes of software
systems completions [24]. In the original approach of Woodside et al. [24], performance
completions have to be added manually to the prediction model. The difficulty of automa-
tion is a result of the flexibility needed for performance completions [23]. In order to pro-
vide tool support and to apply performance completions, we have to address this problem.
Model-driven development can provide the needed automation by means of model trans-
formations. For example, the authors of [8] analyse design patterns for Message-oriented
Middleware. They use the selected combination of messaging patterns as configuration
(also called mark model) for model-to-model transformations. Basically, existing solu-
tions [24,8,10] focus on the integration of only one completion at a time. In scenarios
where more than one completion is applied to model element, conflicts between different
completions are likely.

In our approach, completions are realized by model-to-model transformations that can
be configured by a mark model [10]. The configuration provides the necessary variability.
The transformations are applied to model elements specified by the software architect. To
automate the integration of completions, we need a method to specify the order in which
completions are applied. For this purpose, we propose a method that reduces the number of
potential conflicts and allows the explicit specification of the execution order. To evaluate
our method, we developed a number of completions based on design patterns for con-
current software systems, e.g., Thread Pool, Replication, Publisher-Subscriber Connector,
Message-Oriented Middleware [8] and Barrier. A detailed description of these completions
is out of the scope for this paper. Additionally, our previous work [7,10] describes the
details related to the definition of model refinement and completions.

In this paper, we address the issue of dependencies between completions. These de-
pendencies define where and when certain completions can be woven into the model. The
execution order of the completions may affect the result model in a way that the following
completions are not applicable anymore or that the analysis results are altered. Therefore,
the order of completions must be unambiguously specified. Furthermore, we have to clarify
responsibilities if additional information to reduce conflicts is necessary. For this purpose,
we specify the roles in the development process responsible for specific completions.

The contributions of this paper are (I) a systematic approach to investigate dependen-
cies and conflicts between multiple completions applied to the same source model, (II)
guidelines to avoid and minimise potential conflicts, with a goal to reduce conflicts in
transformation generators, and (III) an application of our approach to the domain of design

2



patterns for concurrent software systems.

This paper is structured as follows. In the section 2, we describe the basic concepts
of model-driven development and completions. Section 3 provides a motivating example
to illustrate the problem of conflicting completions. Based on the introduced concepts,
section 4 introduces our approach to specify sequences of completions execution and min-
imises possible conflicts. In section 5, the analysis of completions for concurrency patterns
demonstrates the applicability of our approach. Section 6 summarizes related work. Fi-
nally, section 7 concludes this paper and highlights future research directions.

2 Foundations

In the following, we introduce the technologies and architectural languages for specifying
software architectures and their extra-functional properties. We apply our approach in the
domain of performance engineering. For this purpose, we use a performance prediction
approach called Palladio Component Model (PCM) [17,12,2]. The PCM is a modelling
language specifically designed for performance prediction of component-based systems.
Figure 1 illustrates a system model with performance annotations in PCM. It consists of
four models created by four developer roles in a parametric way, which allows the models
to be updated independently on each other. Component developers specify the behaviour
and performance properties of components, software architects combine components into
component assembly with defined system interfaces, system deployers define execution
environment and allocation of software components to system resources, and domain ex-
perts specify the scenarios of system usage that drives system execution. A model-to-text

<cimplements>> . SRS A S S —

al [l
enice 2 [(——>0—| Service2

s
Component 1 Component 2
Service 3 [ (———>0—] Service 3

% __ Software Archi!ect

>>>>>>>

S \ N

i Mok
o) - \ ( N ST
S Resource Container 1| | Resource Container 2 Il
‘UA; /
AN =) [ it |
Serice T I\ > / f -
i ate=

Resourch™|

Demand=
0.0002

: ] Lo

/[ Rate=1000 - ‘- ‘™

7 Scheauleerir )| Rt =200 5y e @
P(Y=5)=02

Component Developer 1 Domain Expert | B =\ System Deployer Component Developer 2

Fig. 1. Illustration of a PCM model.

transformation maps the architectural model into a discrete-event simulation which resem-
bles a generalised queueing network. The simulation predicts various performance metrics
such as resource utilisation or response time distributions of the system and of individual
components. The figure shows an assembly of components forming a system. In the fol-
lowing sections, we introduce the foundations related to model-driven architectures and
performance completions.

2.1 Model-Driven Engineering

In model-driven software development processes like the OMG’s Model-Driven Architec-
ture (MDA) [16] process, models serve as input for transformations to generate the sys-
tem’s implementation. In Figure 2, the refinement process is distributed among a number
of transformations forming a transformation chain. Each transformation takes the output of

3



;M;ZM[ ;M;ZM [ ;M;ZT [

Mark Model 1 Mark Model 2 Mark Model 3

Fig. 2. MDA models and transformations.

the previous transformation and adds its own specific implementation details to the model.
When refining high-level concepts of transformations into concepts on lower abstraction
levels, sometimes different options are available for mapping such high-level model ele-
ments. For example, if different applications communicate via messaging, different pat-
terns for realizing the message channels can be used, e.g., with or without guaranteed de-
livery. If developers want their transformations to be flexible to express these options, they
can parametrize them by so called mark model instances. Mark model allows users of a
transformation to decide on mapping variations themselves. Czarnecki and Eisenecker [5]
used so called feature diagrams to capture different variants in the possible output of model
or code generators. In Figure 3, a feature model describes the possible configurations
of the Message-oriented Middleware (MoM). The MoM Feature Model captures different
configurations for a Messaging system. The configuration includes the type of Messaging
Channel as well as characteristics of the Sender and Receiver. For example, a Messaging
Channel can be configured as a Point-to-Point Channel if only a single Receiver is needed.
The Message Size is a property of the Sender and expresses the amount of data transfered.
Furthermore, the number of Competing Consumers at the Receiver’s side can be speci-
fied. The choice of either of these features results in a change of the architectural model.
The effect of these changes varies from setting a parameter, through structural changes, to
changing the deployment of a system.

Transactional

Message
Channel

Receiver

Competing
Consumers
Client

Guaranteed
Delivery
Transaction
Size

Fig. 3. MOM Adaptor Feature Model.

Selective
Consumer

Point-to-Point
Channel

Publish-Subscribe
Channel

Legend
A~ Exclusive OR Durable
Subscriber
[ ] y Feature

[} Optional Feature

2.2 Performance Completions

When doing performance predictions in early development stages, the software model has
to be kept on a high level of abstraction. The complexity and the specific knowledge about
the implementation required to create the necessary models would dramatically increase
the modeling effort. The complexity of such models reduces the variability of the design
models and, thus, increase the effort to evaluate and compare design alternatives. How-
ever, detailed information about the system is necessary to determine the performance of
the modeled architecture correctly. Performance completions, as envisioned by Wood-
side [22,24], are one possibility to close this gap. They are components added to the pre-
diction model that add performance-relevant details to a performance prediction model but

4



<<references>> | Annotation
Model

Completion
Library

Y <<parameterises>>

Software
Architecture

Extended
Software
Architecture

<<transforms>>

Fig. 4. Transformation integrating performance completions.

which are not of interest when designing the system’s application logic. For example, de-
tails about the design patterns or platform are not included within the design model and
therefore should be added by completions. These performance completions extend the
software model with annotations (or rules) whose refinements (such as additional compo-
nents, execution environments, or communication design patterns) are added to the original
software architecture.

Figure 4 shows how performance completions can be realized using the MDA concepts
described in the section 2.1. Elements of a software architecture model, such as compo-
nents or connectors, are annotated by elements of a Mark Model using, for example, feature
diagrams. Mark models annotate elements in the architecture which are to be refined and
provide the necessary configuration options. For example, if a connector is to be replaced
by message-passing the mark model can provide information about the type of the mes-
saging channel, e.g., using guaranteed delivery. Model-to-model transformations take the
necessary components from the Completion Library, adjust them to the configuration, and
insert them in the software architecture prediction model. The result of the transformation
is an architecture model whose annotated elements have been expanded to its detailed per-
formance specifications. Figure 5 illustrates the changes of a model resulting from specific
configuration options. This step of model refinement has been automated by [7,10] where
refinement transformation generators based on actual completion configuration are intro-
duced. The resulting model is not performance-equivalent to the input model. To provide
more accurate performance prediction the resulting model includes more low-level details.
The accuracy of these predictions was discussed in [8]. The approach presented in this

-

| Messaging Model Refinement |
|
|
] I Message &1 Message €] |
—>0—{  Sender Receiver (-
Generated | Adapter Adapter |
| |
|

—, | Transformation A\
|
} |Mess:Li‘eRecewerAdapxer
y v
: |ConsumerPoolRequirer
IMessageSender 4 \ |
| v
€] | | IPoolManager !
,,,,,,,,,,,,,,,,,,,,, D S |
! Message &) | conumer podr | |
|
|

| Oriented Manager
| Middleware 9

Y

(a) Annotated Model Element (b) Result of the transformation

Fig. 5. Transformation integrating MOM Adaptor.

paper uses performance-specific completions for concurrency patterns to enable software
architects to easily predict the performance properties of different architectural alternatives.
The patterns can be configured with different parameters to analyse the influence of concur-
rent component interactions on performance. In this section presented completion theory
allows to integrate one completion to the model, we will discuss further the execution of
the completion sequences.



3 Motivating Example

To motivate our method, we present an example system of a supply chain management
(SCM) for supermarkets. In particular, we are interested in the performance of a business
reporting system for a subset of supermarkets. Figure 6 shows the part of the system’s ar-

e

[ <<Messaging>>[, Supermarket

Connector = 1:N

N ‘r———;s(j% Data Manager 1 (j,,w‘
HeadQuarter ! ;
\ ‘
Client ~ || Business ] 74;77{\@ |
N Reporting U ~ |
S Supermarket ;
\ . ‘
& P ) |
Q — tx-==0O—— DataManager |+ -—-—- ,J‘
| <<Barrier>> € |
} ThreadsRequired = 5 }
‘ |

Fig. 6. Annotated Architecture.

Alternative 1

MoMm &1

1 . oy oO—|
O Barrier { ~ Adapter

Generated \\ O

i
I
3
O Transformation /
T s
i /
|
|
I

Alternative 2
L mom 1| . gl |-
( { 150ns

~T]  Adapter -0 Barrier

Fig. 7. Completion Alternatives.

chitecture relevant for business reporting. The main part of the business reporting is running
on HQ’s server system. However, the data is distributed among the company’s supermar-
kets and managed by Data Managers. In order to generate a report for a particular set
of supermarkets, the Business Reporting sends a request to the supermarkets of in-
terest. The data managers of each supermarket retrieve the necessary data and send it back
to HQ. As soon as all data is available, the Business Reporting generates the report
and returns it to the client.

In this example, one connector (line connecting required interface of a client to provided
interface of a server) is annotated by two completions: firstly, by a Barrier pattern con-
figuration and, secondly, as Message-oriented connector (MOM Adapter, cf. Figure 6).
Both of these completion annotations refine the performance prediction model with certain
properties. The sequence of completion execution affects the model structure and its valid-
ity. In the illustrated example the completion execution order results in different semantic
of the Barrier component (cf. Figure 7). In a first case the Barrier component waits
for a number of replies from different Data Managers. By changed order the Barrier
component waits for replies from one Data Manager. Additionally, the results of per-
formance prediction could be influenced as illustrated by our example (cf. Figure 7). The
whole set of completions for this example could involve different concurrency patterns:
message-based communication with publish-subscribe (1:N) connector, barrier, strategized
locking, and thread-specific storage. These design patterns were introduced by Schmidt in
[19]. To identify a valid completion execution order in such complex system is a non-trivial
task.



wer £1| - £]
Ao 'Z?:,;tv:: —© Supermarket (—-1h
1
/ [
P
~ i Receiver £]
o E0] ] 5] 0 ] g1 Middleware
Client {C— HeadQuarter Sender Adapter |+ ( —— MOM Adapter _
SN
\
| I i I I |\
T T 7 )
! N
| N Recsiver 31| - 5] -1
= i N ©— supermarket (-
Barriergj Cntl(':al 2] ! Sender £ Melssage-gj Adapter S -
Section | : oriented
| Middleware 3
! Middleware PN
i T
i
! Receiver g]
! Middleware
i
|
i

Fig. 8. Resulting Architecture.

In the presented example, the sequence of completion execution should result in the full
architecture model illustrated in Figure 8. The method introduced in this paper provides
step-based reduction of completion executions order and their conflicts.

4 Completion Conflict Reduction

The architecture is described at design time by the means of an architectural language
suitable for specifying architectural elements, like components, connectors, etc. The goal
of such architecture models can be, for example a performance analysis or code generation.
Models suitable for this purpose are build by a sequence of refinements mirroring the real
implementation. Applying the configurable refinements [10] (completions) on an abstract
level using model-driven development based on transformations is an adequate instrument.
This way, we can create refined architecture models on a lower-level of abstraction. To
know when and where (on which model element) to execute a model transformation for
completion integration, we have to analyse the completion and the architecture model too.
Each time a new completion is introduced, we have to analyse its dependencies to other
already known completions. Therefore, we have to focus on a related group of completions
where conflicts are more likely.

The introduced approach for minimising and avoiding conflicts between executed per-
formance completions builds on a few systematic steps of architecture model analysis. In
the following we describe the problem of minimising and resolving conflicts between exe-
cuted performance completions on the model level formally.

4.1 Formal Description of Completion Conflict Reduction

In our approach for a component-based systems, we understand a completion as model
refinement. For example a component A could be refined by a locking strategy, a mon-
itor or a state manager. These completions provide additional details about the com-
ponents functionality. They also include so called performance completions which in-
tegrate parametrised resource demands [8] (for example middleware properties) into the
model. Such detailed information about a software system is a basis for the analysis of
non-functional properties. In the following we will introduce the concept of completions
formally.

Let now C' = {¢;|i € I} be a finite set of available completions, that we call a com-

7



pletion library, where I and J are finite index sets giving each element a unique label.
Furthermore, let V; = {v;|j € J} be a set if possible variations of completion ¢;, which
are assumed to be a countable set. To continue with our example we assume that the varia-
tion domain of a completion ¢jocking (refining component A with a critical section locking
Stratng) is Wocking = {Uscopeda Vdouble—checkeds -5 Ustrategized}- On this basis we can de-
fine a set of tuples T' = {(vj,¢;)|i € I,j € J,vj € V;}, that defines a set of completion
instances. The completion space C'S is defined as a subset of a powerset P, C'S C P(T)
where for each subset holds: V(vj, cq) # (vk, cp) : a # b.

A completion chain cc; =< ti,to,....,tx >,1 € I,t; € T is a permutation of ¢; for
one element from completion space cc; € CS. The completion chain ccy, is in conflict with
cc; k,l € I, when an order of completion execution in cc; # cc; and the validity of the
model structure or the result of analysis (e.g., performance prediction) is different of each
of the chain definitions.

Because of conflict occurrence not all sequences of execution as defined above
are valid for a modeled system. In the motivating example, in section 3, we define
the possible completion chains as follows: C' = {cparrieres Cmessagingts Vbarriere =
{Uthreads,requiredAa Uthreads,requiredj}e and Vmessaging = {'Uconnector,l:l, Uconnector,lzN?h
where T = {(vthreads,requiredAa Cbarriere)a (vthreads,requiredfn cbarriere)a (’Ucormector,lzla
Cmessaging)y (Uconnector,lsz Cmessaging)}and CcS = {®7 {(Uthreads,requiredj)a Cbarriere)}7
{(vconnector,l:Ny Cmessaging)}7 {(Uthreads,requiredja Cbarriere)a (vconnector,l:Ny Cmessaging)}}a
the Completion chains are defined as cc; =< (Uthreads:requiredjp Cbarriere)’ (Uconnector,ltNa

Cmessaging) > and cco =< (Uconnector,lzNa Cmessaging)a (Uthreads,requiredja Cbarriere) >.

4.2 Levels of Completion Conflict Reduction

To define a new completion in the completion library we have to investigate the completion
model and identify conflicts that have to be resolved. We reflect the need for identification,
minimisation and reduction of conflicts by introducing three levels of conflict reduction:

(1) Roles and Responsibilities Separation: The first question is "Who is able to provide
all necessary information to use and configure the completion?”. The selected role
in the development process has to have all necessary input data to specify the com-
pletion’s configuration during software design. Furthermore, he/she can profit from
completion usage. Ideally, the assignment of completions to roles will lead to dis-
jointed sets identification. Each role is only responsible for its related completions.
This way, possible conflicts are limited to the completions in responsibility of one
role. Additionally, separation of concerns based on the roles in the development pro-
cess creates a hierarchy (identifying domains of concern) in the metamodel of used
architecture description language. This is illustrated by a hierarchy of packages in the
PCM metamodel on the Figure 9.

To focus our reasoning, we have to categorise completions based on the metamodel
elements they could be assigned to. This way we reduce possible conflicts on a meta-
model level. The proposed categorisation maps the roles in the CBSE development
process [13] to groups of completions. The goal of this step is to identify sets of
completions where conflicts are possible. This way, we define disjunct sets of com-
pletions C;. For each two completions ¢; € C; and ¢o € Cs; Cy # Cs conflicts are
not possible. Only in a case of completions from the same set, conflicts are possible.

8



(i1)

(iii)

--Domain Analyst-

«aPackage»
EJ usagemodel

-Software Architect

| 1 )
«aPaclage» | «ePackage» «aPackage»
[ connectors 5 core 7 system
- Component Devel
«ePécI:aqe» |_ _____ «ePackage»
[ protocol | [ repository
|
— | —
«ePackage» |------- «ePackage»
£ parameter 2 seff
--System Deployer-
«wePackage» «ePackage» «ePaclkage»
[ resourcetype [ resourceenvironment 3 allocation

Fig. 9. A hierarchy in the PCM metamodel.

In a second case, we have to proceed with the next step to further identify affected
elements.

Conflicting Model Elements Identification: If conflicts can occur, we have to an-
swer the question ”Which model elements are affected?”. For this purpose we have
to know how the completions are modeled and at which places of the architecture
they can be applied. We can identify affected elements as a difference between source
and result model. Additionally, by this element identification we provide initial model
transformation definition. Identified elements specify more exact locations where con-
flicts may occur.

The evaluation of completion chain cc for conflict-potential is a function ¢ : T' —
S, where domain .S is the set of possible conflicting instances of metamodel elements.
For example when evaluating order of integration for locking and state manager (both
of them should be applied to the same component) we identify on a model level possi-
ble conflict set that includes all elements needed in component and its behavior defini-
tion. This results in further separation of conflict domains and decreasing the number
of completions that could introduce conflict on a model level. We define sets of po-
tentially conflicting completions (conflict space): ConflictSpace = {t;;t; € T},
where t;,t; € T,i1 # j|t; potentially conflicts with ¢; on a model element e € S,
where S is a set of conflicting elements orthogonal to the hierarchy from the previous
level, S = {component, connector, resource container }

Completion Dependencies Identification: At the end we need to answer the ques-
tion ”"What are the dependencies to other completions from the same conflict space?”.
Based on previous steps we have to analyse related completions and their intersec-
tions (affected model elements). Furthermore, we can generalise dependencies be-
tween completions by definition of mutual exclusion or require relationships in a
completion specification. Throughout the refinement process we can take advantage
of component-based properties, such as components are black-box entities and refine-
ments are applied in a hierarchy to the components (see Section 5.2.1). Based on a
previous assumption we can take an advantage of component wrappers hierarchy (the

9



Interceptor pattern or the Layer pattern in a case of connectors). Additionally, in the
source model elements are annotated by completion configurations which results in
a three actions: refine, override or add an new element to the model. Based on a
completion action priority (specific per each modeled system) we can identify order
of completion execution.

The approach introduced in this paper allows to reduce and avoid model comple-
tions conflicts on a model-level (Conflicting Model Elements Identification) or meta-
model level (Roles and Responsibilities Separation). This way, we provide guidelines
for implementation of model transformations and refinement transformation genera-
tors [10]. Introduced approach decreases the complexity of conflicts reduction and
minimisation (avoiding non-determinism of conflicts similar as in graph grammars).
The effort for manual conflict resolution is minimised on a small set of model ele-
ments and the number of cases when is this step needed is reduced.

5 Concurrent Software Systems Completions

Predicting the performance of software systems is especially challenging if software com-
ponents communicate based on a complex interaction pattern. Such interaction is defined
by concurrency, message-based communication, and synchronisation patterns. In the fol-
lowing we investigate these groups of patterns. In our approach, we simplify the design
and the development of concurrent software architectures by completions for concurrency
design patterns. We provide predefined parametrized performance completions based on a
knowledge about concurrency design patterns and their implementation details. In general,
design patterns provide enough information to allow accurate performance predictions. Pat-
terns for concurrent and distributed systems address multiple aspects, such as synchroni-
sation, communication, and Quality of Service (QoS). For example, the patterns monitor
object [19], thread-safe interface [19], guarded call [6], and rendezvous [6] provide differ-
ent means for synchronisation and communication. Patterns like Half-Sync/Half-Async,
Leader Followers, Reactor, and Proactor as described Schmidt et. al. [19] are used in
servers to efficiently dispatch and process concurrent requests. Furthermore, replication
and load balancing are employed to enhance different QoS attributes in distributed sys-
tems.

Even though it might be known that a certain pattern affects the quality of a system
[19,6], the extend of the effect in a certain scenario is unknown. Furthermore, a design pat-
tern may affect several quality attributes. For example, replication increases the availability
of a service, but decreases its performance. If multiple patterns are combined to enhance
QoS, synchronise components, or ensure data consistency, their overall effect cannot be
assessed manually. Therefore, we use model-driven performance and reliability prediction
techniques to evaluate the influence of concurrency patterns on the QoS of a software ar-
chitecture. In the following, we apply our approach for completion conflict reduction to
concurrency design patterns.

5.1 Roles and Responsibilities Separation

The categorisation of design patterns based on a development roles and their responsi-
bilities separation builds the basis for reduction and avoidance of conflicts. Additionally,

10



Event-based Synchronisation Concurrency Message-oriented
communication communication

Scoped Locking

Strategized Locking

Thread-specific Storage
Component Developer THITGEREH e IR Messaging Endpoints

Double-checked Locking RlcpitePbices

Optimalisation
Rendezvous/Barrier
Message Channel

Asynchronous

Software Architect Completion Token

Replication Message Routing

Message Endpoints

Active Object
Reactor
Half-Sync/Half-Async
System Deployer Proactor Message Bus
Leaders Followers
Acceptor-Connector
Thread Pool

Table 1
Mapping Design Patterns to Development Roles

software developers can select suitable patterns for certain problem domain without de-
tailed knowledge about their structure. Developing concurrent software system is most
challenging and complex. Design patterns decrease the complexity of concurrent programs
and provide solutions to known concurrency problems. We categorised concurrency design
patterns according to the development roles, that most likely will use them (see Table 1).

The category Component Developer includes patterns used for a definition of basic
thread-safe components. These patterns solve the issues related to parallel usage of the
component provided service, for example, data inconsistency.

The category Software Architect consists of patterns for specification of component in-
teractions, such as coordination and optimisation of communication between components.

The category System Deployer subsumes patterns that are used to build middleware
platforms for concurrent software systems. For example, the concurrent processing of re-
quests by an application server can be realised by a Leader/Follower pattern.

5.2 Conflicting Model Elements Identification

Based on this analysis of completions for concurrency design patterns, we identified three
groups of elements that could be affected by completion integration. These elements de-
fine possible locations of completion conflict. These conflicts have to be minimised on the
model level considering affected model elements. The model element is affected by a com-
pletion if i.) is holding completion annotation (initially affected) ii.) is refined, overridden
or added by completion (secondary affected)

5.2.1 Completions annotating components
The first group of the elements is defined by patterns that affect model elements describing
component behaviour. These patterns refine behaviour by integrating new actions (e.g. ex-

11



s2.entry sl.entry

s2.exit

s3.pointer
CONFLICT )s4.entry

s4.exit sl.exit

Fig. 10. Component Completions Scopes Definition.

ternal call, acquire or release) into the component’s control flow. All design patterns for
synchronisation and thread-safety belong to this group, e.g., Locks, Monitors, StateCon-
trollers or the Barrier pattern. We will further discuss Locks as a suitable example for this
group related concepts.

In order to avoid conflicts for this group of patterns, we need to determine the order of
Lock acquisitions and releases. In general, Locks can be acquired and released at arbitrary
points in the program. However, this can result in potential deadlocks. To avoid deadlocks,
we need to ensure that resources are acquired and released in a specific (always the same)
order. For this purpose, we introduce scopes for critical sections. Let Actions be the set of
all actions used in a system to specify component behaviour and Scope the set of all scopes
defined on these actions. Then we have that Vs; € Scope 3A; 1 ... A; , so that the entry
point of s;; s;.entry, points to the first action A; ; in a sequence of actions and the exit
point of s;; s;.exit, points to the last action in the sequence of actions A; ,,. Furthermore,
it must hold that whenever a path (trace) of a component’s behaviour includes A; ; it must
also include A, with a condition that A; ; occurs before A;,, [9]. We define the set of
actions that belong to a scope, actions(s;), as the set of all actions that lie on a path from
A; 1 to A; . Having this in mind we can define a conflict as follows: s1, s2 € Scopes(s; #
s2) are in conflict, if actions(s1) N actions(s2) # 0 and (actions(s1) ¢ action(sz) or
action(s2) ¢ actions(sz2)(cf., Figure 10). This way the sequence of Locks completions is
always implicit. Additionally scopes of critical sections define the execution location for a
next completion (before the s;.entry or after the s;.exit) on the same model of component
behavior. The Lock completion could be configured, for example to specify strategy read
or write or to define beginning of transaction. By the configuration is the focus even more
on specific elements.

5.2.2 Completions annotating resource containers

Dispatching and the management of threads are addressed by a set of patterns dealing with
event-based communication and the infrastructure’s support for concurrency. Completions
for dispatching annotate resource containers to which components can be allocated. From
the perspective of performance prediction, these patterns can be abstracted as variations
of the ThreadPool pattern. The implementation of ThreadPool has a prominent impact on
the performance due to its ability to limit the level of concurrency in the system [4]. We
designed performance abstractions based on ThreadPool for the following patterns: (cf.,
Figure 11) for patterns i.) Reactor: The Reactor pattern realises synchronous commu-
nication. This pattern could be abstracted as ThreadPool with a size of one thread for a
client; ii.) Proactor: The Proactor pattern realises asynchronous communication. The pat-

12



AcceptorThread
Pool:size=1

ki;

£] £ g]
‘ Client - Reactor - HeadQuarter
Wrapper

g] g]
Acceptorin AcceptorOut
Thread Thread

Pool:size=100 Pool:size=100

® %?
Ty ‘
] Cal| g1 |
Proactorin ProactorOuf
‘ Client Wranper - HeadQuarter - Wrapmer >

ThreadPool

Pool:size =n

Uﬁ

€] & 7]
‘ Client —1- Leader/Follo HeadQuarter
Wrapper

Fig. 11. Performance abstractions for Reactor, Proactor and Leaders Followers pattern.

o

tern separates the processing of incoming and outgoing requests. For each type there is
a distinct pool of worker threads. Therefore, we can abstract the pattern as incoming and
outgoing ThreadPool couple with a size equal the capacity of the system; and iii.) Lead-
ers Followers: The Leaders Followers pattern is a special version of a ThreadPool where
one particular thread takes the role of the leader and waits for the next request. All other
threads are either queued (i.e., followers) or processing requests (i.e. workers). To model
this pattern we can easily use one ThreadPool component with a size equal the capacity of
the system. These patterns belong to the platform definition, therefore we allow only one
of these completions per resource container. Consequently, no conflicts are possible.

5.2.3 Completions annotating connectors

Assembly connectors [21,1] are the last (but by no means least) type of model elements
that can be refined by completions. For connectors, several performance completions can
be applied on one connector instance so that their order has to be determined.

The first kind of completion provides details about the type of the connector, i.e,
whether it is 1:1, 1:n, or n:1. Connectors of type 1:1 are typical message passing or RPC
style connectors which connect a single client component instance to a single server com-
ponent instance. In case of 1:n connectors, a single client component sends requests to a
set of server components which is semantically the case for server replication scenarios or
voting based server queries. Finally, n:1 connectors are the usual case of n clients instances
talking to a thread-safe server instance.

Orthogonal to the type of the connector, connector performance completions also in-
clude details about the processing of the communication (synchronous or asynchronous) in
the participating middleware layers as illustrated in Figure 12 [8]. Here we find services for
message marshaling, message encryption, call authentication, message compression, etc.
For these types of message processing steps, existing performance completions [1] insert
a completion component for each processing step. However, the order of these services is

13



Connector Completion

Receiver £J
Middleware

Sender £
Middleware

2] 1Foo £ ]| IFoo” Send £]| 1Foo” ]| 1Foo” R £]| 1Foo” ] 1Foo
ender eceiver
->0— Marshalling —0O—| Adapter —0— Wrapper —0— Adaper —©— DeMarshalling —C—+-
IMarshalling‘?} % I1Sender éﬁ Ivom meceiveré{) (f Warshalling |

) g]
Middleware System

Platform-specific Middleware Components

Fig. 12. Connector Middleware Completion.

important because of the differences in the data flow involved. For example, the size of the
message to be sent over the network is different if the message’s body is first encrypted and
then compressed versus an initial compression followed by a subsequent encryption step.
Hence, for the processing steps the order of application of a set of performance completions
does matter and needs clarification.

Connector completions rely on components which reflect the performance related be-
haviour of the used middleware. As a consequence, these middleware components imple-
ment both, the resource demand caused by the middleware’s processing but also the data
transformations they perform on the message to be sent over the network. Note, that in
some usecases the size of the message is not of major interest for the overall performance
of the network link. In such cases, the data transformations become neglectable and con-
sequently also the order of applying the corresponding performance completions does not
matter any more.

As a result of the discussion of connector completions, we can conclude that we need at
least two types of annotations. The first annotation class determines the connector kind and
defines the exact implementation semantics of 1:1, 1:n, and n:1 connectors, e.g., whether
voting or replication is used for a 1:n connector. The second class of annotations defines
the pre- and post-processing details of the messages used by the connector for remote com-
munication. Here, the annotation gives details about marshaling, encryption, compression,
etc. A clear definition of the order in which such completions are added to the performance
model is necessary to get accurate performance predictions from the refined performance
model. The following section gives details on how to identify completions dependencies
and reach a deterministic completion application.

5.3  Completion Dependencies Identification

The approach introduced in this paper provides the basis for easy completion integration
reducing potential conflicts. For the purpose of avoiding and minimising conflicts we map
patterns to the roles and responsibilities involved in the software development process.
Based on the meta-model elements affected, we determine those elements that are in po-
tential conflict. After this analysis the complexity of the remaining conflicts on a model
instance level is decreased, location of the conflict is identified and conflict resolution can
focus on the small set of specific model elements (mostly one element). When is a new
completion introduced it should be integrated in one of the categories and this way could
be the relation to the other completions easily identified and conflicts minimised.

In this last step a small number of completions belongs still to the same group. As

14



shown on a concurrency design patterns group this set of remaining completions is equal
or smaller then two and involves mostly only one model element. Resolving remaining
conflicts could be done manually, however we consider guidelines to resolve even this
conflicts by prioritisation of completions defining refine action, followed by override or
add actions. Additionally, in the case of connector completions the Layers [19] pattern
give us guidelines to resolve first completions from the upper most layer till the lowest one.
This way most of the remaining conflicts could be solved without a manual effort.

6 Related Work

The idea of using patterns as basic concept for predicting extra-functional properties has
been discussed in the context of special components called adapter. Adapters are used to
bridge any kind of interoperability problems when composing components. Initial work
has been done by compiling a classification of adaptation patterns and defining a process
to incorporate the patterns in a prediction process for extra-functional properties by Becker
et al. [3]. Besides performance, there is also work looking at reliability prediction in the
context of adaptation patterns by Reussner et al.[18].

Spitznagel et al. investigated the relationship of architectural connectors and common
dependability techniques [20]. A special focus of their work was the composition of more
than a single connector to combined connectors. However, their main interest has been
guaranteable properties of systems like deadlock-freedom and not in the prediction of the
extra-functional impact. In case of concurrency patterns modelling focuses mostly on func-
tional properties or only make limited use of configuration options. Additionally, existing
prediction approaches only provide basic modelling constructs for concurrency modelling
leaving the creation of complex structures to software architects. Concurrent software
systems are especially complex, hard to model and implement. Therefore, goal-oriented
abstractions are desirable for such systems. Several approaches exist addressing these is-
sues partially. Lee proposed to use modelling constructs for concurrency patterns [14] to
increase understandability of concurrency, communication, and synchronisation within a
software architecture. Similarly, Spitznagel and Garlan [20] used connectors to extract
communication aspects from components. However, both approaches focus on qualitative
attributes, like deadlock-freedom, neglecting quantitative attributes, such as performance
and reliability.

7 Conclusion

The approach introduced in this paper provides the basis for avoiding (or minimising)
conflicts that may occur during the performance completion integration into architectural
models. For this purpose, we map patterns to the development roles and affected model el-
ements. The number of potential conflicts is decreased. Furthermore, we can focus the res-
olution on a small set of specific model elements. Additionally, we sketched configurable
performance completions of concurrency patterns to enable developers to easily predict
performance properties of different design alternatives. We have implemented the Chilies
tool [15] to provide an initial prototypical implementation of the ideas presented in this
paper. An extension for full conflict resolution is planned in the next step.

15



For the future, we plan to investigate the connector completion category more deeply.
The support for automatic connector completions generation is a challenging issue, espe-
cially in case of more complex communication strategies (e.g., push-pull pipes and filters).
Consequently, we have to investigate the sequences of the connector components, based
on communication style driven connector configurations. In a area of code generation, se-
quences of completion code generation have impact on a resulting code, therefore we need
to provide methods for connector components sequence generation and configuration. The
another open issue is to investigate critical section scopes to analyse impact of the locking
strategies on the performance.

References

[1]1 S. Becker. Coupled Model Transformations for QoS Enabled Component-Based Software Design. Dissertation,
University of Oldenburg, Germany, January 2008.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model for Model-Driven Performance Prediction:
Extended version. Journal of Systems and Software, 2008. In Press, Accepted Manuscript.

[3] Steffen Becker, Antonio Brogi, Ian Gorton, Sven Overhage, Alexander Romanovsky, and Massimo Tivoli. Towards an
Engineering Approach to Component Adaptation. In Architecting Systems with Trustworthy Components, volume 3938
of Lecture Notes in Computer Science, pages 193-215. Springer, 2006.

[4] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance Prediction of Component-based Applications. 2005.
[5] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. 2000.
[6] B. P. Douglass. Real-Time Design Patterns. Object Technology Series. Addison-Wesley Professional, 2002.

[7] Thomas Goldschmidt and Guido Wachsmuth. Refinement transformation support for QVT Relational transformations.
In 3rd Workshop on Model Driven Software Engineering (MDSE 2008), 2008.

[8] J. Happe, H. Friedrich, S. Becker, and R. H. Reussner. A Pattern-Based Performance Completion for Message-Oriented
Middleware. In Proceedings of the 7th International Workshop on Software and Performance (WOSP ’08), pages 165—
176. ACM, 2008.

[9] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley,
Longman Publishing, 1979.

[10] Lucia Kapova and Thomas Goldschmidt. Automated feature model-based generation of refinement transformations. In
Proceedings of the 35th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). IEEE,
2009.

[11] Lucia Kapova, Barbora Zimmerova, Anne Martens, Jens Happe, and Ralf H. Reussner. State dependence in
performance evaluation of component-based software systems. In Proceedings of the Ist Joint WOSP/SIPEW
International Conference on Performance Engineering (WOSP/SIPEW *10), New York, NY, USA, 2010. ACM.

[12] H. Koziolek, S. Becker, J. Happe, and R. Reussner. Model-Driven Software Development: Integrating Quality
Assurance, chapter Evaluating Performance and Reliability of Software Architecture with the Palladio Component
Model. IDEA Group Inc., December 2007. To Appear.

[13] Heiko Koziolek and Jens Happe. A QoS Driven Development Process Model for Component-Based Software Systems.
In Ian Gorton, George T. Heineman, Ivica Crnkovic, Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski,
and Kurt C. Wallnau, editors, Component-Based Software Engineering, 9th International Symposium, CBSE 2006,
Viisteras, Sweden, June 29 - July 1, 2006, Proceedings, volume 4063 of Lecture Notes in Computer Science, pages
336-343. Springer, 2006.

[14] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):33—42, May 2006.

[15] Lucia Kapova. CHILIES: Automated Model Completions, 2010.

[16] Object Management Group (OMG). Model Driven Architecture - Specifications, 2006.

[17] R. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krogmann, and M. Kuperberg. The Palladio Component Model.
Technical Report 2007-21, Universitdt Karlsruhe (TH), 2007.

[18] Ralf H. Reussner, Heinz W. Schmidt, and Iman Poernomo. Reliability Prediction for Component-Based Software
Architectures. Journal of Systems and Software — Special Issue of Software Architecture — Engineering Quality
Attributes, 66(3):241-252, 2003.

[19] Douglas C. Schmidt, Hans Rohnert, Michael Stal, and Dieter Schultz. Pattern-Oriented Software Architecture: Patterns
for Concurrent and Networked Objects. John Wiley & Sons, Inc., 2000.

16



[20] B. Spitznagel and D. Garlan. A Compositional Formalization of Connector Wrappers. In IEEE, editor, Proceedings of
the 25th International Conference on Software Engineering, May 3-10, 2003, Portland, Oregon, USA, pages 374-384,
Los Alamitos, CA, May 2003. IEEE Computer Society.

[21] T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester. Automatic Inclusion of Middleware Performance Attributes into
Architectural UML Software Models. Transactions on Software Engineering, 31(8):695-771, 2005.

[22] M. Woodside. Tutorial Introduction to Layered Modeling of Software Performance, May 2002. Last retrieved 2008-

[23] Murray Woodside, Greg Franks, and Dorina C. Petriu. The Future of Software Performance Engineering. In
Proceedings of ICSE 2007, Future of SE, pages 171-187. IEEE Computer Society, Washington, DC, USA, 2007.

[24] Xiuping Wu and Murray Woodside. Performance Modeling from Software Components. SIGSOFT Softw. Eng. Notes,
29(1):290-301, 2004.

17



	Introduction
	Foundations
	Model-Driven Engineering
	Performance Completions

	Motivating Example
	Completion Conflict Reduction
	Formal Description of Completion Conflict Reduction
	Levels of Completion Conflict Reduction

	Concurrent Software Systems Completions
	Roles and Responsibilities Separation
	Conflicting Model Elements Identification
	Completion Dependencies Identification

	Related Work
	Conclusion
	References

