Supporting the Development of
Interdisciplinary Product Lines in the
Manufacturing Domain

Matthias Kowal * Sofia Ananieva** Thomas Thum *
Ina Schaefer *

* TU Braunschweig, Germany
{m.kowal, t.thuem, i.schaefer}@tu-braunschweig.de
** FZI Research Center for Information Technology, Germany
ananieva@fzi.de

Abstract: The increasing demand for highly customizable manufacturing systems leads to
an extreme number of possible machine variants. Feature models are often used to manage
this system diversity. The development and maintenance of feature models are error-prone and
time-consuming tasks, especially considering industrial-size models with thousands of features.
In many cases, engineers might want to focus only on a few features relevant for their own
domain. Additionally, each change may lead to anomalies in the feature model. In this paper,
we present an approach to provide engineering support by giving user-friendly explanations for
hidden dependencies and anomalies in feature models.

Keywords: Variability Modeling, Engineering, Machine Manufacturing, Variant and Version

Management

1. INTRODUCTION

Customers have a rising demand for fully customizable
products that can be tailored to their specific require-
ments (Pohl et al. (2005)). In return, manufacturers have
to pay more attention to variability and its management to
deal with the rising complexity introduced by the variant
diversity, e.g., as in the automotive domain. Engineers
tried to reduce this problem with the introduction of
product lines several decades ago (Kang et al. (1990)). A
product line is comprised of a set of related systems that
share several commonalities and variabilities. For example,
each car must have a radio making it a common feature,
but a navigation system is only optional. The goal of prod-
uct lines is to foster reuse potential, reduce maintenance
effort and provide a better cost-efficiency (Czarnecki and
Eisenecker (2000); Pohl et al. (2005)). Feature models are
often used to express the variability as well as dependencies
in a product line (Benavides et al. (2010)). Thousands
of features and dependencies between these features are
common in industrial-size feature models (Tartler et al.
(2011)). Engineers often encounter two major problems
while dealing with feature models.

First, product line development is an interdisciplinary pro-
cess involving multiple developers from different domains,
e.g., mechanical-, software-, and electrical engineering.
Hence, the feature model contains information that may
not be relevant for a certain domain or developer and can
be hidden (Lettner et al. (2015); Feldmann et al. (2015);
Ananieva et al. (2016)). It is crucial that no information
is lost during such a process. Dependencies between fea-
tures from different domains must still be respected and
visible to the developer. In addition, hidden dependencies
may occur in the partial feature model due to constraints

across the complete product line. We refer to these hidden
dependencies as implicit constraints and provide engineer-
ing support by giving explanations why they are present
leading to more precise communication between different
disciplines and help identify unintended interferences.

Second, the maintainability of a feature model decreases
with its size (Mens and Demeyer (2008)). Evolution of a
feature model due to changing requirements, the addition
of new features or dependencies has an increasing possi-
bility to introduce anomalies (Mens and Demeyer (2008)).
Anomalies can be rather harmless such as redundancy
meaning that semantic information is modeled in multiple
ways which is usually not preferable (von der Maflen and
Lichter (2004)). However, anomalies can also be severe
such as dead features. It is not possible to select a dead
feature for any variant of the system making it useless.
In order to support developers in the removal of anoma-
lies, they must be detected and explained to comprehend
the cause why an anomaly has occurred in the feature
model (Benavides et al. (2010); Kowal et al. (2016).

In this paper, we present an approach supporting engineers
in both aspects: (1) depicting partial feature models with
all implicit constraints as well as their explanation and (2)
giving user-friendly explanations for anomalies, without
introducing new concepts and notations for feature models
or increasing the modeling workload.

2. CASE EXAMPLE: PICK AND PLACE UNIT

The running example is a product line form the automa-
tion engineering domain. The Pick and Place Unit (PPU)
is a universal production demonstrator for studying evo-
lution and variability (Legat et al. (2013)). It consists

g
PPUC

Legend:
Platform Type | | Additional Functionalities s Mandatory

/0\ O Optional
A or

muC | PLC | | Selfhealing | | Diagnosis A Alternative
Abstract
Concrete

WorkPieces Conditions

Size PositioningC Environment

2NN

Smal | Large Discrete Continuous Smooth Rough Vendor1 = Vendor2

Fig. 1. Customer feature model (Legat et al. (2013))

of multiple variants and provides us with source code,
UML diagrams and four feature models depicting different
domains involved in the development of the PPU.

2.1 Feature Models

A feature model consists of a hierarchically arranged set
of features and has typically a tree-like graphical repre-
sentation. Fig. 1 shows a feature model of the PPU from
the customer’s point of view. Parent-child relationships are
expressed using the following elements and semantics (see
legend in Fig. 1 for the graphical representation (Kang
et al. (1990); Czarnecki and Eisenecker (2000)):

o Mandatory — feature must be selected, if parent is,

e Optional — feature is optional,

e Or — one or more subfeatures can be selected,

e Alternative — only one subfeature can be selected.
For example, the PPU can handle two types of workpieces
simultaneously with Small and Large. The operating en-
vironment can either be Rough or Smooth, but not both
at the same time. Selfhealing and Diagnosis are optional
features. Abstract features are only used for structural
aspects and do not contain realization artifacts, e.g., source
code. Dependencies between features that are not part of
a parent-child relationship are expressed with cross-tree
constraints using propositional logic, X = Y. In case
of the PPU feature model depicted in Fig. 1, cross-tree
constraints are not present.

The development and maintenance of the PPU involves
multiple disciplines with mechanical, software and elec-
trical engineering. The customer feature model in Fig. 1
does not represent all disciplines in a sufficient manner
which is why three additional engineering feature models
are available (Legat et al. (2013); Feldmann et al. (2015)).
Fig. 2 depicts the individual models describing the PPU in
more detail for each domain. It is obvious that some similar
features can be identified in multiple feature models, while
other features are restricted to one model, since they are
not relevant for other domains. The goal of separate fea-
ture models is to reduce the complexity for the engineers
and let them focus on important parts for their domain.
Several feature models in isolation are not sufficient to
completely describe a product line. It is mandatory to ex-
press dependencies between the individual feature models
as well. The developers of the PPU created a mapping
matrix to express these global constraints connecting the
customer feature model to the engineering models (Legat
et al. (2013); Feldmann et al. (2015)).

For example, the customer can select the small workpieces
resulting in the selection of the features ChangeoverArmM
in the mechanical, ChangeoverArm and VacuumGripper in
the electrical and ChangeoverArmControl in the software
model. Fig. 3 shows only an extract of the original matrix
defined by Feldmann et al. (2015).

PPUM

LiftingLowering

N

ChangeoverArmM | CylinderM

(a) Mechanical feature model
PPUE

Pneumatics Electrics Sensors

VacuumGripper | | Cylinder | | ChangeoverArm | | PositioningE Safety

TS .

Inductive | | Micro

(b) Electrical feature model

PPUS

Lifting Lowering Control Position Control Mode of operation Additional FunctionalitiesS

CylinderControl | | ChangeoverArmControl | | DiscreteS | | ContinuousS | Automatic | | Manual | | Setup | | SelfhealingS | | DiagnosisS

(c) Software feature model

Fig. 2. Engineering feature models of the PPU (Legat et al.
(2013); Feldmann et al. (2015))

Developer’s point of view
Mech. Electrics/ Electronics Software
Lifting/ Electr/ Lifting/ Lowe-[Posttion
Lowering Pneum. Electron Seneors ring Control | Control
§ s Change- | Vacuum | Change- Changeover
9 |a G% over am | Gripper | over am am Control
o | N
x 0| g Change- | (Cylinder) (Cylinder
E o = | overam /| Vacuum Control)
= = i Cylinder | Gripper

Fig. 3. Extract from the mapping matrix (Feldmann et al.
(2015))

2.2 Problem Statement

Engineers most likely maintain and develop only the fea-
ture model for their own domain. However, crucial in-
formation may be lost by considering just a portion of
the product line, e.g. the dependencies expressed by the
mapping matrix. The number of dependencies can eas-
ily add up to several thousands in industrial-size feature
models making it unreasonable to present all of them,
since only a small part is relevant to individual engineers.
Additionally, the product line dependencies can produce
implicit constraints in the considered partial feature model
that are not visible at first. Regardless of the model part,
each change may lead to an inconsistency. While the de-
tection of such anomalies is well-researched, the actual
explanation is often neglected or completely missing. We
derive and present all relevant dependencies for an arbi-
trary partial feature model as well as explain the cause
of an implicit constraint and all appearing anomalies. To
maximize usability, we refrained from introducing new
modeling concepts or notations while providing a fully
functional open-source implementation in the FeatureIDE
framework.

3. IMPLICIT CONSTRAINTS IN FEATURE MODELS

The definition of a mapping matrix is a successful first
step to express dependencies between separate feature
models (Feldmann et al. (2015)). Nevertheless, it has some
drawbacks in terms of scalability and it is difficult to ana-
lyze. The connection of the individual engineering models

Small = ChangeoverArmM Continuous = ContinuousS

Small = VacuumGripper Smooth = Micro v Inductive v Potentiometer

Small = ChangeoverArm Rough = Inductive v Potentiometer

Small = ChangeoverArmControl Cylinder < CylinderControl

Large = CylinderM CylinderControl < CylinderM

Large = VacuumGripper CylinderM < Cylinder

Discrete = Micro Vv Inductive v Potentiometer Selfhealing = SelfhealingS

Discrete = DiscreteS SelfhealingS = Diagnosis

Continuous = Potentiometer Diagnosis = DiagnosisS

Fig. 4. Cross-tree constraints based on the mapping ma-
trix (Legat et al. (2013); Feldmann et al. (2015)).
Highlighted constraints are redundant.

FM1 FM2 FM1 FM2
A B E F A B - F
C/\D <<implies>> /\ A A
(o] D |« G

L c||D G| H

<<implies>> <<implies>> <<implies>>

Fig. 5. Hidden implication and hidden exclusion

to each other is also missing, since the matrix expresses
only dependencies from the customer model to the engi-
neering models. In order to identify and explain implicit
constraints of the PPU, it is necessary to transform the
mapping matrix into a representation that is easier to
analyze with common product line techniques. Feature
models can be translated to propositional logic and most
analysis techniques use this format (Batory (2005); Bena-
vides et al. (2010)). Hence, we translated the matrix into
propositional cross-tree constraints (cf. Section 2). The full
list of constraints is depicted in Fig. 4. They represent our
global dependencies that must be fulfilled for the complete
product line. Highlighted constraints contain redundant
information and, hence, it would be possible to remove
them without introducing anomalies (Kowal et al. (2016)).
The correctness of all cross-tree constraints was validated
with the mechanical engineers developing the PPU.

3.1 Deriving Implicit Constraints

Implicit constraints can only occur in partial feature
models, which are arbitrary submodels of the complete
product line such as the engineering models. Implicit
constraints always provide redundancy considering the
complete product line, since the information is already
available in the global cross-tree constraints as described
by the mapping matrix or the propositional formulas in
Fig. 4. The benefit of a partial feature model is a reduction
in the visible complexity for the developer obtained by
showing only necessary features and constraints.

Fig. 5 shows four feature models and presents two exam-
ples of implicit constraints. The first one describes a cycle
of implications between three features in two separate
feature models. Feature C from FM1 implies feature G
from the FM2. However, feature G implies feature D from
FM1. Both global cross-tree constraints result in a hidden
dependency between feature C and D in FM1 with C' = D.
The second example presents another typical case of an
implicit constraint. Feature C from FM1 implies feature
G from the FM2. In addition, feature D from FM1 implies
feature H from FM2. Through the alternative relationship
between feature G and H in FM2, a hidden mutual exclu-
sion occurs between feature C and D in FM1, i.e., =(CAD).

The PPU contains similar cases. For instance, consider the
two workpiece types with Small and Large. Both features
imply a different lifting/lowering mechanic in the mechan-
ical model. Again, these features are part of an alternative
relationship resulting in an implicit constraint of the form
(=Small v ~Large). The PPU contains several more of
such implicit constraints which we present in Section 3.2.
Before we can explain the reason for an implicit constraint,
it is a prerequisite to detect them.

The first challenge is the creation of a partial model
based on a the complete product line, while preserv-
ing all dependencies. The removal of features must not
change dependencies between features in the submodel.
A state-of-the-art approach to eliminate features while
maintaining dependencies between other features is fea-
ture model slicing (Acher et al. (2011)). Krieter et al.
developed an efficient algorithm for feature model slicing
in FeatureIDE (Krieter et al. (2016)). It has already been
successfully applied in practice (Schroter et al. (2016)).
Inputs to the algorithm are comprised of a feature model
in conjunctive normal form (CNF) and a subset of features
which are not part of the partial model. A CNF is a
conjunction of clauses, a clause consists of a set of literals
and a literal is a variable or its negation. The input feature
model represents our complete product line and, hence,
all four PPU models. After performing the feature model
slicing, the algorithm returns a sliced feature model in
CNF without the specified set of features while maintain-
ing dependencies between features in the sliced model. We
extend this method to derive the implicit constraints.

Given the PPU, the approach works as follows: First, the
four engineering models are merged into one large model.
Therefore, we create a new root feature, e.g., PPU. The old
root features, namely PPUC, PPUM, PPUE and PPUS,
become children of PPU. Second, we can select any feature
in the large model, e.g., one of the old root features. The
output of the slicing algorithm is compared to the large
model in order to detect new constraints, which are then
marked as implicit. For the customer model, we derive
two implicit constraints with (Diagnosis V — Selfhealing)
and (= Small V = Large) (cf. Fig. 6). The sliced feature
model can contain cross-tree constraints from the large
feature model. This is the case if a global cross-tree
constraint is defined solely with features of the partial
model, e.g., the constraint only includes features from the
customer model such as Large = Smooth. This case does
not occur in the PPU models, since the mapping matrix
only defines dependencies between multiple models. It is
necessary to distinguish between old global constraints
and new implicit constraints. We decided to explicitly
highlight implicit constraints with a red-colored frame in
FeatureIDE (cf. Fig. 6). The hidden dependencies are now
visible to the engineer.

®
PPUC

WorkPieces Conditions Platform Type | Additional Functionalities

N NN

Size PositioningC Environment muC| | PLC | | Selfhealing | Diagnosis

NN

Smal Large Discrete Continuous Smooth = Rough ' Vendor1 Vendor2

Diagnosis v ~Selfhealing
~Small v ~Large]

Fig. 6. Customer model with implicit constraints.

3.2 Fxplaining Implicit Constraints

Presenting the implicit constraints to the developer is
hardly a sufficient solution, since it is tedious to manually
identify the cause of such dependencies in large feature
models. We provide an additional step to explain why
an implicit constraint holds. The algorithm is based on
boolean constraint propagation (BCP). Recalling the im-
plicit constraint for the hidden implication C' = D in
Fig. 5, we generate the following explanation: Constraint
C = D is implicit, because: G = D is a constraint
and C' = G is a constraint. The engineer knows exactly
why an implicit constraint exists in the partial feature
model. The causes for implicit constraints in the PPU
are already much more complex and difficult to identify.
Before providing explanations for the PPU, we describe
the concept of our explanation algorithm in more detail.

BCP functions as our core algorithm and uses boolean
formulas. They use operators such as OR, AND, and NOT
to connect variables. Reasoning about boolean formulas is
achieved by propagating assumed truth values for boolean
variables. A brief example is shown below:

(1) ANB =C:1If C = true, then A and B must be true.
(2) AvB=C:1If A = false A C = true, then B is true.

The input to BCP is defined by a set of variables and
a formula in conjunctive normal form (CNF). The truth
value of the variables is specified by a three-value logic
with (true, false, unknown). Every clause in the CNF is
assigned to one of the following types:

Satisfied: At least one literal is true.

Violated: All literals are false.

Unit-Open: One literal is unknown while the re-
maining literals are false.

Non Unit-Open: More than one literal is unknown,
the rest is false.

A unit-open clause can be satisfied by setting its unknown
literal to true. Using the clause ~X VY VZ, we demonstrate
the different types:

e If X is false, the clause is satisfied.

e If X is true, Y is false and Z is false, the clause is
violated.

e If X is true, Y is false and Z is unknown, the clause
is unit-open. Z is derived as true.

e If X is true and Y and Z are unknown, the clause is
non unit-open.

BCP performs the following steps: It is invoked with initial
truth value assignments, which are called premises. Based
on the premises, BCP deduces consequences for other
literals and propagates them. The selection of truth values
for the premises is a core step in our explanation algorithm.
In a first iteration, BCP pushes all unit-open clauses in the
CNF on a stack. Next, the last unit-open clause is removed
from the stack and BCP deduces the truth value of the
unknown literal. This process may result in new unit-open
clauses that are again pushed to the stack. BCP continues
these steps until a contradiction occurs during constraint
propagation. BCP reports the violation and terminates.
BCP saves information in a set of 3-tuples with

{conclusion, reason, {antecedents}}

for every deduced truth value assignment. A conclusion
represents an inferred value, while the reason contains the

Table 1. Explaining the implicit constraint C' = D.

ID | Con. | Reason AC | Stack

#1 | D=0 | premise

#2 | C=1 | premise (=G Vv D), (-CV B),
(=CV G)

#3 | G=1 | (-CVQ) | #2 | (-GVv D), (-C V B),
(-GV F), (-GV-H)

Violated Clause: (-G V D)

Explanation: Constraint C = D is implicit, because:
G = D is a constraint(violated clause) and C = G is a
constraint (#3).

unit-open clause responsible for the derived assignment.
Antecedents are the predecessors of the considered clause.

Hence, an application of BCP to explain implicit con-
straints uses the CNF created from the complete product
line, e.g., the combination of all engineering models. Using
only the sliced model is not sufficient, since an explanation
always includes other partial feature models as well. A
truth value assignment for the features from the implicit
constraint making it non-satisfiable. In that case, we en-
sure that BCP generates a contradiction and use the stored
reasons for this violation to build our explanation. How-
ever, multiple assignments can lead to a non-satisfiable
constraint. Every combination may result in a different
explanation giving us only a part of the solution. A union
of all partial explanations produces the final result which
is able to explain an implicit constraint. Duplicate parts
are ignored to reduce the length. We additionally store
information about the tracing of each literal to the feature
model during the CNF creation. Every literal belongs to
a clause which either originates from the feature hierarchy
or a global cross-tree constraint. This tracing enables us to
provide user-friendly explanations to the developer, since
pure CNF clauses are not directly visible in the model.

Consider the two (left) feature models in Fig. 5 resulting
in the implicit constraint C = D. Table 1 presents the
BCP process in order to explain C = D. We pass the
combined feature model in CNF and premises to BCP.
In this case, we have only one truth value assignment
leading to a non-satisfiable clause with D = false and
C' = true. BCP collects unit-open clauses from the CNF
and pushes them on the stack. We refrain from presenting
the complete CNF due to its length. BCP derives G to be
true and updates all respective literals in the CNF with
the truth value resulting in a violated clause =G V D. An
explanation is generated by reporting the reasons: first,
we take the violated clause and, second, we traverse the
reasons for conclusions backwards to the premises. Initial
value assumptions do not need to be reported shortening
the explanation.

8.8 FExplaining Anomalies

Although, we achieved a significant reduction of the com-
plexity by considering only partial feature models and ex-
plaining hidden dependencies, engineers can still introduce
problematic inconsistencies in the feature model during
development and maintenance. Again, as a first step the
detection of such anomalies is mandatory before we can ac-
tually explain the cause. The first anomaly that we tackle
is already the most severe. If an engineer encounters a void
feature model, it is not possible to derive any variant of the
product line. For example in Fig. 1, adding the constraint

WorkPieces N =Conditions would result in a void feature
model, since two core feature exclude each other. Features
are defined as dead, if they can never be selected in any
variant of the product line von der Maflen and Lichter
(2004). Hence, they have no purpose at all. For example,
in Fig. 1, adding the constraint WorkPieces = Smooth
makes the feature Rough dead. An alternative group allows
only the selection of one feature at a time and Smooth
is in all variants due to the implication by a core fea-
ture. This anomaly is problematic as artifacts could be
developed but never used. A feature is defined as false-
optional, if selecting its parent makes the feature itself
selected as well, although it is defined as optional and not
mandatory. The constraint Additional Functionalities =
Diagnosis makes the feature Diagnosis false-optional. As
last anomaly type, we consider redundant constraints.
Fig. 4 already shows six redundant constraints for the
PPU. Regardless of the anomaly type, the standard detec-
tion method is performed by using a satisfiability solver.
The necessary calls are omitted at this point and presented
elsewhere (Kowal et al. (2016)).

We were only able to detect redundant constraints in the
PPU feature models. However, even in this small example,
it can be hard to determine the cause for a redundancy
and it gets increasingly more difficult with larger feature
models. Our approach is able to generate explanations for
all anomaly types by the same means. The basic principle
of BCP, as presented in section 3.2, remains and we only
need to adapt the premises. For example, a dead feature
cannot be present in any variant and by setting the truth
value of the respective variable to true as a premise, BCP
will always produce a contradiction at some point giving
us the explanation, since the CNF is not satisfiable.

3.4 Implementation

We implemented our approach in the open-source frame-
work FeaturelDE and it is part since release, FeatureIDE
3.1.0 '. After modeling a feature model in FeatureIDE,
our approach can be executed by doing a right-click on a
feature and selecting Show Hidden Dependencies of Sub-
model in the context menu. A new page opens containing
the partial feature model with the selected feature as root.
Below the root, all features appear in the same way as in
the complete feature model. Global cross-tree constraints
mandatory for the partial model are depicted below the
feature hierarchy. Implicit constraints can be distinguished
by a surrounding red border and are marked as redundant
as well. Explanations for implicit constraints and all other
anomaly types are instantly visible if the engineer moves
the cursor above the respective feature or constraint.

4. APPLICATION TO THE PPU
Returning to our running example, our approach derives
four implicit constraints with:
(1) Diagnosis V —Sel fhealing (Customer Model)
(2) =Small v —Large (Customer Model)
(3) Cylinder V Changeover Arm (Electrical Model)
(4) DiagnosisS V —Sel fhealingS (Software Model)

Fig. 7 presents explanations for these constraints com-
puted by our extension of FeatureIDE. The first one is a
hidden implication in the customer feature model because

L https://github.com/FeatureIDE /FeatureIDE

Diagnosis v ~Selfhealing

Constraint is implicit, because:
SelfhealingS => Diagnosis is a constraint (2/2)
Selfhealing => SealfhealingS is a constraint (2/2)

FSmall v =Large

Constraint is implicit, because:

Large => CylinderM is a constraint (3/3)

CylinderM and ChangeoverArmM are alternative children of LiftingLowering (1/3)
Small => ChangeoverArmM is a constraint (1/3)

Cylinder v ChangeoverArm|

Constraint is implicit, because:

PPU is the root (1/1)

PPUC is a mandatory child of PPU (1/1)
WorkPieces is a mandatory child of PPUC (1/1)
Size is a mandatory child of WorkPieces (1/1)
Small and Large are or children of Size (1/1)

Small => ChangeoverAm is a constraint (1/1)
Large => CylinderM is a constraint (1/1)
CylinderControl <=> CylinderM is a constraint (1/1)
CylinderM <=> Cylinder is a constraint (1/1)

DiagnosisS v -SelfhealingS
Constraint is implicit, because:
Diagnosis => DiagnosisS is a constraint (2/2)
SelfhealingS => Diagnosis is a constraint (2/2)

Fig. 7. Explaining implicit constraints of the PPU

of two global cross-tree constraints. A similar dependency
is detected for the software model shown in the fourth
constraint. The explanations reveal that almost identi-
cal features are involved in both cases. Recalling Fig. 3,
the explanations can be mapped to the last three cross-
tree constraints resulting in two implicit dependencies. A
hidden exclusion is expressed in the second constraint.
Two features in the customer model imply different fea-
tures in an alternative group of the mechanical model.
The third constraint gives the most complex explanation
in our running example. Considering only the electrical
feature model without implicit constraints, it is possible
to avoid the selection of the Cylinder and ChangeoverArm
at all. However, the derived implicit constraint forbids this
configuration, since we have to select at least one of both
features. We observe a transitive chain in the customer
feature tree from the root PPU of the complete model to
the two workpieces Small and Large. Again, both imply
different features even from different feature models. And,
due to bijections, an implicit dependency occurs in the
electrical feature model.

Readers may wonder about two additional points visible in
Fig. 7. First, we explain the numbers behind the individ-
ual explanation parts. Considering the second constraint
=Small V —~Large, BCP generates three separate expla-
nations during the search for a short explanation Kowal
et al. (2016). The first part, namely Large = CylinderM,
is present in all three explanations, hence it has a (3/3) at
the end. The other two parts are only present in one expla-
nation resulting in (1/3). This aspect is further emphasized
by the colors ranging from red to black. Red indicates
that the part is present in all explanations, while the color
gradually changes to black for a part being present in just
one explanation. We enhanced BCP with further improve-
ments considering the explanation length. The details are
available in our previous work Kowal et al. (2016). The
explanations of the redundant constraints in the PPU are
not presented in this paper due to space reasons. The
concept and tooltip are analogue to the explanation of
implicit constraints in Fig. 7. A far more detailed and
large-scale evaluation is available elsewhere (Kowal et al.
(2016); Ananieva et al. (2016))

5. RELATED WORK

A considerate amount of research has been conducted
on feature modeling. Some approaches already provide
support for analysis techniques such as anomaly detec-
tion (Benavides et al. (2010, 2013)), but only a few respect
dependencies between different partial models (Schroter
et al. (2013); Lettner et al. (2015)) and even less actually
explain the dependencies or anomalies (Benavides et al.
(2010)). We are the first to make implicit constraints
explicitly visible for the engineer during the modeling
process. An orthogonal concept to reduce complexity for
engineers are feature model views hiding the undesired
features. Views are often connected to the configuration
process and not the actual development or maintenance
of a feature model (Schroeter et al. (2012)). Lettner et al.
(2015) added functionality in FeatureIDE to support mod-
eling at different abstraction levels and dependencies be-
tween them. Considering the concrete explanation process,
we are most closely related to work done by Batory (2005).
Batory adapted a BCP algorithm to support developers
in the configuration process of a variant using a feature
model. The open-source implementation is available in
GUIDSL and gives feedback in terms of why a specific
feature cannot be selected. No support for implicit or
redundant constraints is available and the explanations
are presented in terms of propositional formulas mak-
ing it difficult to understand for developers. Explaining
dead or false-optional features is also presented in other
work (Trinidad (2012); Benavides et al. (2010)). However,
no approach considers the explanation of implicit con-
straints, shows the scalability for industrial-size feature
models and also provides an open-source implementation.
A detailed comparison of our proposed approach and ex-
isting ones can be found in our previous work (Kowal et al.
(2016); Ananieva et al. (2016)).

6. CONCLUSION

We have presented an approach for deriving and explaining
implicit constraints as well as anomalies in feature models.
The applicability was shown with a product line from
the automation engineering domain and an open-source
implementation is available in FeatureIDE. Some aspects
are left for future work. An important task is to enable
edit operations in the partial feature model and reflect
them back to the complete one in order to fully support
maintenance. A small user study with the mechanical engi-
neers responsible for the PPU is planned to get qualitative
feedback of how to improve explanations even further.

ACKNOWLEDGEMENTS
This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: De-
sign For Future — Managed Software Evolution.

REFERENCES

Acher, M., Collet, P., Lahire, P., and France, R.B. (2011).
Slicing feature models. ASE ’11, 424-427. IEEE Com-
puter Society, Washington, DC, USA.

Ananieva, S., Kowal, M., Thiim, T., and Schaefer, I
(2016). Implicit Constraints in Partial Feature Models.
Proc. Int’l Workshop Feature-Oriented Software Devel-
opment (FOSD). ACM, NY.

Batory, D. (2005). Feature Models, Grammars, and Propo-
sitional Formulas. In Proc. Int’l Software Product Line
Conf. (SPLC), 7-20.

Benavides, D., Felfernig, A., Galindo, J.A., and Reinfrank,
F. (2013). Automated Analysis in Feature Modelling and
Product Configuration. Proc. Int’l Conf. Software Reuse
(ICSR). Springer, Berlin, Heidelberg,.

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010).
Automated Analysis of Feature Models 20 Years Later:
A Literature Review. Information Systems, 35(6).

Czarnecki, K. and Eisenecker, U. (2000). Generative
Programming: Methods, Tools, and Applications.

Feldmann, S., Legat, C., and Vogel-Heuser, B. (2015).
Engineering Support in the Machine Manufacturing
Domain through Interdisciplinary Product Lines: An
Applicability Analysis. IFAC-PapersOnLine, 48(3).

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., and Pe-
terson, A.S. (1990). Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU /SEI-
90-TR-21, SE Institute.

Kowal, M., Ananieva, S., and Thiim, T. (2016). Explain-
ing Anomalies in Feature Models. Proc. Int’l Conf.
Generative Programming and Component Engineering
(GPCE). ACM, NY.

Krieter, S., Schroter, R., Thiim, T., Fenske, W., and Saake,
G. (2016). Comparing algorithms for efficient feature-
model slicing. In Proc. Int’l Software Product Line Conf.
(SPLC). ACM, New York, NY, USA.

Legat, C., Folmer, J., and Vogel-Heuser, B. (2013). Evo-
lution in industrial plant automation: A case study. In
39th Annual Conference of the IEEE Industrial Elec-
tronics Society (IECON).

Lettner, D., Eder, K., Griinbacher, P., and Prahofer, H.
(2015). Feature modeling of two large-scale industrial
software systems: Experiences and lessons learned. In
Proc. Int’l Conf. Model Driven Engineering Languages
and Systems (MODELS).

Mens, T. and Demeyer, S. (eds.) (2008). Software Evolu-
tion. Springer-Verlag, Berlin Heidelberg.

Pohl, K., Bockle, G., and van der Linden, F.J. (2005). Soft-
ware Product Line Engineering: Foundations, Principles
and Techniques.

Schroeter, J., Lochau, M., and Winkelmann, T. (2012).
Multi-Perspectives on Feature Models. In Proc. Int’l
Conf. Model Driven Engineering Languages and Sys-
tems (MODELS), 252-268.

Schréter, R., Krieter, S., Tim, T., Benduhn, F., and
Saake, G. (2016). Feature-Model Interfaces: The High-
way to Compositional Analyses of Highly-Configurable
Systems. In Proc. Int’l Conf. Software Engineering
(ICSE), 667-678. ACM, New York, NY, USA.

Schréter, R., Thiim, T., Siegmund, N., and Saake, G.
(2013). Automated Analysis of Dependent Feature Mod-
els. In VaMoS, 9:1-9:5. doi:10.1145/2430502.2430515.

Tartler, R., Lohmann, D., Sincero, J., and Schroder-
Preikschat, W. (2011). Feature Counsistency in Compile-
Time-Configurable System Software: Facing the Linux
10,000 Feature Problem. In Proceedings of the Confer-
ence on Computer systems, 47-60. ACM.

Trinidad, P. (2012). Automating the Analysis of Stateful
Feature Models. Ph.D. thesis, University of Seville.

von der Maflen, T. and Lichter, H. (2004). Deficiencies in
Feature Models. In Proceedings of the Workshop on Soft-
ware Variability Management for Product Derivation-
Towards Tool Support.

