
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Translatability and Translation of Updated
Views in ModelJoin

Master’s Thesis of

Oliver Schneider

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr. Walter F. Tichy
Advisor: Dr.-Ing. Erik Burger
Second advisor: Dipl.-Inform. Jörg Henß

20. June 2015 – 19. December 2015

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 15. December 2015

. .
(Oliver Schneider)

Abstract

In the development process of modern software systems, di�erent models are used to
describe various system aspects and abstraction levels. The Vitruvius project uses a
view-centric approach to combine information from multiple models into �exible views.
To de�ne these views easily, the new view de�nition language ModelJoin was developed.
It allows to de�ne both: the metamodel of the view and the model transformation for
creating the view in an SQL-like syntax. ModelJoin allows to easily write custom, always
up-to-date and consistent views of the whole software system. However the views could
not be updated, because no translation for view updates to source model updates was
de�ned.

In this master’s thesis, the View-Update-Problem is studied for ModelJoin view de�nitions.
Di�erent translation strategies for view updates are proposed, and it is shown that model
constraints can be used to decide the translatability of updated views. A scheme for
deriving a set of OCL constraints from a ModelJoin view de�nition is provided. The
derived OCL constraints can be used to check the translatability of an updated view.

A few view updates can be translated in multiple ways to source model updates. Alter-
native translation strategies are proposed for these updates and it is shown how the OCL
constraints must be adapted to re�ect the chosen strategy.

For some view updates, further view updates are necessary, to make the view ful�ll
the constraints for translatability. In certain situations, these updates can be automati-
cally derived and performed before the translation. As part of the thesis, algorithms for
automatically restoring constraints in common situations are given.

The constraints for the translatability test are evaluated for atomic update operations
in general, and update sequences in two case study examples. The evaluation shows
the applicability of the translation strategies, translatability check and algorithms for
automatically restoring the translatability. Almost all consistent update sequences were
able to be translated and all inconsistent updates rejected. The proposed algorithm to
�x untranslatable views can also be used in there use cases. Using OCL constraints as
validation speci�cation for the translatability test allows the easy integration in existing
tooling. However the derived constraints do not exactly characterize all translatable views.
The ful�llment of the constraints is only a su�cient condition for the translatability of a
view.

i

Zusammenfassung

Im Entwicklungsprozess moderner Software-System werden Modelle genutzt um unter-
schiedliche Systemaspekte und Abstraktionslevel zu beschreiben. Das Vitruvius-Projekt
benutzt einen Sicht-zentrierten Entwurf um Informationen aus verschiedenen Modellen
in �exiblen Sichten zu kombinieren. Um diese Sichten einfach de�nieren zu können, wur-
de die neue Sprache ModelJoin zur Spezi�kation von Sichten entwickelt. Sie erlaubt es,
sowohl das Metamodell der Sicht als auch die Modelltransformation zum erstellen der
Sich in einem SQL ähnlichen Syntax zu de�nieren. Durch ModelJoin lassen sich so auf
einfache Art und Weise maßgeschneiderte, immer aktuelle und konsistenten Sichten auf
das gesamte Softwaresystem erstellen. Jedoch konnten diese Sicht nicht verändert werden,
da die Übersetzung von Sichtänderungen zu Änderungen der Quellmodelle nicht de�niert
ist.

In dieser Masterarbeit wird das Problem der Sichtänderung für ModelJoin Sichtspezi�-
kationen untersucht. Verschiedene Übersetzungsstrategien für Sichtänderungen werden
vorgestellt. Es wird gezeigt, dass bestimmte Restriktionen genutzt werden können um
die Übersetzbarkeit von veränderten Sichten festzustellen. Zu diesem Zweck wird eine
Methode vorgestellt um eine Menge von OCL Restriktionen von einer ModelJoin Sichtde-
�nition abzuleiten. Die abgeleiteten OCL Restriktionen können dann genutzt werden, um
die Übersetzbarkeit einer veränderten Sicht zu prüfen. Eine Änderung an der Sicht kann
in einigen Fällen auf unterschiedliche Weise in Änderungen der Quellmodelle übersetzt
werden. Verschiedene Übersetzungsstrategien werde für diese Fälle vorgestellt.

Für einige Sichtänderungen sind weiter Änderungen an der Sicht notwendig, damit die
Sicht den Restriktion für die Übersetzbarkeit genügt. In bestimmten Situationen können
diese nötigen Änderungen vor der Übersetzung automatisch abgeleitet und ausgeführt
werden. In der Arbeit werden Algorithmen zur automatischen Wiederherstellung der
Restriktion für übliche Situationen angegeben.

Die Restriktion zur Prüfung der Übersetzbarkeit werden für atomare Änderungen im
allgemeinen und für Folgen von Änderungen mit zwei Beispielen aus Fallstudien evaluiert.
Die Evaluation zeigt die Anwendbarkeit des erarbeiteten Ansatzes. Fast alle widerspruchs-
freien Sichtänderungen konnten übersetzt werden und alle widersprüchlichen Änderungen
wurden zurückgewiesen. Die vorgestellten Algorithmen zur Wiederherstellung der Über-
setzbarkeit konnten in den gewünschten Situationen genutzt werden. Die Nutzung von
OCL Restriktionen für die Prüfung der Übersetzbarkeit erlaubt eine einfache Integration
in vorhandene Anwendungen. Jedoch charakterisieren die Restriktionen nicht genau alle
übersetzbaren Sichten. Das erfüllen der Restriktionen ist nur eine hinreichende Bedingung
für die Übersetzbarkeit einer Sicht.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1
1.2. Goal . 1
1.3. Outline . 1

2. Foundations 3
2.1. View-based Software Development . 3
2.2. Meta-Object Facility (MOF) . 3
2.3. The Ecore Metamodel . 4
2.4. ModelJoin and Vitruvius . 4
2.5. The View-Update-Problem . 6

3. The View-Update-Problem for ModelJoin 9
3.1. ModelJoin View De�nitions and Update Operations 9
3.2. Update Operations for Ecore Models . 10

3.2.1. Updates for Attribute Values . 10
3.2.2. Creation and Deletion of References 10
3.2.3. Creation and Deletion of Class Instances 11

3.3. The View-Update-Problem De�nition for ModelJoin 12
3.3.1. State-based vs. Delta-based Approaches 12
3.3.2. Properties of a Valid Translation 12

3.4. The Restricted View-Update-Problem . 13

4. Constraints for Translatable Views 17
4.1. OCL Expressions . 18
4.2. Meta Notations for OCL . 19

4.2.1. Meta Variables . 20
4.3. OCL Expression Rewriting . 22

4.3.1. Rewriting for Existing Source Instances 23
4.3.2. Rewriting for New Source Instances 26
4.3.3. Class Instance Meta Functions . 31

4.4. The Trace Model . 31
4.5. Constraints Creation . 33

4.5.1. Constraints for Join Expressions 34

v

Contents

4.5.2. Constraints for Keep Expressions 45
4.5.3. Handling of Additional Supertypes and Subtypes 53
4.5.4. Regarding Multiplicity Restrictions of the Source Metamodels . . 53

4.6. Deciding Translatability . 54
4.7. Inferring About the Translatability of Updates 54

5. Additional Translation Strategies for Updated Views 59
5.1. Translation of New Target Class Instances 59

5.1.1. Mapping Meta Functions . 59
5.1.2. Mapping Strategies . 61
5.1.3. Handling of Keep Attribute, Calculate Attribute and Keep References 68
5.1.4. Translation Algorithm for Target Class Instances 69
5.1.5. Limitations of Guessed Mappings 71
5.1.6. Manual Mapping . 71
5.1.7. Mappings Between Di�erent ModelJoin Expressions 73

5.2. Translation of Deleted Target Class Instances 78
5.2.1. Deletion Strategies . 78

5.3. ModelJoin Expressions for Source Attribute Updates 79

6. Automatic Fixes for Untranslatable Views 83
6.1. Automatic Creation of Missing Target Class Instances 84
6.2. Automatic Calculated Values of Derived Model Elements 86
6.3. Automatic Propagation of Updated Attribute Values 87

7. Evaluation 91
7.1. Translatability of Updated Model Elements in General 91

7.1.1. Translatability of a Updated Attribute Value 91
7.1.2. Translatability of a Updated Link 94
7.1.3. Translatability of a Class Instance Creation 95
7.1.4. Translatability of a Class Instance Deletion 98

7.2. Application in Case Study Examples . 98
7.2.1. Common Component Modelling Example (CoCoME) 98
7.2.2. Palladio Media Store Example . 103

7.3. Conclusion of the Evaluation . 107
7.4. Limitations and Validity of the Case Study 108

8. Related work 113
8.1. Update Translation for Relational Views 113
8.2. Update Translation for Tree Views . 113
8.3. Linguistic Approaches to the View-Update-Problem 114

8.3.1. Bi-Directional Transformation Languages 114
8.3.2. Bijective Transformation Languages 115
8.3.3. Reversible Transformation Languages 116

9. Conclusion 117

vi

Contents

Bibliography 119

A. Appendix 125
A.1. Technical Changes to the ModelJoin-Implementation 125

A.1.1. Trace Model Generation . 125
A.1.2. OCL Constraint Generation and Checking 126
A.1.3. SVN Locations . 126
A.1.4. Future Enhancements . 126

vii

1. Introduction

1.1. Motivation

In the development process of modern software systems multiple models are used to
describe di�erent system aspects and abstraction levels. For example, consider component
models, class diagrams, performance and reliability models. Even the source code itself
can be seen as a software model describing the implementation.

The Vitruvius [14] project uses a view-centric approach to combine information from
di�erent models into �exible views. To de�ne these views easily, the new view de�nition
language ModelJoin was developed. It allows to de�ne both, the metamodel of the view
type and the model transformation for creating the view in an SQL like syntax. Its goal
is to allow for easily creation of custom, always up to date and consistent views of the
whole software system. However, the View-Update-Problem arises: How can updates to
the view be translated back to the underling models?

1.2. Goal

The View-Update-Problem is well studied in the context of relational databases [4, 7, 21,
38, 42, 45]. The SQL standard allows the update of views, if the e�ect to the underlying
tables can easily be derived [37].

The goal of this master’s thesis is to study the View-Update-Problem for ModelJoin
views. This includes �nding strategies to decide if an update operation on a view can be
translated back to the source models and develop mechanisms to translate view updates
to source model updates. For this purpose, the View-Update-Problem has to be formalized
for the Ecore Metamodel [29]. Further properties for the update translation must be found,
such that the update translation satis�es the users expectations. For example, view updates
should not have unexpected side e�ects or change the view in an unwanted way. To
specify the e�ects of model updates a formal abstract syntax is developed �rst. Then the
translatability of updated target models are checked using OCL constraints. Therefore a
scheme for deriving these constraints from the ModelJoin view de�nition is developed.
To evaluate the applicability of the translatability check, the proposed algorithms are
prototypically implemented and evaluated based on a case study.

1.3. Outline

Chapter 2 gives an introduction to view-based software development including the terms
used in this context. It depicts the relationships between metamodels, models, views and

1

1. Introduction

view types. Further the basic concepts of ModelJoin and its use case in the Vitruvius
project are illustrated. Then some fundamental �ndings about the View-Update-Problem
in the context of relational databases are discussed.

As a foundation of our contribution, the View-Update-Problem and the semantic of
update operation are de�ned for ModelJoin view de�nitions and Ecore Metamodels in
chapter 3.

In chapter 4 we develop a scheme to derive a set of OCL constraints from a ModelJoin
view de�nition. We show that the ful�llment of the derived constraints is a su�cient
condition for the translatability of a updated target model. We further show, that an
unmodi�ed target model does ful�ll all constraints. While we choose a �xed translation
strategy in this chapter, we discuss di�erent translation strategies in chapter 5. This
includes di�erent strategies for translating new target class instances and deleted target
class instances.

In chapter 6 we propose algorithms for automatically restoring certain constraints
after an update operation on the target model. These algorithms can be used in common
situations to make a untranslatable target model translatable by executing further target
model updates.

The �ndings are evaluated in chapter 7. First we evaluate under which conditions
atomic update operations can be translated in general. Then concrete update sequences
are translated for two case study examples. As examples the Common Component Mod-
elling Example (CoCoME) [34] and the Media Store example from the upcoming Palladio
Book [58] are used.

Finally in chapter 8 our �ndings are compared with other approaches to solve the
View-Update-Problem in di�erent domains. This includes update translation for relational
and tree views, other linguistic approaches and specialized languages for Bi-Directional
transformations.

Chapter 9 summarizes the developed approach and the result. Finally we give a conclu-
sion.

2

2. Foundations

2.1. View-based So�ware Development

View-based Software Development is an established concept to break down the software
development into di�erent viewpoints [25]. A viewpoint is a conceptual point of view that
satis�es a speci�c concern [31]. Having di�erent views helps to manage the complexity of
a software model, because stakeholders and developers can concentrate on smaller and
simpler restricted system extracts. A view provides the needed extract by showing speci�c
elements of the software system model. A view is an instance of a view type. The view
type describes the elements that can be used to formulate the view. Unfortunately the
terms view, view type and view point are not used consistently in the literature. We use
the terminology from [32] shown in Figure 2.1. It is important to note, that a view type
may represent parts of multiple di�erent metamodels and therefore the view is capable to
combine elements from heterogeneous models.

In the following sections the term view type is interpreted as the metamodel for an
actual view. A view as an extract of the source models is then an instance of this metamodel
and is called the target model.

Model Metamodel
«instance of»

View View Type
«instance of»

View Point

shows

elements of

1..
represents

parts of

1..

defines

view types

Figure 2.1.: Terminology for view-based modeling (adapted version in [17] from [32])

2.2. Meta-Object Facility (MOF)

The Meta-Object Facility (MOF) speci�cation [54] is an industry-standard of the Object
Management Group (OMG) for model-driven engineering. It provides a type system for

3

2. Foundations

de�ning models. Itself is de�ned by UML. However it provides the formal base for UML,
too.

The MOF standard allows the de�nition of models in a layered metamodel architecture.
For example the MOF standard for UML de�nes four metalevels (M3-M0). The M3 level is
the top layer called the meta-metamodel. It is the language to describe the elements of the
metamodel (M2). In fact the M3 level not only describes the lower level M2, but also itself.
Therefore the metamodeling architecture of MOF is called closed. A prominent example
for an M2 metamodel is the metamodel that describes UML. The M2 metamodel describes
the elements of the user model. This may, e.g., be an UML diagram. The M1 model in
turn describes the entities of the actual problem domain, the M0 layer or data layer. An
example MOF-Hierarchy for UML is shown on the left side in Figure 2.2 .

Most important in our context are the M1 and M2 levels. Our metamodels are in the M2
layer and thus describe the elements of the models to transform. The models are residents
of the M1 layer describing the system.

2.3. The Ecore Metamodel

The Ecore Metamodel [29] is a part of the Eclipse Modeling Framework (EMF) [28] for
model-driven development and is based on a subset of the old MOF 1.4 standard. It
was originally developed as an alternative to the MOF standard, but has in�uenced the
development of the new Essential MOF (EMOF) standard in its current 2.0 version. EMOF
is a more compact alternative to the complete MOF standard. The Ecore implementation
is almost analog to EMOF, but has some minor di�erences. Ecore has no associations as
�rst class elements. It uses references instead, which are bounded to a class. Furthermore
Ecore models must be organized in an hierarchy with a single root element. ModelJoin
uses the Ecore Metamodel for practical reasons, because this allows for the integration of
ModelJoin into the Vitruvius project, which uses the Eclipse Modeling Framework.

2.4. ModelJoin and VITRUVIUS

ModelJoin [17] is a recently developed view de�nition language for rapid creation of
views across instances of di�erent metamodels. It allows to easily and declaratively de�ne
custom views without having to write model transformations. It is using a human-readable
textual SQL-like DSL that describes both the resulting view type and the selection criteria.

It is particularity useful in the Vitruvius (VIew-cenTRic engineering Using a VIrtual
Underlying Single model) approach [14]. Vitruvius does not use a monolithic single
underlying metamodel (sum). Instead, it uses legacy metamodels, which are combined to a
virtual underlying single model. This enables the usage of di�erent software engineering
tools that do not operate on instances of the same metamodel.

ModelJoin operators describe a relation between the source models and the target model
(view). There are four kinds of operators that can be used to de�ne a view with its view
type:

4

2.4. ModelJoin and Vitruvius

Class

M2

ModelElement

Classifier

M3 MOF 2.0

UML 2.0
Attribute Class

M1 User Model
DVD

+title: String

M0

-instance of ,

Original

Ecore

EModelElement

PCM
Sensor
Framework

BasicComponent

+id: String

-instance of ,

VideoDecoder

id = VideoDecoder

TimeSpanSensor

+sensorName: String

VideoDecoderTSSensor

sensorName = VideoDecoderTSSensor

-instance of ,

-instance of ,-instance of ,-instance of ,-instance of ,
-instance of ,-instance of ,

EClass

EClassifier

ENamedElement

ETypedElement

EStructuralFeature

EAttribute

-instance of ,-instance of ,

Figure 2.2.: MOF hierarchy examples: On the left side a simpli�ed example of the MOF
hierarchy for UML. On the right side a simpli�ed example for Ecore and the
Palladio Component Model and Sensor Framework.

Join expressions can be used to map two classes of source models to a new class in
the target model. When two classes are joined by a natural join, a new target class that
contains only the common attributes is created. For all pairs of instances of the the joined
source classes with equal values of common attribute, an instance of the target class is
created. Is it also possible to create outer joins. An outer join creates an instance for every
left or right source class instance even if nor matching join partner instance exists. A
generalization of natural joins are theta joins. In a theta join an arbitrary logical expression
can be used to de�ne the pairs of source class instances for which a new target class
instance should be created.

Keep expressions allow the copying of source model attributes or references into the
target model. Keep attribute can be used to copy renamed attributes from the source model
into the target model. Keep reference expressions can be similarly used to copy references.
The copied attributes and references are added to the target class and the values of the
source class instances are used for the target class instances.

All created target class instances will get the attribute values and links from the corre-
sponding source class instances. Further calculated attributes can be used to calculate the
value of target model attributes using arbitrary source model attributes. This may include
the usage of aggregate functions like sum and average.

Further selection expressions can be used to discard class instances. A selection expres-
sion is de�ned by a logical expression that decides if a class instance should be kept in the
target model.

5

2. Foundations

Finally rename expressions allow to rename classes, attributes and references in the
target model.

An example for a ModelJoin view de�nition can be found in Listing 2.1. A more detailed
and formal speci�cation of the ModelJoin operators can be found in [17].� �

1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name

4 keep calculated attribute "classifiers.Interface.name.substring(1, classifiers.Interface

.name.size() - 2).concat(’Impl’)" as jointarget.Interface.implName : String

5 keep outgoing members.MemberContainer.members of type members.InterfaceMethod as type

jointarget.Operation {

6 keep attributes commons.NamedElement.name

7 keep outgoing parameters.Parametrizable.parameters

8 of type parameters.OrdinaryParameter as type jointarget.Parameter {

9 keep attributes commons.NamedElement.name

10 }

11 }

12 }� �
Listing 2.1: Example ModelJoin view de�nition involving a theta join and keep attributes,

reference and calculated attribute expressions.

2.5. The View-Update-Problem

An update to a view is the execution of an update operation (insert, delete, replace) on a
view. Since a view is just the result of a model transformation, it is unclear how the source
models of this transformation must be updated. The source model update in question is
called an update translation. The translation should comply with the intension of the view
update and thus meet the users expectations. The View-Update-Problem is to �nd a in
some sense correct update translation for a given view and update operation.

The View-Update-Problem was studied intensively by database researchers in the late
‘70s and ‘80s. For relational databases a view is de�ned by a database query, instead
of a model transformation. The database itself corresponds to the source models in
the view-based software development context. A database scheme can be seen as the
metamodel of a database. Dayal and Bernstein [22] have formalized the notion of an
update translation and derived conditions for correct update translations in the context
of relational databases. They have de�ned two properties an correct update translation
should satisfy: It should “exactly perform” an update and should “preserve semantic”. A
translation exactly performs an update, if getting the view after the translation yields the
same view as if the update operation would have been applied to the unmodi�ed database
(see Figure 2.3). A translation preserve semantics, if the result of the translation on the
database satis�es all constraints de�ned in the database scheme. Since more then one
translation that satis�es these two properties can exist, its unclear which one to choose, if
no further information is provided.

6

2.5. The View-Update-Problem

Therefore, Bancilhon and Spyratos [7] introduced the concept of “translation under
constant complement”. For a given view, they de�ne a “complementary” view, such that
the database could be computed from the view and its complement. In general there
exist multiple complements for a view. The choice of the complement determines the
update policy. Hence for a �xed complement the translation is de�ned in a way, such that
the complement remains invariant. The main result of their work is that the problem of
translating view updates is equivalent to �nding a suitable component.

Recently Lechtenbörger [42] showed that the translation of view updates under constant
complement exist precisely, if the view update can be undone by using further view updates.
He also argues, that particularly in the case of complex views, the existence of a translation
under constant complement cannot be guaranteed in general.

The current SQL standard allows the update of views, if the e�ect to the underlying
tables can easily be derived [37]. For example the Microsoft SQL Server 2014 allows the
updates of a view under the following conditions [50]:

• Only columns from one base table are referenced in the update statement.

• All modi�ed columns must directly reference a column of the underlying table. No
aggregate function or computations are allowed.

• The modi�ed columns are not a�ected by GROUP BY, HAVING or DISTINCT clauses.

• TOP cannot be used in the select statement together with the WITH CHECK OPTION
clause.

Other database systems like Oracle MySQL [57] have similar restrictions. Some database
systems like DB2 support additionally triggers, which determine the e�ected tables [36].

s

q

v = q(s)
u

Tu

s′ = Tu(s)

u(v)
!
= q(s′)

q

Figure 2.3.: The “exactly perform” an update property of [22] states that running a view
query q and updating the resulting view v with u should yield the same result
as when applying the view translation Tu to the database state s and running
the query q on the updated state s′.

7

3. The View-Update-Problem for
ModelJoin

In this chapter the View-Update-Problem is formalized for ModelJoin view de�nitions. It
forms the foundation for the rest of the thesis. We �rst formalize the query function of a
ModelJoin view de�nitions and de�ne the update operations for Ecore models. Next we
develop a set of properties for a valid update translation based on the work of Foster et al.
[27]. Finally, we de�ne the View-Update-Problem for ModelJoin view de�nitions and a
restricted version, which we will address in the further chapters of the thesis.

We use the same notation as in the ModelJoin speci�cation [17] with some minor
enhancements and changes:

1. We write Ms for the source metamodels and Mt for the target metamodels.

2. We writems ∈ I (Ms), mt ∈ I (Mt) for a source respectively target model.

3. We do not explicitly distinguish between source and target model classes, references
and attributes. We use Class, Ref and Att for classes, references and attributes
de�ned in either Ms or Mt .

3.1. ModelJoin View Definitions and Update Operations

For the View-Update-Problem we interpret the relation between the source and the target
model induced by the ModelJoin de�nition as query function.

De�nition 1. A ModelJoin view de�nition is a relation Q ∈ Ms ×Mt with an associated
query function

q : I (Ms) → I (Mt)

that maps a source model (source class instances with attribute values and links) to a target
model. q is obtained from Q by applying the de�nition of the ModelJoin expression on
model level and returning the target model elements.

An update operation does not modify the metamodel, it modi�es either the source or
target model.

De�nition 2. An update operation u for a metamodel M is a function:

u : I (M) → I (M)

that maps an instance of the metamodel to another instance of the same metamodel.

9

3. The View-Update-Problem for ModelJoin

3.2. Update Operations for Ecore Models

In this section a set of update operations for Ecore models will be de�ned. We use the
notation for MOF-Metamodels [54] here. The update operations describe how the model
elements of the source and target model can be updated. We use the snapshot notation to
describe the state of a model.

De�nition 3. A snapshot σ = (σClass,σAtt,σRef) describes a model by three functions:

1. σClass : Class → I (Class) is a function that returns for every class c ∈ Class the
set of instances.

2. σAtt : Att→ I (Class) → J is a function that returns for every attribute a : tc →
t ∈ Att a function that provides the value of a for a given instance c ∈ σClass(c).

3. σRef : Ref → I (Class) × I (Class) is a function, which returns for each reference
r ∈ Ref the set of tuples of class instances that are linked by this reference in the
model.

We want to describe the e�ect of update operations by their e�ect to the snapshot
functions.

3.2.1. Updates for Attribute Values

An update of an attribute value changes the value of a certain attribute for a given class
instance.

De�nition 4 (Update attribute value). Let a ∈ Attc : tc → t be an attribute of class
c ∈ Class and v a value of type t .
An update attribute operation updateAtt(a) changes the value of the attribute a of an
instance c ∈ I (c) to the value v by mapping σAtt to σ ′Att:

updateAtt(a) (c,v) : σAtt 7→ σ ′Att

with
σ ′Att(a) (c

′) =

{
v, c′ = c
σAtt(a) (c

′), else

3.2.2. Creation and Deletion of References

A create link operation creates a link of a certain reference between two given class in-
stances.

De�nition 5 (Create link). Let r ∈ Ref be a reference between classes c, ĉ ∈ Class and
c ∈ I (c), ĉ ∈ I (ĉ) be two class instances.
A create link operation createRef(r) creates a new link between c ∈ I (c) and ĉ ∈ I (ĉ) by
mapping σRef to σ ′Ref:

createRef(r) (c, ĉ) : σRef 7→ σ ′Ref

with
σ ′Ref(r

′) =

{
σRef(r

′) ∪ {(c, ĉ)}, r ′ = r
σRef(r

′), else

10

3.2. Update Operations for Ecore Models

In the same fashion a delete link operation, removes a link of a certain reference between
to given class instances.

De�nition 6 (Delete link). Let r ∈ Ref be a reference between classes c, ĉ ∈ Class and
c ∈ I (c), ĉ ∈ I (ĉ) be two class instances.
A delete link operation deleteRef(r) deletes a link between c ∈ I (c) and ĉ ∈ I (ĉ) by mapping
σRef to σ ′Ref:

deleteRef(r) (c, ĉ) : σRef 7→ σ ′Ref

with
σ ′Ref(r

′) =

{
σRef(r

′) \ {(c, ĉ)}, r ′ = r
σRef(r

′), else

3.2.3. Creation and Deletion of Class Instances

A create class instance operation creates a new class instance of a certain class with a given
set of attribute values.

De�nition 7 (Create class instance). Let c ∈ Class be a class, V = {va ∈ I (t) | a ∈
Attc } be a set of attribute values for each attribute of c . A create class instance operation

createClass(c) (V) creates a new instance of c with the attribute valuesV by mapping σClass
to σ ′Class and σAtt to σ ′Att:

createClass(c) (V) : (σClass,σAtt) 7→ (σ ′Class,σ
′
Att)

with

σ ′Class(c
′) =

{
σClass(c

′) ∪ {c}, c′ = c
σClass(c

′), else

σ ′Att(a) (c
′) =

{
va, c′ = c
σAtt(a) (c

′), else

for a new instance c ∈ I (c)

A delete class instance operation deletes a given instance of a certain class.

De�nition 8 (Delete class instance). Let c ∈ Class be a class and c ∈ I (c) be a class in-
stance. A delete class instance operation deleteClass(c) (c) deletes the instance c by mapping
σClass to σ ′Class and σAtt to σ ′Att:

deleteClass(c) (c) : (σClass,σAtt) 7→ (σ ′Class,σ
′
Att)

with

σ ′Class(c
′) =

{
σClass(c

′) \ {c}, c′ = c
σClass(c

′), else

σ ′Att(a) (c
′) =

{
⊥, c′ = c
σAtt(a) (c

′), else

11

3. The View-Update-Problem for ModelJoin

3.3. The View-Update-Problem Definition for ModelJoin

3.3.1. State-based vs. Delta-based Approaches

In the literature we �nd two fundamental di�erent approaches to formulate the View-
Update-Problem. A delta-based approach (such as in [22, 7, 42]) or a state-based approach

(such as in [27, 49]).

• In the delta-based approach the translation function translates an update operation
on the target model to an update operation on the source model.

• In the state-based approach the translation function takes the updated target model
and original source model and returns the updated source model.

The delta-based approach has the advantage, that the knowledge about the changed
elements is explicitly given by the update operation and does not need to be inferred
from the update target model. However the tool used to perform the updates must emit
the update operation or the update operation must be recovered from the updated target
model by comparing it with the original one. If an external tool is used to update the
target model and it does not emit the update operations, the updates must be obtained
by doing the comparison, which is a complex operation, requiring heuristic algorithms
[39, 43]. To keep the translatability check and translation independent of the tool used to
update the target model, we will use a state-based approach in our work. In our approach
the changed parts of the target model can be derived from a trace model, which will be
introduced in this section.

3.3.2. Properties of a Valid Translation

Next we want to formulate properties, which characterize a valid update translation. Foster
et al. [27] proposed two fundamental properties for the translation of tree like structures.
We adopt their GetPut- and PutGet-Property for ModelJoin view de�nitions and Ecore
models here.

De�nition 9 (View-Update-Problem). The View-Update-Problem (VUP(Q)) for a given
ModelJoin view de�nition Q ∈ Ms ×Mt is to decide, if there exist a translation q−1 : I (Mt) ×
I (Ms) → I (Ms) such that the following two properties hold for all views in V = q [I (Ms)]:

(i) Translating an unmodi�ed target model, does not change the source model:

∀ms ∈ I (Ms) : q−1(q(ms),ms) =ms (GetPut)

(ii) Translating a modi�ed target model and querying the result, yields the translated
modi�ed target model.

∀ms ∈ I (Ms),∀mt ∈ V : q(q−1(mt ,ms)) =mt (PutGet)

In this case we call the function q−1 a translation.

12

3.4. The Restricted View-Update-Problem

Note, that the query function of a ModelJoin view de�nition is not a total function
in general. More speci�cally, q [I (Ms)] is a real subset of I (Mt) and thus not all possible
target models can be translated by q−1. Update operations can lead to a target model
mt ∈ I (Mt) \ q [I (Ms)]. In this case mt is not translatable, because no source model
ms ∈ I (Ms) with mt = q(ms) exists. An example for an untranslatable target model is
given in the introduction of chapter 4.

In practice we are more interested in a �nding the translation function, not only its
existence.

3.4. The Restricted View-Update-Problem

In the case of ModelJoin, the translation function q−1 should re�ect the semantic of its
query function q. Therefore it should have a �xed translation semantic for each operation
in the ModelJoin view de�nition Q . The translation function q−1 will be de�ned inductive
over all ModelJoin operators in Q , similar to the query function q itself. If each ModelJoin
operator has a �xed translation semantic, the set of translatable target models Vr ⊆ I (Mt)
forms only a subset of all obtainable target models in q [I (Ms)]. Fixing the semantic of the
translation function for each ModelJoin operation in Q makes the translation predictable
and comprehensible for the user.

Therefore we want to formulate the View-Update-Problem for a restricted set Vr ⊆
q [I (Ms)] of translatable target models. In addition we want to introduce a trace model

M∼, which is part of the target model. The trace model should be non-editable and should
form a explicit representation of the mapping relation between the source and target class
instances.

De�nition 10 (Trace model). We divide the target metamodel into a view metamodel Mv

and a trace metamodel M∼ with

Mt = Mv ∪M∼ ∧Mv ∩M∼ = ∅

The class instances in the models are divided into a view modelmv and a trace model

m∼ according to their metamodel membership. For a given target modelmt ∈ I (Mt) we
use the following notation:

mv = [mt]v
m∼ = [mt]∼

We now de�ne the restricted View-Update-Problem, which will be addressed in the
further section of this thesis.

De�nition 11 (Restricted View-Update-Problem). The restricted View-Update-Problem

(rVUP(Q)) for a given ModelJoin view de�nition Q is to �nd a restricted subset Vr :
I (Ms) → P (I (Mt)) with the following properties:

(i) A translation q−1 : Vr [I (Ms)] × I (Ms) → I (Ms) for q exists:

〈mt ,ms〉 →m′s (existence)

13

3. The View-Update-Problem for ModelJoin

(ii) Vr contains all unmodi�ed target models:

∀ms ∈ I (Ms) : q(ms) ∈ Vr (ms) (totality)

(iii) q−1 conforms to the GetPut-Property:

∀ms ∈ I (Ms) : q−1(q(ms),ms) =ms (GetPut)

(iv) q−1 conforms to the GetPut properties for all views in Vr :

∀ms ∈ I (Ms),∀mt ∈ Vr (ms) :
[
q(q−1(mt ,ms))

]
v
= [mt]v (PutGet)

A set Vr together with a translation q−1, which solves rVUP(Q) is called a solution of the
problem.

The totality-Property ensures that all unmodi�ed target models are translatable. It
is a requirement for the GetPut-Property to be well-de�ned, because the translation q−1

must be de�ned for all unmodi�ed target models. The GetPut-Property ensures that
translating an unmodi�ed target model does not change the source model.

An update to the view model may lead to new or removed mappings between source
class instances and target class instances. These mappings can not be present in the trace
model before the translation. Therefore we restrict the GetPut-Property to the view
model only, so that the trace model can be di�erent before and after the query.

The rVUP(Q) is solvable for all Q because the set Vr (ms) = {q(ms)} together with the
translation q−1(mt ,ms) =ms is a trivial solution.

Even if the trivial solution solves rVUP(Q) for every Q , it is not very interesting because
it does not allow any updates to the target model. We want to �nd a solution, which allows
useful target model updates and re�ects the semantic of the ModelJoin operators used in
Q . To verify these properties we evaluate our solution in a case study in chapter 7.

14

3.4. The Restricted View-Update-Problem

I(Ms)

q

I(Mt)

ms

m′s

[mt]v [mt]∼

[m′t]v [mt]∼
q−1

u

[q [I(Ms)]]v [q [I(Ms)]]∼

Figure 3.1.: We extend the target model of a ModelView view de�nition to contain a non-
editable trace model in additional to the view. An update operation, only
updates the view. The trace model stays the same and contains the relationship
between source class instances and target class instances.

15

4. Constraints for Translatable Views

We have seen, that the set of target models q [I (Ms)] of a query function q can be a real
subset of all possible target class instances I (Mt). A target modelmt ∈ I (Mt) \ q [I (Ms)]
is not translatable, because no source model ms ∈ I (Ms) with mt = q(ms) exists (see
Figure 4.1).

mt

I(Ms)
[I(Mt)]v

q
[q [I(Ms)]]v

û
u

m̂′
t

ms

m′
t

m′
s

q

Figure 4.1.: The Update operation u is translatable because form′t a corresponding source
modelm′s exists. However the update operation û is untranslatable since m̂′s
has no corresponding source model.

An example for a ModelJoin view de�nitionQ with a real subset relationship q [I (Ms)] ⊂
I (Mt) is given in Listing 4.1. In this example, the commons.NamedElement.name attribute
of the source class gets mapped to two di�erent target class attributes. It gets mapped
to an attribute named name and an attribute named alias. The update operation given
in Listing 4.1 cannot be translated. Letm′t ∈ I (Mt) be the updated target model, then no
source model m′s ∈ I (Ms) with m′t = q(m′s) exists. This is the case, since all instances of
the class jointarget.Interface in q [I (Ms)] have the same attribute values for the attributes
name and alias.� �

1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name as name

4 keep attributes commons.NamedElement.name as alias

5 }� �
Listing 4.1: Example ModelJoin view de�nition where all obtainable views are a real subset

of all possible target model.

17

4. Constraints for Translatable Views

� �
1 create jointarget.Interface {

2 name: "StoreIf",

3 alias: "Store"

4 }� �
Listing 4.2: Untranslatable update operation for the ModelJoin view de�nition in Listing 4.1

Such untranslatable update operations shall be forbidden. For this purpose the target
model needs to be designed in a way, such that all valid instances can be translated. There-
fore the metamodel needs to be extended by the constraint σAtt(name) (c) = σAtt(alias) (c)
for all instances c ∈ I (jointarget.Interface).

We will formulate such constraints for Ecore metamodels using the Object Constraint
Language (OCL) [55]. A OCL expression for this case could be:

context jointarget.Interface
inv: self.name = self.alias

If such OCL-constraints can be derived from the ModelJoin view de�nition, we can
easily decide if a given update operation is translatable for an updated target model. We
can simply check if the OCL-constraints hold for the updated target metamodel. If the OCL-
constraints hold, then the updated view is translatable. Ideally the constraints characterize
exactly the set q[I (Ms)], which contains all translatable views. However since we want to
�x the translation semantic for each ModelJoin operator in Q , we restrict the set q[I (Ms)]
further to a set Vr like in the De�nition for rVUP(Q).

4.1. OCL Expressions

We write OCL expressions in their concrete syntax [55]. Further we use the following
Notations:

• Exprt is the set of all OCL expressions of type t .

• Vart is the set of variables of type t .

• π = 〈σ , β〉 is an environment for the evaluation of an expression. It contains the
system state σ and a variable assignment β : Vart → I (t).

• I [[α]] : Env → I (t) is the interpretation of the OCL expression α ∈ Exprt . Thus
I [[α]] (π) is the value of α in the environment π .

• free : Expr→ Var is the function, which returns all free variables in an OCL expres-
sion.

• For an OCL expression ϕ ∈ Expr with free(ϕ) = {v1, ... ,vn} we write for the inter-
pretation of ϕ in the environment σ and variable assignment v1 → c1, ... ,vn → cn
the short form: ϕσ

v1,...,vn
(c1, ... , cn) for I [[ϕ]] (〈σ ,v1 → c1, ... ,vn → cn〉).

18

4.2. Meta Notations for OCL

• We use = for both: mathematically equality and =for the equality operator of OCL.
However it should be clear from the context which equality is meant.

• If we write α =̂ γ for two OCL expressions α ,γ ∈ Exprt , we mean structural equality,
respectively the equality of the abstract syntax. The textual equality of the concrete
syntax, should be ignored. For example notation shorthands are equivalent to their
long forms, if they parse to the same abstract syntax.

The formal de�nition of the interpretation function I for all standard OCL expressions
can be found in [55].

4.2. Meta Notations for OCL

The OCL constraints should use the source models in addition to the target model. This,
e.g., allows the formulation of OCL-constraints that describe precisely, if an attribute is
allowed to be updated. Let name be an attribute, source be a class instance in the source
model, alias be an attribute and target be a class instance in the target model, then the
constraint

source.name = target.alias

could be used to forbid updates of the name attribute.
Since the OCL constraints should be derived from the ModelJoin expression, a meta

language will be used to describe the resulting OCL expressions:
For each class symbol c ∈ Class and attribute symbol a ∈ Att the class or respectively

attribute name should be used in the resulting OCL expression. So for c1 = Interface and
a1 = name the OCL meta expression:

c1 .allInstances()->forAll(ac | ac.a1 = “StoreIf”)

results in

Interface.allInstances()->forAll(ac | ac.name = “StoreIf”)

Each binary operator with subscript should be expanded to an expression joining the
elements of the subscript expression by the binary operator. For example the expression

ANDa∈{a1,a2,a3 } (self.a = “StoreIf”)

should be expanded to:

self.a1 = “StoreIf” and self.a2 = “StoreIf” and self.a3 = “StoreIf”

Further macro functions will be used to indicate expressions de�ned in other contexts.
For example

19

4. Constraints for Translatable Views

self.target.alias = vara (self.left)

with the de�nition

vara (c) := c .a

should be expanded to:

self.target.alias = self.left.a

4.2.1. Meta Variables

Considering the view de�nition in Listing 4.1, it would be desirable to describe the relation
of source model attributes and target model attributes like for example in

target.at = left.a1

However since the source model attributes are not updateable by an update operation
on the target model, this kind of formulation would �x the value of target.at to the original
source value and make it unchangeable. To avoid this issue, source model attribute values
should not be used directly. Instead a meta variable expression is introduced. It describes
the updated value of the source model attribute like for example in:

target.at = vara1 (left)

The meta variable expression will then be replaced with its de�nition. The de�nition is
used as a canonical attribute that maps to the source attribute.

De�nition 12 (meta variable for attributes). Let c ∈ Class be a class and a : tc ′ → t ∈
Att∗c be an attribute, then the initial value of the meta variable vara : Exprtc → Exprt is
de�ned as

vara (α) := α .a

In addition we de�ne the interpretation function vara : I (c) → I (t) of vara as

varσa (c) = I [[vara (v)]] (〈σ , {v→ c}〉).

For the initial de�nition of vara the value of varσa is

varσa (c) = I [[vara (c)]] (〈σ , {c→ c}〉) = σAtt(a) (I [[c]] (〈σ , {c→ c}〉)) = σAtt(a) (c).

If there is an attribute at of a target model class ct that maps to the source attribute a,
the de�nition of vara will be extended to use the attribute at as canonical attribute for an
instance c ∈ I (c) with a mapping c ∼on ct to a target instance ct ∈ I (ct).

20

4.2. Meta Notations for OCL

storeQueryIf
: classifiers.Interface

name = “StoreQueryIf”

storeIf : classifiers.Interface

name = “StoreIf”

umlStoreIf : uml.Interface

name = “StoreIf”

jtStoreIf
: jointarget.StoreIf

name = ‘StoreIf”

varname(storeQueryIf) varname(storeIf) varname(umlStoreIf)∼./ ∼./

=

= =

Figure 4.2.: Initially the meta variables will have the same value as the attribute of the
given class instance (left). However if the attributes get mapped to target
model attributes, the meta variable de�nition will be extended to use the
corresponding attribute of target class instances that are related to the given
source class instance (right).

Theorem 1 (correctness of meta variables for attributes). A meta variable vara for an

attribute a : tc → t ∈ Att is called correct, if

(i) For an unmodi�ed target model obtained from a query, it has the same value as the

corresponding attribute:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (Get-Eqality)

(mt = q(ms) → ∀c ∈ σ
ms
Class

(c) (σms
Att

(a) (c) = varσ
ms∪mt

a (c)))

(ii) After the translation of a target model back to a source model, the corresponding at-

tribute has the same value as the meta variable:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (Put-Eqality)

(m′s = q
−1(mt ,ms) → ∀c ∈ σ

m′s
Class

(c) (σ
m′s
Att

(a) (c) = varσ
ms∪mt

a (c)))

Similarly, meta variables are de�ned for references.

De�nition 13 (meta variable for references). Let c, ĉ ∈ Class be classes and r ∈ Ref
be a reference with associates(r) = 〈c, ĉ〉, then the initial value of the meta variable
varr : Exprtc → ExprSet(tĉ) is:

varr (α) := α .r

In addition we de�ne the interpretation function var r : I (c) → P (I (ĉ)) of varr as

varσr (c) = I [[varr (v)]] (〈σ , {v→ c}〉).

21

4. Constraints for Translatable Views

For the initial de�nition of varr the value of varσr is

varσr (c) = I [[varr (c)]] (〈σ , {c→ c}〉) = L(r) (I [[c]] (〈σ , {c→ c}〉)) = L(r) (c).

Theorem 2 (correctness of meta variables for references). A meta variable varr for a

reference r ∈ Ref with associates(r) = 〈c, ĉ〉 is called correct, if

(i) For a unmodi�ed target model obtained from a query, it has the same links as the

corresponding reference:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (Get-Eqality)

(mt = q(ms) → ∀c ∈ σ
ms
Class

(c) (L(r) (c) = varσ
ms∪mt

r (c)))

(ii) After the translation of a target model back to a source model, the corresponding ref-

erence in the resulting source model has the same links as the meta variable:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (Put-Eqality)

(m′s = q
−1(mt ,ms) → ∀c ∈ σ

m′s
Class

(c) (L(r) (c) = varσ
ms∪mt

r (c)))

The de�ned meta variables will be used as a placeholder in the resulting OCL expressions.
We will see that if the Get-Eqality holds for all meta variable de�nitions, then we can
show that the OCL expressions are satis�ed for a target model directly obtained from a
query. Further if the OCL expressions are satis�ed for a modi�ed target model and the
translation is chosen in a way, such that the Put-Eqality also holds for all meta variables,
then we can show that the PutGet-Property holds.

To check the validity of the OCL expressions, the meta variables are replaced with
their de�nition after all OCL expressions are derived from the ModelJoin-Expression. The
resulting OCL expression then does not contain any meta variables anymore and can be
checked without modi�cations by existing tools.

4.3. OCL Expression Rewriting

Some ModelJoin operations, such as calculate attributes or theta joins, can use OCL
expressions to describe the values or instances of the target model. These expressions
depend on values of source model elements. If we want to reason about the value of this
expressions after the translation without performing the translation, the expressions have
to be rewritten to depend on the values of the corresponding target model elements.

For example, consider the ModelJoin expression in Listing 4.3. The OCL expression
ϕ (α) = α .name.substring(1, α .name.size() - 2) for the calculated attribute implementation-
Name depends on the source element name. If we described the relation of implementa-
tionName and interfaceName by using the common source attribute name we would not be
able to update the value of implementationName, because name is a source model element
and hence cannot be changed directly. It would be desired to rewrite the OCL expression
ϕ (α), so that it does not depend on source model elements anymore. There are several
ways the expression could be rewritten.

22

4.3. OCL Expression Rewriting

� �
1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name as interfaceName

4 keep calculated attribute commons.NamedElement.name.substring(

5 1, commons.NamedElement.name.size() - 2

6) as implementationName

7 }� �
Listing 4.3: Example ModelJoin view de�nition with a calculate attribute, which strips o�

the “If” pre�x of the interface names.

4.3.1. Rewriting for Existing Source Instances

In case we only want to update target class instances, which are already mapped to
source model class instances, the OCL expression could be rewritten by using the meta
variables. To save space, we abbreviate commons.NamedElement.name with name and
jointarget.Interface with Interface. The rewrite of ϕ (v) is ϕ′(v) = varname(v).substring(1,
varname(v).size()) and the derived OCL-constraints with v = le� is:

target.alias = varname (right).substring(1, varname (right).size())

with the meta variable varname mapping self.right to the value of a canonical attribute like
self.target.name.

Similarly navigation calls can be handled. Consider the following example expression
returning the number of interface methods throwing exceptions:

ϕ (v) = v.members->select(m |
m.oclAsType(members.Method).exceptions->size() > 0

)->size()

It can be replaced with

ϕ (v) = varmembers (v)->select(m |
m.oclAsType(members.Method).exceptions->size() > 0

)->size()

where members is an abbreviation for the reference members.MemberContainer.members.
The problem with these simple rewrites is, that the creation of new target class instances

cannot be allowed. For these, the expressions cannot be evaluated, because there is no
mapping to source class instance. However the rewrite is possible for all expressions.

23

4. Constraints for Translatable Views

De�nition 14 (Rewritten expression). Let ϕ ∈ Exprt be an OCL expression, then the
rewrite function R : Exprt → Exprt is de�ned as

R [ϕ] =

vara (R [αc]),
if ϕ =̂ αc .a,
with αc ∈ Exprtc , a ∈ Att∗c

varr (R [αc]),
if ϕ =̂ αc .r ,
with αc ∈ Exprtc , r ∈ Ref

γ (R [α1] , ... ,R [αn]),
if ϕ =̂ γ (α1, ... ,αn),
with γ an OCL expression with
subexpressions α1, ... ,αn

and the result of applying R to ϕ should be called varϕ :

varϕ = R [ϕ]

Further let {vc1, ...vcn } = free(varϕ) be the set of free variables in ϕ with types tci
for i = 1, ...n. The interpretation function varσ

ϕ
: I (c1) × ... × I (cn) → I (t) is de�ned

as:

varσϕ (c1, ... , cn) = I
[[
varϕ

]]
(〈σ , {vc1 → c0, ... ,vcn → cn}〉).

Theorem 3 (Well typed attribute call rewrites). Let c ∈ Class be a class, a : tc → t ∈ Att∗c
be an attribute and α ∈ Exprt be an OCL expression with α = αc .a for an OCL expression

αc ∈ Exprtc , then the expression R [α] is well typed, if R [αc] is well typed.

Proof. It is R [α] = vara (R [αc]), according to the de�nition of R. For all a ∈ Att∗c the meta
variable vara : tc → t is de�ned and has the same return type t as αc .a. Therefore the
expression vara (R [αc]) is de�ned and has the correct type.

Theorem 4 (Well typed navigation call rewrites). Let c, ĉ ∈ Class be classes, r ∈ Ref be

a reference with r = (c, ĉ) and α ∈ Exprt be an OCL expression with α = αc .r for an OCL

expression αc ∈ Exprtc , then the expression R [α] is well typed, if R [αc] is well typed.

Proof. R [α] = varr (R [αc]) according to the de�nition of R. For all r ∈ Ref with r = (c, ĉ)
the meta variable varr : tc → Set(tĉ) is de�ned and has the same return type Set(tĉ) as
αc .r . Therefore the expression varr (R [αc]) is de�ned and has the correct type.

Theorem 5 (Well typed rewrites). Let ϕ ∈ Expr an OCL expression, then the expression

R [ϕ] is well typed.

Proof. The result of R is well typed in all cases of the de�nition: Theorem 3 and Theorem 4
show that the result is well typed in the the �rst and second case. In the third third case the
expression γ (R [α1] , ... ,R [αn]) is well typed for an OCL expression γ with subexpressions
α1, ... ,αn, because R[αi] and αi have the same types, for i = 1, ... ,n.

24

4.3. OCL Expression Rewriting

Theorem 6 (Correctness ofvarϕ). Let c0, ... , cn ∈ Class be classes, t be a type andϕ ∈ Exprt
be an OCL expression with varσ

ϕ
: I (c0) × ... × I (cn) → I (t) and free(ϕ) = {v1, ... ,vn}. The

rewrite varϕ is correct, that is

(i) If the Get-Equality and Put-Equality hold for all meta variablesvarr andvara , then
the Get-Equality and Put-Equality hold for varϕ

∀c ∈ Class ∀c ∈ σClass(c)

(∀a ∈ Att∗c (var
σ
a (c) = σAtt(a) (c))

∧∀ĉ ∈ Class ∀r = 〈c, ĉ〉 ∈ Ref (varσr (c) = L(r) (c)))

=⇒ ∀c0 ∈ σClass(c0) ...∀cn ∈ σClass(cn) (ϕ
σ

v1,...,vn
(c0, ... , cn) = var

σ
ϕ (c0, ... , cn))

(ii) There are no direct property or navigation calls in varϕ .

Proof. The correctness follows immediately from the de�nition.

Theorem 7 (Get-Eqality and Put-Eqality for varϕ). If varϕ is correct and for all

attributes a ∈ Att and classes c ∈ Class the meta variables varc and varr are correct, then
varϕ satis�es the Get-Equality and Put-Equality. This means:

(i) For a unmodi�ed target model directly obtained from a query,varϕ has the same value

as ϕ:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (mt = q(ms) → (Get-Eqality)

∀c0 ∈ σ
ms
Class

(c0) ...∀cn ∈ σ
ms
Class

(cn) (ϕ
σms

v1,...,vn
(c1, ... , cn) = var

σms∪mt

ϕ (c1, ... , cn))

(ii) After the translation of a target model back to a source model,varϕ has the same value

as ϕ:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (m
′
s = q

−1(mt ,ms) → (Put-Eqality)

∀c0 ∈ σ
m′s
Class

(c0) ...∀cn ∈ σ
m′s
Class

(cn) (ϕ
σm
′
s

v1,...,vn
(c1, ... , cn) = var

σms∪mt

ϕ (c1, ... , cn)))

Proof. The Get-Eqality and Put-Eqality forvarϕ follows directly from the correctness
of varϕ and the Get-Eqality and Put-Eqality of varc and varr .

25

4. Constraints for Translatable Views

4.3.2. Rewriting for New Source Instances

Next we want to rewrite an expression ϕ (c), such that it does not depend on an instance c
of a source class anymore. For this purpose new meta variables are introduced.

De�nition 15 (target meta variable for attributes). Let c, ct ∈ Class be classes with
c ∼on ct and a,at ∈ Att∗c be attributes with a ∼on at , then the initial value of the target

meta variable varcta : Exprtct → Exprt is de�ned as

varcta (α) := α .at

In addition we de�ne the interpretation function vara : I (ct) → I (t) of varcta as

varct ,σa (ct) = I
[[
varcta (v)

]]
(〈σ , {v→ ct }〉).

Theorem 8 (correctness of target meta variables for attributes). A target meta variable

varcta for an attribute a : tc → t ∈ Att is called correct, if

(i) For a unmodi�ed target model directly obtained from a query, it has the same value

as the corresponding attribute:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (mt = q(ms) → (Get-Eqality)

∀c ∈ σms
Class

(c)∀ct ∈ σ
mt
Class

(ct) (c ∼on ct → σms
Att

(a) (c) = varct ,σ
ms∪mt

a (ct)))

(ii) And after the translation of a target model back to a source model, the corresponding

attribute has the same value as the meta variable:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (m
′
s = q

−1(mt ,ms) → (Put-Eqality)

∀c ∈ σ
m′s
Class

(c)∀ct ∈ σ
mt
Class

(ct) (c ∼on ct → σ
m′s
Att

(a) (c) = varct ,σ
ms∪mt

a (ct)))

The meta variable varcta is not de�ned for all target classes ct and attributes a with
a ∼on at may not exist. However if it is de�ned, we can reason about attribute values
of source class instances, that do not exist yet and get created by the translation of the
corresponding newly created target class instances. If the Put-Eqality holds for a chosen
translation, then the attribute of the created source instance will get the same value as the
target meta variable. If further the Get-Eqality holds we can show that the PutGet
property holds, even if new instances are created (see Figure 4.3).

26

4.3. OCL Expression Rewriting

jtStoreIf
: jointarget.Interface

name = ‘StoreIf”

var
jointarget.Interface
common.NamedElement.name(jtStoreIf)

=

ms,m
′
t

storeIf : classifiers.Interface

name = “StoreIf”

jtStoreIf
: jointarget.Interface

name = ‘StoreIf”

∼./

m′s,m
′
t

q−1(ms,m
′
t)

u(mt)

ms,mt

=

q(m′s)

storeIf : classifiers.Interface

name = “StoreIf”

jtStoreIf
: jointarget.Interface

name = ‘StoreIf”

∼./

m′s,m
′
t

Put-Equality Get-Equality

=

=

=

Figure 4.3.: The Update operation u creates a new target model class instance jtStoreId
∈ I (jointarget.Interface). The Put-Eqality ensures that for the corresponding
source class instance storeIf created by the translation q−1 the value of the
attribute name equals to the target meta variable. The Get-Eqality ensures
that after the query q the value does not change either.

In a similar way navigation calls can be rewritten.

De�nition 16 (target meta variable for references). Let c, ĉ, ct , ĉt ∈ Class be classes and
r , r̂ ∈ Ref be references with associates(r) = 〈c, ĉ〉, associates(rt) = 〈ct , ĉt 〉 and r ∼ rt , then
the initial value of the target meta variable varctr : Exprtc → ExprSet(tĉt) is:

varctr (α) := α .rt

In addition we de�ne the interpretation function var r : I (c) → P (I (ĉ)) of varr as

varct ,σr (c) = I
[[
varctr (v)

]]
(〈σ , {v→ c}〉).

Theorem 9 (correctness of target meta variables for references). A target meta variable

varctr for a reference r ∈ Ref with associates(r) = 〈c, ĉ〉 is called correct, if

(i) For a unmodi�ed target model obtained from a query, it has links to mapped instances

of the corresponding links in the relation:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (mt = q(ms) → (Get-Eqality)
∀c ∈ σms

Class
(c)∀ct ∈ σ

mt
Class

(ct) (c ∼on ct →

(∀ĉ ∈ L(r) (c) → ∃ĉt ∈ var
σms∪mt

r (ct) (ĉ ∼on ĉt)

∧(∀ĉt ∈ var
σms∪mt

r (ct) → ∃ĉ ∈ L(r) (c) (ĉ ∼on ĉt)))

27

4. Constraints for Translatable Views

(ii) After the translation of a target model back to a source model, the corresponding rela-

tion has links to mapped instances of the links of the meta variable:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (m
′
s = q

−1(mt ,ms) → (Put-Eqality)

∀c ∈ σ
m′s
Class

(c)∀ct ∈ σ
mt
Class

(ct) (c ∼on ct →

(∀ĉ ∈ L(r) (c) → ∃ĉt ∈ var
σms∪mt

r (ct) (ĉ ∼on ĉt)

∧(∀ĉt ∈ var
σms∪mt

r (ct) → ∃ĉ ∈ L(r) (c) (ĉ ∼on ĉt)))

Note that if a navigation call is rewritten, then the type of the expression changes.
Therefore all expressions, that are using the result, have to be rewritten as well. For
example the handling of iterator expressions over relations need special care. Consider
the following OCL expression, which counts all interface methods named “onEvent”:

ϕ (v) = v.members->select(m | m.name = “onEvent”)->size()

Replacing v .members with var jointarget.Interfacemembers (vt), where members is an abbreviation for
the reference members.MemberContainer.members, changes the type in the body of the
iterator. Therefore all usages of v inside the body must be replaced as well.

A proper rewrite could be:

ϕ (vt) = var jointarget.Interfacemembers (vt)->select(m |
var jointarget.Methodname (m) = “onEvent”

)->size()

In the general case we can de�ne an rewrite function Rc→ct
v that changes the type of the

free variable v inside the expression from c to ct and rewrites all subexpressions to use the
meta variables.

De�nition 17 (Rewritten expression). Let ϕ ∈ Exprt be an OCL expression and c, ct ∈
Class be classes. Further let v ∈ free(ϕ) be a free variable in ϕ of type tc , then the target

rewrite function Rc→ct
v : Exprt → Exprt ′ is de�ned as

28

4.3. OCL Expression Rewriting

Rc→ct
v [ϕ] =

v : ct , if ϕ =̂ v : c

varcta (Rc→ct
v [αc]) ,

if ϕ =̂ αc .a
with αc ∈ Exprtc , a : tc ′ → t ∈ Att∗c

var ĉta (Rc→ct
v [αĉ]) ,

if ϕ =̂ αĉ .a and c , ĉ,

with Rc→ct
v [αĉ] ∈ Exprtĉt , αĉ ∈ Exprtĉ

ĉ, ĉt ∈ Class, ĉ ∼on ĉt ,a ∈ Att∗ĉ

varctr (Rc→ct
v [αc]) ,

if ϕ =̂ αc .r ,
with αc ∈ Exprtc , r ∈ Ref

var ĉtr (Rc→ct
v [αr]) ,

if ϕ =̂ αĉ .r and c , ĉ,

with Rc→ct
v [αĉ] ∈ Exprtĉt , αĉ ∈ Exprtĉ

ĉ, ĉt ∈ Class, ĉ ∼on ĉt , r ∈ Ref

let v1 =Rc→ct
v [α1] , ...

in Rc→ct
v1

[
...Rc→ct

vn [α] ...
] , if ϕ =̂ let v1=α1, ... in α

α1 ∈ Exprtc , α ∈ Expr

Rc→ct
V

[
αSet(ĉ)

]
->iter (v1, ...vn |

Rc→ct
v1

[
...Rc→ct

vn

[
Rĉ→ĉt
v [α]

]
...

]

)

,

if ϕ =̂ αSet(ĉ)->iter (v1, ...vn | α)
with αSet(ĉ) ∈ ExprSet(tĉ), α ∈ Expr
ĉ, ĉt ∈ Class, c ∼on ct , r = 〈c, ĉ〉 ∈ Ref
v1, ... ,vn ∈ Vartĉ

γ (Rc→ct
v [α1] , ... ,Rc→ct

v [αn]),
if ϕ =̂ γ (α1, ... ,αn),
with γ an OCL expression with
subexpressions α1, ... ,αn

The result of applying the k target rewrite function R
c1→ct,1
v1 , ... ,R

ck→ct,k
vk to ϕ should be

called varc1→ct,1,...,ck→ct,k
ϕ,v1,...,vk

:

var
c1→ct,1,...,ck→ct,k
ϕ,v1,...,vk

= R
c1→ct,1
v1

[
...R

ck→ct,k1
vk [ϕ] ...

]

Further let {ṽc1, ... ṽcn } = free(varc1→ct,1,...,ck→ct,k
ϕ,v1,...,vk

) the set of free variables in
var

c1→ct,1,...,ck→ct,k
ϕ,v1,...,vk

with types tc̃i for i = 1, ...n. The interpretation function
var

c1→ct,1,...,ck→ct,k ,σ

ϕ,v1,...,vk
: I (ĉ1) × ... × I (ĉn) → I (t) is de�ned as:

var
c1→ct,1,...,ck→ct,k ,σ

ϕ,v1,...,vk
(ĉ1, ... , ĉn) = I

[[
var

c1→ct,1,...,ck→ct,k
ϕ,v1,...,vk

]]
(〈σ , {v̂c1 → ĉ0, ... , v̂cn → ĉn}〉).

29

4. Constraints for Translatable Views

To show an application of the target rewrite function, we rewrite the expression ϕ =
v .members->select(m | m.name = “onEvent”)->size(). To save space we abbreviate jointarget
with jt, classifier with cl and Interface with If:

Rcl.If→jt.Ifv [ϕ] = Rcl.If→jt.Ifv [v .members->select(m | m.name = “onEvent”)->size()]

= Rcl.If→jt.Ifv [v .members->select(m | m.name = “onEvent”)] ->size()

=

Rcl.If→jt.Ifv [v .members] ->select(m |
Rm.Member→jt.Methodm

[
Rcl.If→jt.Ifv [m.name = “onEvent”]

]

)->size()

=

var jt.Ifmembers(R
cl.If→jt.If
v [c])->select(m |

Rm.Member→jt.Methodm

[
Rcl.If→jt.Ifv [m.name = “onEvent”]

]

)->size()

=

var jt.Ifmembers(v)->select(m |
Rm.Member→jt.Methodm

[
Rcl.If→jt.Ifv [m.name = “onEvent”]

]

)->size()

=

var jt.Ifmembers(v)->select(m |
Rm.Member→jt.Methodm

[
Rcl.If→jt.Ifv [m.name] =Rcl.If→jt.Ifv [“onEvent”]

]

)->size()

=

var jt.Ifmembers(v)->select(m |
Rm.Member→jt.Methodm

[
Rcl.If→jt.Ifv [m] .name = “onEvent”

]

)->size()

=

var jt.Ifmembers(v)->select(m |
Rm.Member→jt.Methodm [m.name = “onEvent”]

)->size()

=

var jt.Ifmembers(v)->select(m |
Rm.Member→jt.Methodm [m.name] = “onEvent”

)->size()

=

var jt.Ifmembers(v)->select(m |
var jt.Methodname (m) = “onEvent”

)->size()

However in general a rewrite Rc→ct
v [ϕ] for an expression ϕ can be unde�ned or not well-

typed. The rewrite is unde�ned, if one of the meta variables in the resulting expression is
unde�ned. It can be not well-typed, if the resulting types do not con�rm. An example for
a non well-typed rewrite is the result of the following rewrite of the expression ϕ = v1 = v2
with the two free variables v1, v2 of type tc :

ϕ′ := Rc→ct
v2 [ϕ] = Rc→ct

v2 [v1 = v2] = Rc→ct
v2 [v1] =Rc→ct

v2 [v2] = v1 = v2

30

4.4. The Trace Model

The result ϕ′ is not well-typed, because v1 has type tct , however v2 still has type tc
(after the rewrite) and equality is not de�ned for di�erent class types without a subclass
relationship.

4.3.3. Class Instance Meta Functions

For some constraints we need to get the set of all source class instance of a particular class
c ∈ Class. For this purpose we de�ne the class instances meta functions:

De�nition 18 (class instances meta function). Let c ∈ Class be a source class. The initial
value of the class instances meta function Instancesc ∈ ExprSet(tc) is:

Instancesc := c .allInstances()

So initially the set contains all instances of the corresponding type. However if instances
shall get deleted on update translation, we exclude them from the set. We de�ne two
essential properties for the class instance meta functions:

Theorem 10 (correctness of class instance meta functions). A class instances meta function

Instancesc ∈ ExprSet(tc) is correct, if

(i) For a unmodi�ed target model obtained from a query, Instancesc contains all existing

instances:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (Get-Eqality)

(mt = q(ms) → σ
m′s
Class

(c) = Instancesc)

(ii) After the translation of a target model back to a source model, Instancesc contains

all source class instances of c , which existed before the translation and exist after the

translation:

∀ms ∈ I (Msource)∀mt ∈ I (Mtarдet) (Put-Eqality)

(m′s = q
−1(mt ,ms) → σms

Class
(c) ∩ σ

m′s
Class

(c) = Instancesc)

4.4. The Trace Model

The mapping between source class instances and target class instances is originally only
implicitly given by the ModelJoin view de�nition Q . Like proposed in De�nition 10 of
chapter 3.4 an explicit trace model should be introduced.

The trace model will contain trace classes, which represent the mapping between source
and target class instances. These trace classes allow the prohibition of update operations,
that would change the mapping of a target class instance to a di�erent source class instance.
We want to ensure, that a target class instance ct ∈ I (ct) with a mapping c ∼on to a source
class instance c ∈ I (c) does not map to a di�erent source class instance c′ ∈ I (c) with
c , c′ after the update. Because the target class instances represent their corresponding

31

4. Constraints for Translatable Views

source class instances, this is a desired property. The user does not have to worry about
changing the identity of the target class instance ct behind the scene, by accident, through
applying an update operation.

For example the intention of changing the value of the name attribute of a target class
instance ct ∈ I (jointarget.Interface) is probably to change the name of the corresponding
source class instance c ∈ I (classifier.Interface) with c ∼on ct and not to change the mapping
of the target class instance ct to a di�erent source class instance. However there may be
cases, where adding a new mapping is desired. We further discuss this in chapter 5.1.

storeIf : classifiers.Interface

name = “StoreIf”

jtStoreIf : jointarget.StoreIf

name = ‘StoreIf”

∼./
trace : c./

source

target

jtStoreIf
: jointarget.StoreIf

name = ‘StoreIf”

storeIf : classifiers.Interface

name = “StoreIf”

trace : c./

source

Figure 4.4.: Left: Trace model with unmodi�ed target class instance. Center: Untranslated
newly created target class instance with missing trace class instance. Right:
Untranslated deleted target class instance leading to a trace class instance with
dangling target reference.

The trace model does not only make it easy to maintain the mapping it also allows the
easy detection of new and deleted target class instances and links. A trace class instance
con ∈ I (con) has links to its source class instances c ∈ I (c) and to its target class instance
ct ∈ I (ct). We make the trace model non-editable for the user, because it only serves book
keeping purpose and is maintained by the query and translation functions. The query
function creates the explicit trace class instances with their links. For changed target
class instances, these traces will be used to propagate the changes to the corresponding
source class instances in the translation function. New target class instances created by
update operation can easily be detected, because these have no trace class instance with
mapping information. Deleted target class instances can also be easily detected, because
the trace class still exists with a dangling reference to the deleted target class instance (see
Figure 4.4). The anatomy of the trace classes will be de�ned in more detail in the following
section.

While in practice the trace model is created as a separate model in addition to the
target model when running the query, in our theoretical setting we will consider the

32

4.5. Constraints Creation

trace metamodel as part of the target metamodel Mt and the trace model embedded in the
target modelmt ∈ I (Mt). However we disallow all changes to the trace model in update
operations without explicitly speci�ed constraints in the next section. The trace model
can be seen as an explicit form of the ∼on-Relation, that can be used in OCL expressions.

4.5. Constraints Creation

In this section the de�nition of the ModelJoin operations from [17] should be extended
in two ways: (1) In addition to the target model an explicit trace model, describing the
mappings between the source and the target model, should be created. (2) Further for each
ModelJoin operation a set of OCL expressions should be derived. The OCL expressions
should be chosen in such way, that all target models that satisfy the OCL-constraints can
be translated back to the source models.

De�nition 19 (Translatable view). Let Msource be a source metamodel, Mtarдet be a target
metamodel with trace model and q : I (Msource) → I (Mtarдet) be a ModelJoin expression.
For a pair of source and target model instances 〈ms ,mt 〉 ∈ I (Msource) × I (Mtarдet) the target
model instance mt is called translatable, if there exists a translation q−1 that satis�es the
GetPut- and the PutGet -Property.

A ModelJoin expression is a composition of di�erent subexpressions. We will show
by induction over all subexpression that these two implications are valid: If the OCL-
constraints hold for an target model, then it is translatable. Further for a target metamodel
obtained from a query the OCL-constraints hold.

For the induction we make the following assumption:

Theorem 11 (Induction statement). Let Msource be a source metamodel, Mtarдet be a tar-

get model and q : I (Msource) → I (Mtarдet) be a ModelJoin expression with a set of OCL-

Constraints C derived according to the following de�nitions, then the following three state-

ments hold:

(i) For all source model instances ms ∈ I (Msource), the resulting target model instance

mt = q(ms) satis�es all OCL constraints in C .

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C , is translatable.

(iii) The de�nitions vara and varr are correct for all a ∈ Att
∗
c and r ∈ Ref.

First we show that the Induction statement holds for an empty ModelJoin expression.
Then we show by induction, that the induction statement holds for a ModelJoin expression
extended by an additional ModelJoin operator.

Theorem 12 (Induction base case). LetMsource be a source metamodel,Mtarдet be an empty

target metamodel and q : I (Msource) → I (Mtarдet) be a ModelJoin expression, then the In-

duction statement holds for the empty set C = ∅ of OCL-constraints. More precisely:

33

4. Constraints for Translatable Views

(i) For all pairs 〈ms ,mt 〉 ∈ I (Msource) × I (Mtarдet) the target model instancemt is trans-

latable.

(ii) The de�nitions vara and varr are correct for all a ∈ Att
∗
c and r ∈ Ref.

Proof. Because the target metamodel is empty, in particular does not contain any classes
and references, the target model mt cannot contain any elements. Therefore no class
instances can be created or updated and the trivial translation q−1(mt ,ms) :=ms satis�es
the GetPut- and the PutGet-Property. Further, the Get-Eqality for vara and varr
immediately follows from their de�nitions, because the meta variables map to the source
model elements directly. The Put-Eqality holds, because no source model elements are
changed by q−1.

4.5.1. Constraints for Join Expressions

The natural join operation is one of the basic join operations of ModelJoin. It takes two
classes and creates a new joined class with the join con�rming attributes of both classes.
To de�ne the corresponding OCL expressions and trace elements, we extend the set of
join-con�rming attribute pairs Aon

c1,c2 from [17] to include the corresponding target class
attributes:

De�nition 20 (Join-con�rming attributes with mapping). Let c1, c2, ct ∈ Class be classes,
then the set of join con�rming attributes with mapping Aon

c1,c2,ct is:

Aon
c1,c2,ct = {〈a1,a2,at 〉 ∈ Att∗c1 × Att∗c2 × Att∗ct | a1 =̃Att a2 ∧ a1 ∼on at ∧ a2 ∼on at }

De�nition 21 (Extensions for natural join). Let c1, c2 ∈ Class be two source classes,
ct ∈ Class be a target class and on= 〈c1, c2, ct 〉 be a natural join operator.

(i) Trace model The trace metamodel is extended by

Class′ = Class ∪ {con}
Ref′ = Ref ∪ {le�, right, target}

with a new class con and

associates(le�) = 〈con, c1〉, multiplicity(le�) = {1},
associates(right) = 〈con, c2〉, multiplicity(right) = {1},
associates(target) = 〈con, ct 〉, multiplicity(target) = {0, 1}.

The trace model is extended by additional instances of con, which represent the mapping:

∀ct ∈ σClass(ct)∀c1 ∈ σClass(c1)∀c2 ∈ σClass(c2)

(c1 ∼on ct ∧ c2 ∼on ct ⇒

∃con ∈ σClass(con) (c1 ∈ L(le�) (con)) ∧ (c2 ∈ L(right) (con)) ∧ (ct ∈ L(target) (con)))

(ii) Constraints The target metamodel should satisfy the following OCL-constraints:

34

4.5. Constraints Creation

context con
–– If the created attributes of the target class are updated, the new values will be used for the

left and right source classes, therefore they must be con�rm to all other constraints involving the

source attribute values:

inv attributeMappingLeft:
AND

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.target.at = vara1 (self.left))
inv attributeMappingRight:
AND

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.target.at = vara2 (self.right))
–– The mapping should not change after translation. Exactly the instances which had join con-

�rming attribute values before the update, should have join con�rming attributes after the up-

date:

inv keepMappingPairs:
Instancesc1->forAll(left |
Instancesc2->forAll(right |

(AND
〈a1,a2,at 〉∈Aon

c1,c2,ct
(left.a1 = right.a2)) =

(AND
〈a1,a2,at 〉∈Aon

c1,c2,ct
(vara1 (left) = vara2 (right)))

)
)

The following constraints for the target class ct determine how new instances are handled.
For simplicity the creation of new target class instances, mapping to existing source class
instances after the update translation, will be forbidden. However other strategies are
possible and lead to di�erent constraints. We will discuss them further in chapter 5.1.

context ct
–– New created target class instances should not map to old source class instances:

inv newTargetInstancesLeft:
isNew(self) implies Instancesc1->forAll(left | OR

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.at <> vara1 (left)))
inv newTargetInstancesRight:
isNew(self) implies Instancesc2->forAll(right | OR

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.at <> vara2 (right)))
–– New created target class instances should have no join con�rming attributes with other new

created target class instances

inv newTargetInstances:
isNew(self) implies ct .allInstances->select(other |
isNew(other) and other <> self

)->forAll(other |
OR
〈a1,a2,at 〉∈Aon

c1,c2,ct
(self.at <> other.at)

)
–– The target meta variables must con�rm to the corresponding attributes:

inv newAttributesLeft:
isNew(self) implies AND

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.at = var cta1 (sel f))
inv newAttributesRight:
isNew(self) implies AND

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.at = var cta2 (sel f))

35

4. Constraints for Translatable Views

–– New instances may only be created if the source class is not mapped anywhere else:

inv noCon�ictsWithOtherMappings:
∃c ′t ∈ Class(c ′t , ct ∧ (c1 ∼on c ′t ∨ c1 ∼on c ′t) ⇒ con.allInstances()->select(nj| nj.target = self
)->notEmpty())

with the substitution

isNew(v) := con.allInstances()->select(nj | nj.target = v)->isEmpty()

Finally we must ensure that if an instance of ct gets deleted we can delete both corre-
sponding source class instances of c1 respectively c2. Other deletion strategies are possible
and will be discussed later in chapter 5.2.

context con
–– If a target class instance got deleted, the source class instances get delete. So if a source class

instance got deleted, ensure that all corresponding target class instances got deleted

inv consistentDeletionLeft:
not Instancesc1->includes(self.left) implies self.target.oclIsUnde�ned()
inv consistentDeletionRight:
not Instancesc2->includes(self.right) implies self.target.oclIsUnde�ned()

(iii) Meta variables The attributes of the target class can be used as canonical attribute for
the meta variables vara1 and vara2 (Recall Section 4.2.1 Figure 4.2). We therefore extend
the de�nition of the meta variables vara1 and vara2 to use the corresponding target class
attributes at . If an instance of the source class c1 respectively c2 is mapped by an instance
of the trace class con to an instance of the target class ct , then the value of the attribute at
of the target class is returned. Otherwise the original de�nition is used:

∀〈a1,a2,at 〉 ∈ A
on
c1,c2,ct

var ′a1 (v1) := (let j = con.allInstances()->select(j| j.left = v1)->asOrderedSet()
in if j->notEmpty() and not j->�rst().target.oclIsUnde�ned() then

j->�rst().target.at
else
vara1 (v1)

endif
)
var ′a2 (v2) := (let j = con.allInstances()->select(j| j.right = v2)->asOrderedSet()
in if j->notEmpty() and not j->�rst().target.oclIsUnde�ned() then

j->�rst().target.at
else
vara2 (v2)

endif
)

If an instance of the target class gets deleted and leads to the deletion of the source
class instance at update translation, it can be the case that dangling references to the

36

4.5. Constraints Creation

deleted source classes must be deleted as well. This must be respected in the meta variable
de�nition of all incoming references. The references to source class instances, which get
deleted by the update translation, are excluded:

∀c ∈ Class ∀r ∈ {r ∈ Ref | associates(r) = 〈c, c1〉}
var ′r (v) := varr (v)->exclude(c | toDeleteLeft(c))
∀c ∈ Class ∀r ∈ {r ∈ Ref | associates(r) = 〈c, c2〉}
var ′r (v) := varr (v)->exclude(c | toDeleteRight(c))

with the substitutions

toDeleteLeft(v1) := (let j = con.allInstances()->select(j| j.left = v1)->asOrderedSet()
in j->notEmpty() and j->�rst().target.oclIsUnde�ned()

)
toDeleteRight(v2) := (let j = con.allInstances()->select(j| j.right = v2)->asOrderedSet()
in j->notEmpty() and j->�rst().target.oclIsUnde�ned()

)

(iv) Instancemeta functions To exclude the deleted class instances in constraints for other
ModelJoin expressions, we extend the de�nition of the class instance meta functions:

Instances
′
c1 := Instancesc1->exclude(left | toDeleteLeft(left))

Instances
′
c2 := Instancesc2->exclude(left | toDeleteRight(right))

De�nition 22 (Translation for natural join). Let on= 〈c1, c2, ct 〉 be a natural join operator
and ct ∈ σClass(ct) be a target class instance. The instance ct should be translated according
the following rule:

(i) If there exists a trace class instance con ∈ σClass(con) with L(target) (con) = ct , then for
all 〈a1,a2,at 〉 ∈ Aon

c1,c2,ct emit the update operations updateAtt(a1) (c1,σAtt(at) (ct))
and updateAtt(a2) (c2,σAtt(at) (ct)) where c1 ∈ L(left) (con) and c2 ∈ L(right) (con).

(ii) Else the two create class instance updates createClass(c1) (V1), createClass(c2) (V2)
with the attribute value sets V1 = {va1 = σAtt(at) (ct) | 〈a1,a2,at 〉 ∈ Aon

c1,c2,ct } and
V2 = {va2 = σAtt(at) (ct) | 〈a1,a2,at 〉 ∈ A

on
c1,c2,ct } should be emitted.

(iii) Further for each con ∈ σClass(con) with L(target) (con) = ∅ The following delete class
instance operations deleteClass(c) (c1) and deleteClass(c) (c2) where c1 ∈ L(left) (con)
and c2 ∈ L(right) (con) should be emitted. If the deleted class instance c1 was linked
by a reference r with associates(r) = 〈c, c1〉 ∈ Ref of instance c then the update
operation deleteRef(r) (c, c1) should be emitted. The corresponding delete operation
should be emitted for deleted instances of class c2.

Theorem 13 (Induction step for natural join). Let q : I (Msource) → I (Mtarдet) be a Mod-

elJoin expression with a set of OCL-ConstraintsC for which the Induction statement holds. If

q is extended by a arbitrary natural join expression to q′ : I (Msource) → I (M′tarдet) with the

set of OCL-Constraints C′, then the Induction statement holds for q′ and C′. More precisely:

37

4. Constraints for Translatable Views

(i) For all source model instances ms the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C′,

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C′, is translatable

(iii) The new de�nitions for var ′a1,var
′
a2 for all 〈a1,a2,at 〉 ∈ A

on
c1,c2,ct are correct.

(iv) The new de�nitions for the class instance meta functions Instances
′
c1 and Instances

′
c2

are correct.

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class the target class of the natural
join expression: on= 〈c1, c2, ct 〉.

First (i) is proven. Therefore letms ∈ I (Msource) be a source model instance.
We �rst want to show, thatmt = q

′(ms) satis�es all constraints inC . All constraints inC
do not depend directly on instances of ct , because ct does not exist in the ModelJoin view
de�nition without the join expression. Constraints inC can only depend on instances of ct
by the usage of meta variables. However if all the new de�nition var ′a1,var

′
a2 are correct,

which will be shown in (iii), then the Get-Eqality assures that the new de�nitions have
the same values as the original ones. So all instances of other classes then ct satisfy C
according to the premises.

So it just has to be shown that all new constraints in C′ \C are satis�ed.
The invariant attributeMappingLe� is satis�ed because for all 〈a1,a2,at 〉 ∈ Aon

c1,c2,ct it
is vara1 (self.le�) = self.le�.a1 according to the Get-Eqality of vara1 and self.le�.a1 =
self.target.at according to the natural join de�nition. All links of self ∈ σClass(con) are not
empty according to the the natural join de�nition. The analog argument can be used to
show that attributeMappingRight is satis�ed.

The invariant keepMappingPairs is satis�ed immediately because for all 〈a1,a2,at 〉 ∈
Aon
c1,c2,ct it is vara1 (le�) = le�.a1 and vara2 (right) = right.a2 according to the Get-Eqality

of vara1 and vara2 .
All invariants in the context of ct are immediately true, because the set con.allInstances()-

>select(nj | nj.target = self) in isNew(self) cannot be empty, since all instances ct ∈ σClass(ct)
are a target of a join trace instance con ∈ σClass(con) according to the natural join de�nition.

Next (ii) should be shown. We show that for a given pair 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet)

the target model instance m′t can be translated, by constructing a translation q′−1. Because
m′t without the instance of the class ct is translatable according to the premise, it will just
be shown that creation, update and deletion operations for ct instances are translatable.

Let ct be an instance of ct in m′t . We consider the case that the instance ct has a
corresponding mapping instance con, that means L(target) (con) = ct . For each attribute
at ∈ Att∗ct of 〈a1,a2,at 〉 ∈ Aon

c1,c2,ct the corresponding source attributes a1 and a2 should
be updated by updateAtt(a1) (c1,σAtt(at) (ct)) and updateAtt(a2) (c2),σAtt(at) (ct)) where
c1 ∈ L(left) (con) and c2 ∈ L(right) (con) according to De�nition 22.

Assuming the Put-Eqality holds for all join con�rming attributes vara1 and vara2 ,
then these update do not break the Put-Eqality, because the invariants attributeMap-
pingLe� and attributeMappingRight ensure that vara1 (c1) = σAtt(at) (ct) and vara2 (c2) =
σAtt(at) (ct), which are the update values.

38

4.5. Constraints Creation

The invariant keepMappingPairs ensure that the mapping between the existing source
class instances and the target class instance does not change by the attribute updates:

Assume that two instances c1, c2 have join con�rming attribute values, then it is
∀〈a1,a2,at 〉 ∈ A

on
c1,c2,ct (σAtt(a1) (c1) = σAtt(a2) (c2)). The invariant keepMappingPairs states

then that ∀〈a1,a2,at 〉 ∈ Aon
c1,c2,ct (vara1 (c1) = vara2 (c2)). According to the Put-Eqality

of vara1 and vara2 the instances have join con�rming attribute values after the update.
With the same argumentation it can be shown that if c1, c2 do not have join con�rming
attributes, they also do not have them after the update translation.

Consider now the case that an instance ct has no corresponding mapping instance
con, that means it was newly created. For new instances the following update operations
should be created createClass(c1) (V1), createClass(c2) (V2) with V1 = {va1 = σAtt(at) (ct) |
〈a1,a2,at 〉 ∈ Aon

c1,c2,ct } and V2 = {va2 = σAtt(at) (ct) | 〈a1,a2,at 〉 ∈ Aon
c1,c2,ct } according to

De�nition 22. Let c1 and c2 be the class instances created by these update operations.
We show that these instances only in�uence the instance ct , so that it cannot have side
e�ects to mapping expressions other than this natural join. The instances do not in�uence
other ModelJoin class mapping expressions because the noConflictsWithOtherMappings
invariant forbids the creation of new ct , if the class c1 or c2 is used in another mapping.
From the natural join de�nition it follows that c1 ∼on ct and c2 ∼on ct , because va1 = vat
for all 〈a1,a2,at 〉 ∈ Aon

c1,c2,ct . c1 has no join con�rming attribute values with another
existing source instance c′2 because of newTargetInstancesRight. Further c1 also has no
join con�rming attribute values with new source instance c′2 that will be created by
other update translations: Instances c′2 can only be created by the create class instance
operation for this natural join expression, because the noConflictsWithOtherMappings and
newTargetInstances forbid that ct has join con�rming attributes with another newly created
target class instance c′t . Therefore c1 has no join con�rming attributes with instance c′1
created by translating c′t . The same argument can be given for c2.

Last consider the case that there’s a mapping con with no target instance ct , that means
L(target) (con) = ∅. This can only happen, if the target instance got deleted. In this case
the following delete operation for the translation should be created: deleteClass(c) (c1)
and deleteClass(c) (c2) where c1 ∈ L(left) (con) and c2 ∈ L(right) (con) according to De�ni-
tion 22. That the translation only deletes exactly the source instances that map to already
deleted target class instances follows from the consistentDeletionLe� and consistentDele-
tionRight invariant.

Next (iii) will be shown. Let c1 ∈ σClass(c1) be a class instance. In the case there exists no
class instance con with L(left) (con) = c1 thenvar ′a1 (c1) = vara1 (c1) for 〈a1,a2,at 〉 ∈ Aon

c1,c2,ct
and the correctness follows from the correctness ofvar ′a1 . Consider now the case that there
exists a con with L(left) (con) = c1, then var ′a1 = σAtt(at) (ct). The Get-Eqality follows
from the natural join de�nition for at . The Put-Eqality from the chosen translations in
(ii).

Let now r ∈ Ref be a reference with associates(r) = 〈c, c1〉. If a target class instance
ct with c1 ∼ ct got deleted, then for the corresponding trace class instance con the tarдet
reference is unde�ned, therefore c1 is excluded from the links in the de�nition of var ′r (c).
The delete reference operation chosen in (ii) deletes the link on update translation. If
the target class instance did not got deleted, the link from the original meta variable is

39

4. Constraints for Translatable Views

included in the result. Hence the Put-Eqality is satis�ed. The Get-Eqality is satis�ed
because all trace class instances have a target inmt .

Last (iv) will be shown. Let c1 ∈ σClass(c1) be a class instance. If c1 does not have a
join partner, then it has no corresponding trace class instance con ∈ σClass(con). So it is not
excluded in the de�nition of Instances′c1 . If c1 does not have a join partner, then it has a
corresponding trace class instance con ∈ σClass(con) and the target link is set. So c1 is not
excluded as well. So Instances

′
c1 = Instancesc1 and the Get-Eqality of Instances′c1 follows

from the Get-Eqality of Instancesc1 .
The Put-Eqality follows from the translation rule in De�nition 22 and that c1 is

excluded if the trace class has an empty target link. The same argument can be given for
Instancesc2 .

The outer join works very similar to the natural join. However target class instances
may map to one source class only.

De�nition 23 (Extensions for outer join). Let c1, c2 ∈ Class be two source classes, ct ∈
Class be a target class and on= 〈c1, c2, ct 〉 a outer join operator.

(i) Trace model The trace metamodel is extended similarly to the natural join by

Class′ = Class ∪ {con}
Ref′ = Ref ∪ {le�, right, target}

with a new class con and

associates(le�) = 〈con, c1〉, multiplicity(le�) = {0, 1},
associates(right) = 〈con, c2〉, multiplicity(right) = {0, 1},
associates(target) = 〈con, ct 〉, multiplicity(target) = {0, 1}.

Note that the lower bound of the multiplicities for the references le� and right changed
to zero, because the target class instance may map only to one of the source classes.

The trace model is extended by additional instances of con that represent the mapping:

∀ct ∈ σClass(ct)∀c1 ∈ σClass(c1)

(c1 ∼on ct ⇒ ∃con ∈ σClass(con) (c1 ∈ L(le�) (con)) ∧ (ct ∈ L(target) (con)))

∧∀ct ∈ σClass(ct)∀c2 ∈ σClass(c2)

(c2 ∼on ct ⇒ ∃con ∈ σClass(con) (c2 ∈ L(right) (con)) ∧ (ct ∈ L(target) (con)))

(ii) Constraints The OCL-constraints are similar to the OCL-constraints for the natural
join, however they handle the case, that one of the source classes is unde�ned:
context con
–– If the created attributes of the target class are updated, the new values will be used for the

left and right source classes, therefore they must be con�rm to all other constraints involving the

source attribute values:

inv attributeMappingLeft:

40

4.5. Constraints Creation

not self.left.oclIsUnde�ned() implies AND
〈a1,a2,at 〉∈Aon

c1,c2,ct
(self.target.at = vara1 (self.left))

inv attributeMappingRight:
not self.right.oclIsUnde�ned() impliesAND

〈a1,a2,at 〉∈Aon
c1,c2,ct

(self.target.at =vara2 (self.right))
–– Themapping should not change when the attributes are update, therefore, exactly the instances

that had join con�rming attribute values before the update, should have join con�rming attributes

after the update:

inv keepMappingPairs:
Instancesc1->forAll(left |
Instancesc2->forAll(right |

(AND
〈a1,a2,at 〉∈Aon

c1,c2,ct
(left.a1 = right.a2)) =

(AND
〈a1,a2,at 〉∈Aon

c1,c2,ct
(vara1 (left) = vara2 (right)))

)
)

The constraints for new target class instances, namely newTargetInstancesLe�, newTar-
getInstancesRight, newTargetInstances, newAttributesLe�, newAttributesRight and the con-
straints consistentDeletionLe�, consistentDeletionRight are equal to the one in the natural
join de�nition.

(iii) Meta variables and Instance meta functions The de�nition of the meta variables vara1
and vara2 is expanded like in the natural join de�nition. The same applies to the meta
variables of the incoming references and the class instances meta functions.

De�nition 24 (Translation for outer join). Let on= 〈c1, c2, ct 〉 be an outer join operator
and ct ∈ σClass(ct) be a target class instance.

The instance ct should be translated according to the the translation rule for the natural
join in De�nition 22. Instances c1 ∈ I (c1) or respectably c2 ∈ I (c2) are only updated,
created or deleted, if c1 , ⊥ or respectably c2 , ⊥.

Theorem 14 (Induction step for outer join). Let q : I (Msource) → I (Mtarдet) be a ModelJoin

expression with a set of OCL-Constraints C for which the Induction statement holds. If q is

extended by a arbitrary outer join expression to q′ : I (Msource) → I (M′tarдet) with the set of

OCL-Constraints C′, then the Induction statement holds for q′ and C′. More precisely:

(i) For all source model instances ms the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C′,

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C′, is translatable.

(iii) The new de�nitions for var ′a1,var
′
a2 for all 〈a1,a2,at 〉 ∈ A

on
c1,c2,ct are correct.

(iv) The new de�nitions for the class instance meta functions Instances
′
c1 and Instances

′
c2

are correct.

41

4. Constraints for Translatable Views

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class the target class of the outer
join expression: on= 〈c1, c2, ct 〉.

For (i) the proof is the same as for the induction step the natural join.
We show (ii) by constructing a translation q′−1 that shows that ct is translatable like in

the proof for the correctness of the natural join. Let ct be an instance of ct inm′t .
We consider the case that the instance ct has a corresponding mapping instance con,

that means L(target) (con) = ct . For each attribute at ∈ Att∗ct of 〈a1,a2,at 〉 ∈ Aon
c1,c2,ct the

corresponding source attributes a1 and a2 should be updated according to De�nition 24.
The updates are the same such as the ones used in the proof for the correctness of the
natural join, thus they preserve the Put-Eqality.

The invariant keepMappingPairs ensure that the mapping between the existing source
class instances and the target class instance does not change by the attribute updates:
If c1 , ⊥ and c2 , ⊥ the argumentation from the natural join can be used, so we just
consider without loss of generality the case that c1 , ⊥ and c2 = ⊥.

Assume that there is no c2 with join con�rming attributes with c1. Then ∀c2 ∈ σClass(c2)
¬(∀〈a1,a2,at 〉 ∈ Aon

c1,c2,ct (σAtt(a1) (c1) = σAtt(a2) (c2))). The invariant keepMappingPairs
then states that ∀c2 ∈ σClass(c2)¬(∀〈a1,a2,at 〉 ∈ A

on
c1,c2,ct (vara1 (c1) = vara2 (c2))). Accord-

ing to the Put-Eqality of vara1 and vara2 all instances c2 have no join con�rming
attribute values after the update.

Consider now the case that an instance ct has no corresponding mapping instance con,
that means it was newly created. For new instances at least one of the following two
update operations should be created createClass(c1) (V1), createClass(c2) (V2) according to
De�nition 24. That these updates only in�uence the instance ct is shown in the correctness
proof of the natural join.

Last consider the case that there is a mapping con with no target instance ct , that means
L(target) (con) = ∅. This can only happen, if the target instance got deleted. In this case the
following update translations should be created deleteClass(c) (c1) and deleteClass(c) (c2)
for c1 ∈ L(left) (con) and c2 ∈ L(right) (con), if c1 respectively c2 is de�ned according to
De�nition 24. That the translation only deletes exactly the target model class instances
that are already deleted follows from the consistentDeletionLe� and consistentDeletionRight
invariant.

For (iii) and (iv) the proof is the same as for the induction step for the natural join.

De�nition 25 (Extensions for theta join). Let c1, c2 ∈ Class be two source classes, ct ∈
Class be a target class, θ ∈ Exprtc1 × Exprtc2 → ExprBoolean be a logical expression and
onθ= 〈c1, c2, ct 〉 be theta join operator.

(i) Trace model The trace metamodel is extended by

Class′ = Class ∪ {con}
Ref′ = Ref ∪ {le�, right, target}

42

4.5. Constraints Creation

with a new class con and

associates(le�) = 〈con, c1〉, multiplicity(le�) = {1},
associates(right) = 〈con, c2〉, multiplicity(right) = {1},
associates(target) = 〈con, ct 〉, multiplicity(target) = {0, 1}.

The trace model is extended by additional instances of con that represent the mapping:

∀ct ∈ σClass(ct)∀c1 ∈ σClass(c1)∀c2 ∈ σClass(c2)

(c1 ∼on ct ∧ c2 ∼on ct ⇒

∃con ∈ σClass(con) (c1 ∈ L(le�) (con)) ∧ (c2 ∈ L(right) (con)) ∧ (ct ∈ L(target) (con)))

(ii) Constraints The target metamodel should satisfy the OCL-constraints:

context con
–– The mapping should not change when the target model is updated, therefore, exactly the in-

stances for that θ hold before the update, should θ hold after the update. However deleted instances

must be excluded:

inv keepMappingPairs:
Instancesc1->forAll(left |
Instancesc2->forAll(right |
θ (left, right) = varθ (le�,right)

)

We further consider two cases here. The �rst case is that either varc1→ct
θ (v1,v2),v1, var

c2→ct
θ (v1,v2),v2

or varc1→ct ,c2→ct
θ (v1,v2),v1,v2 is not de�ned or well typed. In this case we cannot reason about new

target instances and therefore no new target class instances are allowed to be created.

context ct
–– It is not allowed to create new target instances:

inv noNewTargetInstances:
con.allInstances()->select(tj | tj.target = self)->notEmpty()

In the case that varc1→ct
θ (v1,v2),v1, var

c2→ct
θ (v1,v2),v2 and varc1→ct ,c2→ct

θ (v1,v2),v1,v2 are de�ned and well-typed,
new target classes must satisfy the following constraints:

context ct
inv newTargetInstancesLeft:
isNew(self) implies Instancesc1->forAll(left |
not var c2→ct

θ (le�,self),self
)
inv newTargetInstancesRight:
isNew(self) implies Instancesc2->forAll(right |
not var c1→ct

θ (self,right),self
)
inv newTargetInstances:

43

4. Constraints for Translatable Views

isNew(self) implies ct .allInstances->select(other |
con.allInstances()->select(tj | tj.target = other)->isEmpty() and other <> self

)->forAll(other |
not var c1→ct ,c2→ct

θ (self,other),self,other
)
inv isJoinCon�rming:
isNew(self) implies let self2 = self in var c1→ct ,c2→ct

θ (self,self2),self,self2
–– New instances may only be created if the source class is not mapped anywhere else:

inv noCon�ictsWithOtherMappings:
∃c ′t ∈ Class(c ′t , ct ∧ (c1 ∼on c ′t ∨ c1 ∼on c ′t) ⇒ con.allInstances()->select(oj| oj.target = self
)->notEmpty())

(iii) Meta variables and Instance meta functions The OCL-constraint consistentDeletionLe�
and consistentDeletionRight de�ned in the natural join extensions should also be created to
ensure consistent deletion for theta joins, too. Further the meta variables of the incoming
references and the class instances meta functions should be expanded like in the natural
join extension.

De�nition 26 (Translation for theta join). Let onθ= 〈c1, c2, ct 〉 be a theta join operator and
ct ∈ σClass(ct) be a target class instance. The instance ct should be translated according
the following rule:

(i) If there exists no trace class instance con ∈ σClass(con) with L(target) (con) = ct then
the create class instance operations createClass(c1) (V1), createClass(c2) (V2) with
V1 = ∅ and V2 = ∅ should be emitted.

(ii) Further for each con ∈ σClass(con) with L(target) (con) = ∅ The following delete class
instance operations deleteClass(c) (c1) and deleteClass(c) (c2) where c1 ∈ L(left) (con)
and c2 ∈ L(right) (con) should be emitted. If the deleted class instance c1 was
linked by a reference r = 〈c, c1〉 ∈ Ref of instance c then the update operation
deleteRef(r) (c, c1) should be emitted. The corresponding delete operation should be
emitted for deleted instances of class c2.

Theorem 15 (Induction step for theta join). Let q : I (Msource) → I (Mtarдet) be a ModelJoin

expression with a set of OCL-Constraints C for which the Induction statement holds. If q is

extended by a arbitrary theta join expression to q′ : I (Msource) → I (M′tarдet) with the set of

OCL-Constraints C′, then the Induction statement holds for q′ and C′. More precisely:

(i) For all source model instances ms the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C′.

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C′, is translatable.

(iii) The new de�nitions for the class instance meta functions Instances
′
c1 and Instances

′
c2

are correct.

44

4.5. Constraints Creation

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class be the target class of the
theta join operator: onθ= 〈c1, c2, ct 〉.

First (i) is proven. Therefore letms ∈ I (Msource) be a source model instance. mt = q
′(ms)

satis�es all constraints in C because all constraints in C do not depend on instances of ct
and all instances of other classes then ct satisfy C according to the premises. So it just has
to be shown that all new constraints in C′ \C are satis�ed.

The keepMappingPairs invariant is true, because of the Get-Eqality of varθ (le�,right) .
All invariants in the context of ct are immediately true, because the set con.allInstances()-
>select(j | j.target = self) in isNew(self) cannot be empty, since all instances ct ∈ σClass(ct)
are a target of a join trace instance con ∈ σClass(con) according to the theta join de�nition.

We show (ii) by constructing a translation q′−1 and show that ct is translatable like in
the proof for the correctness of the natural join. Let ct be an instance of ct inm′t .

Since ct has no attribute values by default, no attributes can be changed and the invariant
keepMappingPairs ensure that the mapping between the existing source class instances
and the target class instance does not change by other updates. This follows directly from
the Put-Eqality of varθ (le�,right) .

Consider now the case that an instance ct has no corresponding mapping instance
con, that means it was newly created. For new instances at least one of the following
two update operations should be created createClass(c1) (V1), createClass(c2) (V2) accord-
ing to De�nition 26. Because of the isJoinConfirming invariant and the Put-Eqality
of varc1→ct ,c2→ct

θ (self,self2),self,self2, we have ϕ (le�, right)σ
le�,right

(c1, c2) = true for the newly created
instances by the create operations. Leading to c1 ∼on ct and c2 ∼on ct . Because of the
newTargetInstancesLe� and newTargetInstancesRight invariant and the Put-Eqality of
varc1→ct

θ (self,right),self, there exists no class instance c′1 with ϕ (le�, right)σ
le�,right

(c′1, c2) = true and
no new other joining pairs are created. The same argument can be given for other class
instances c′2.

For (iii) the proof is the same as for the induction step for the natural join.

4.5.2. Constraints for Keep Expressions

De�nition 27 (Extensions for keep reference). Let c1, ĉ ∈ Class be two source classes,
r ∈ Ref be a source reference with associates(r) = 〈c1, ĉ〉, ct , ĉt ∈ Class be two target
classes, rt ∈ Ref be a target metamodel reference with associates(rt) = 〈ct , ĉt 〉 and κRef =

〈r , rt 〉 a keep reference expression of a join on= 〈c1, c2, ct 〉 where c1 is the left joined class.

(i) Trace model The metamodel is extended by

Class′ = Class ∪ {cκRef }

Ref′ = Ref ∪ {source, target}

with a new class cκRef and

associates(source) = 〈cκRef, ĉ〉, multiplicity(source) = {1},
associates(target) = 〈cκRef, ĉt 〉, multiplicity(target) = {0, 1}.

45

4. Constraints for Translatable Views

The trace model is extended by additional instances of cκRef that represent the mapping:

∀ĉ ∈ σClass(ĉ)∀ĉt ∈ σClass(ĉt)

(ĉ ∼on ĉt ⇒∃cκRef
∈ σClass(cκRef) (ĉ ∈ L(source) (cκRef

) ∧ ĉt ∈ L(target) (cκRef
)))

(ii) Constraints The following constraints should be created:

context ĉt
–– Each target class instance must be either a join target class instance or referenced from least

one target class instance, that contains the target reference:

inv isLinked:
OR{on=〈c ′1,c ′2, ĉt 〉} (con.allInstances()->select(j|j.target = self)->notEmpty()) or
OR{κRef=〈r,rt 〉 | associates(rt)=〈ct , ĉt 〉} (cκRef .allInstances()->select(k|k.target = self)->notEmpty())
–– New instances may only be created if the source class is not mapped anywhere else:

inv noCon�ictsWithOtherMappings:
∃c ′t ∈ Class(c ′t , ĉt∧ĉ ∼on c ′t ⇒ cκRef .allInstances()->select(k| k.target = self)->notEmpty())

Further the references must be equal to the the corresponding meta variable and target
meta variable:

context cκRef

–– The value of the target attribute must be the same as the updated value of the source attribute:

inv referenceMapping:
self.target.r->collect(t |
cκRef .allInstances()->select(k | k.target = t)->asOrderedSet()->�rst().source

) = varr (self.left)

context ct
inv referenceTargetMapping:
self.r = var ctr (self)

(iii) Meta variables The references in the target model can be used as canonical references
for the reference r , thus the de�nition of varr is extended:

46

4.5. Constraints Creation

var ′r (v1) := (let j = con.allInstances()->select(j| j.left = v1)->asOrderedSet()
in if j->notEmpty() and not j->�rst().target.oclIsUnde�ned() then
Instancesĉ ->select(c |

j->�rst().target.rt ->includes(
cκRef .allInstances()->select(k| k.source = c)->asOrderedSet()->�rst().target

)
)

else
varr (v1)

endif
)

In case c1 is not the source class of a join, but of a keep reference expression κ̃Ref = 〈r̃ , r̃t 〉
with associates(r̃) = 〈c̃, c1〉, then the de�nition varr is extended by:

var ′r (v1) := (let k = cκ̃Ref .allInstances()->select(k| k.source = v1)->asOrderedSet()
in if k->notEmpty() and not k->�rst().target.oclIsUnde�ned() then
Instancesĉ ->select(c |

k->�rst().target.rt ->includes(
cκRef .allInstances()->select(k| k.source = c)->asOrderedSet()->�rst().target

)
)

else
varr (v1)

endif
)

De�nition 28 (Translation for keep reference). Let κRef = 〈r , rt 〉 be a keep reference
expression and ct ∈ σClass(ct) and ĉt ∈ σClass(ĉt) be target class instances. We only
consider the case, where κRef is a keep reference expression of a join on= 〈c1, c2, ct 〉 where
c1 is the left joined class. The case for a keep reference expression is de�ned analogically.
The pair ct , ĉt should be translated according the following rules:

(i) Let cκRef
∈ σClass(cκRef) be a trace class instance of ĉt with L(target) (cκRef

) = ct ,
ĉ ∈ L(source) (cκRef

), con be a trace class instance with ct ∈ L(target) (con) and
c1 ∈ L(source) (con).
If ĉt ∈ L(rt) (ct) and ĉ < L(r) (c1) then the create link operation createRef(r) (c1, ĉ)
should be emitted. If ĉt < L(rt) (ct) and ĉ ∈ L(r) (c1), then the delete link operation
deleteRef(r) (c1, ĉ) should be emitted.

(ii) If there exists no trace class instance cκRef
∈ σClass(cκRef) with ct ∈ L(target) (cκRef

),
then the create class instance operation createClass(ĉ1) (V1) with V1 = ∅ should be
emitted, if no other translation of ĉt creates an instance already. Let ĉ the new
created instance. Further the create reference operation createRef(r) (c1, ĉ) should
be emitted.

47

4. Constraints for Translatable Views

(iii) Further for each cκRef
∈ σClass(cκRef) with L(target) (cκRef

) = ∅, the delete reference
operation deleteRef(r) (c1, ĉ) with c1 = L(source) (con) and ĉ ∈ L(source) (cκRef

)
should be emitted.

Theorem 16 (Induction step for keep reference). Let q : I (Msource) → I (Mtarдet) be
a ModelJoin expression with a set of OCL-Constraints C for which the Induction statement

holds. If q is extended by a arbitrary keep reference expression to q′ : I (Msource) → I (M′tarдet)
with the set of OCL-Constraints C′, then the Induction statement holds for q′ and C′. More

precisely:

(i) For all source model instances ms the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C′.

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C′, is translatable.

(iii) The new de�nition for var ′r is correct.

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class the target class of the join
on= 〈c1, c2, ct 〉where c1 is the left joined class of the keep reference expression κRef = 〈r , rt 〉.
We only consider the case, where κRef is a keep reference expression of the join on. The
case for a keep reference expression is de�ned analogically.

First (i) is proven. Therefore letms ∈ I (Msource) be a source model instance. mt = q
′(ms)

satis�es all constraints in C because all constraints in C do not depend on instances of ĉ
and all instances of other classes then ĉt satisfy C according to the premises. So it just has
to be shown that all new constraints in C′ \C are satis�ed.

The isLinked invariant is true, because of the de�nition of the keep reference expression.
The noConflictsWithOtherMappings invariant is true because for every instance ĉt there
exists a keep reference class instance according to the de�nition.

We show (ii) by constructing a translation q′−1. Let ĉt be an instance of ĉt inm′t . Since ĉt
has no attribute values by default, no attributes can be changed. We consider the case that
an instance ĉt has a corresponding mapping instance cκRef

, that means L(target) (cκRef
) = ĉt .

For each deleted link with (ct , ĉt) ∈ σRef(rt) a delete reference operation deleteRef(r) (c1, ĉ)
should be created and for each new link a create reference operation createRef(r) (c1, ĉ)
should be created according to De�nition 28.

Consider now the case where an instance ĉt has no corresponding mapping instance
cκRef

, that means it was newly created. The update operation createClass(ĉ1) (V1) with
V1 = ∅ should be created according to De�nition 28. For each Link (ct , ĉt) ∈ σRef(rt)
a new link with createRef(r) (c, ĉ) should be created. Because of the isLinked invariant,
there exists at least one link. Because of the Put-Eqality of varr all deleteRef(r) and
deleteRef(r) do not con�ict with other updates.

48

4.5. Constraints Creation

Finally we show (iii). Let c1 be a class instance of c1. If there exists no con with the link
L(target) (con) = ĉ1 then var ′r (c1) = varr (c1) and the Get-Eqality and Put-Eqality
follows from varr (c1). If there exist such an instance con then it follows from the keep
reference de�nitions that there is for each link in r a link in rt with corresponding mapping
instances cκRef

and its easy to verify that the Get-Eqality holds. The Put-Eqality
holds, because of the chosen translations above.

De�nition 29 (Extensions for keep attribute). Let a : tc → t ∈ Att∗c be a source attribute
of a class c1 ∈ Class, at : tc̃ → t ∈ Att∗ct be a target attribute of a target class ct ∈ Class
and a κAtt = 〈a1,at 〉 be a keep attribute expression of a join on= 〈c1, c2, ct 〉 where c1 is the
left joined class.

(i) Constraints The target model should satisfy the OCL-constraints:

context con
–– The value of the target attribute must be the same as the updated value of the source attribute:

inv attributeMapping:
self.target.at = vara1 (self.left)

context ct
inv attributeTargetMapping:
self.at = var cta1 (self)

If the keep attribute expression κAtt references a attribute of the right class c2 the same
OCL constraints are created, but using c2 instead of c1 and right instead of le�.

If the keep attribute expression κAtt = 〈a1,at 〉 is the parent of a keep reference expres-
sion κRef = 〈r , rt 〉 instead of a join, the following OCL-constraints are created instead:

context cκRef

–– The value of the target attribute must be the same as the updated value of the source attribute:

inv attributeMapping:
self.target.at = vara1 (self.source)

context ct
inv attributeTargetMapping:
self.at = var cta1 (self)

(ii)meta variables The new attributes of the target class can be used as canonical attribute
for vara1 . The de�nition of vara1 is extended in the join case by

49

4. Constraints for Translatable Views

var ′a1 (v1) := (let j = con.allInstances()->select(j| j.left = v1)->asOrderedSet()
in if j->notEmpty() and not j->�rst().target.oclIsUnde�ned() then

j->�rst().target.at
else
vara1 (v1)

endif
)

and in the keep reference case by

var ′a1 (v1) := (let k = cκRef .allInstances()->select(k| k.source = v1)->asOrderedSet()
in if k->notEmpty() and not k->�rst().target.oclIsUnde�ned() then

k->�rst().target.at
else
vara1 (v1)

endif
)

De�nition 30 (Translation for keep attribute). Let κAtt = 〈a1,at 〉 be a keep reference
expression and ct ∈ σClass(ct) be a target class instance. The instance ct should be translated
according the following rule:

(i) If there exists no trace class instance con ∈ σClass(con) with L(target) (con) = ct then
the attribute value set V1 in the create class instance operation createClass(c1) (V1)
from the context class, should be extended by the value va1 = σAtt(at) (ct).

(ii) If there exists a trace class instance con ∈ σClass(con), then the attribute a1 should be
updated by the update operation updateAtt(a1) (c1,σAtt(at) (ct)) with ct ∈ L(left) (con).

Theorem 17 (Induction step for keep attribute). Let q : I (Msource) → I (Mtarдet) be a
ModelJoin expression with a set of OCL-Constraints C for which the Induction statement

holds. If q is extended by a arbitrary keep attribute expression to q′ : I (Msource) → I (M′tarдet)
with the set of OCL-Constraints C′, then the Induction statement holds for q′ and C′. More

precisely:

(i) For all source model instances ms the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C′.

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C′, is translatable.

(iii) The new de�nition for var ′a1 is correct.

50

4.5. Constraints Creation

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class the target class of the
join on= 〈c1, c2, ct 〉 where c1 is the left joined class and κAtt = 〈a1,at 〉 a keep attribute
expression.

First (i) is proven. Therefore letms ∈ I (Msource) be a source model instance. mt = q
′(ms)

satis�es all constraints in C because all constraints in C do not depend on at and are
satis�ed according to the premises. So it just has to be shown that all new constraints in
C′ \C are satis�ed.

The attributeMapping invariant is true, because of the de�nition of the keep attribute
expression. The attributeTargetMapping invariant is true because of the Get-Eqality of
varcta1 .

We show (ii) by constructing a translation q′−1. Let ct be an instance of ct inm′t .
We consider the case that the instance ct has a corresponding mapping instance con, that

means L(target) (con) = ct . The attribute a1 should be updated by the update operation
updateAtt(a1) (c1,σAtt(at) (ct)) according to De�nition 30.

Assuming that the Put-Eqality holds forvara1 , then the update dos not break the Put-
Eqality, because the invariants attributeMapping ensure that vara1 (c1) = σAtt(at) (ct),
which are the update values.

Consider now the case that an instance ct has no corresponding mapping instance con,
that means it was newly created. For these instances the attribute value set V1 should be
extended according to De�nition 30. This does not con�ict with other Updates because of
the Put-Eqality of varcta1 .

(iii) can be shown like in the proof of the induction step for the natural join.

De�nition 31 (Extensions for calculate attribute). Let at : tc → t ∈ Att∗ct be a target
attribute of a target class ct ∈ Class, ϕ : Exprtc1 × Exprtc2 → Exprt be a function and
δϕ = 〈c1, c2,at 〉 be a calculate attribute expression of a join on= 〈c1, c2, ct 〉 where c1 is the
left and c2 the right joined class.

(i) Constraints The target model should satisfy the OCL-constraints:

context con
–– The value of the target attribute must be calculated from the source attributes

inv attributeMapping:
self.target.at = varϕ (self.le�,self.right)

If varc1→ct ,c2→ct
ϕ (v1,v2),v1,v2 is not de�ned then no new instances can be created

context ct
inv attributeTargetMapping:
con.allInstances()->select(j| j.target = self)->notEmpty()

If varc1→ct ,c2→ct
ϕ (v1,v2),v1,v2 is de�ned, new instances are allowed if the following OCL-constraints

are satis�ed:

51

4. Constraints for Translatable Views

context ct
inv newAttributes:
con.allInstances()->select(j| j.target = self)->isEmpty() implies
self.at = let self2 = self in var c1→ct ,c2→ct

ϕ (self,self2),self,self2
inv attributeTargetMapping:
∃c ′t ∈ Class(c ′t , ct ∧ (c1 ∼on c ′t ∨ c2 ∼on c ′t) ⇒

con.allInstances()->select(j| j.target = self)->notEmpty())

If the keep attribute expression κAtt references a attribute of the right class c2 the same
OCL constraints are created, but using c2 instead of c1 and right instead of le�.

If the keep attribute expression κAtt = 〈a1,at 〉 is the parent of a keep reference expres-
sion κRef = 〈r , rt 〉 instead of a join, ϕ only depends on one source class and the following
OCL-constraints are created instead:

context cκRef

–– The value of the target attribute must be calculated from the source attributes

inv attributeMapping:
self.target.at = varϕ (self.source)

If varc1→ct
ϕ (v),v is not de�ned then no new instances can be created

context ct
inv attributeTargetMapping:
con.allInstances()->select(j| j.target = self)->notEmpty()

If varc1→ct
ϕ (v),v is de�ned, new instances are allowed if the following OCL-constraints are

satis�ed:

context ct
inv newAttributes:
cκRef .allInstances()->select(k| k.target = self)->isEmpty() implies self.at = var c1→ct

ϕ (self),self
inv attributeTargetMapping:
∃c ′t ∈ Class(c ′t , ct ∧ (c1 ∼on c ′t ∨ c2 ∼on c ′t) ⇒

cκRef .allInstances()->select(k| k.target = self)->notEmpty())

De�nition 32 (Translation for calculate attribute). Let δϕ = 〈c1, c2,at 〉 be a calculate
attribute expression. No update operations are emitted at update translation.

Theorem 18 (Induction step for calculate attribute). Let q : I (Msource) → I (Mtarдet) be
a ModelJoin expression with a set of OCL-Constraints C for which the Induction statement

holds. If q is extended by a arbitrary calculate attribute expression to q′ : I (Msource) →
I (M′tarдet) with the set of OCL-Constraints C′, then the Induction statement holds for q′ and
C′. More precisely:

(i) For all source model instances ms the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C′.

52

4.5. Constraints Creation

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Msource)×I (M

′
tarдet) a target model instancem′t , that satis�es

C′, is translatable

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class the target class of the join
on= 〈c1, c2, ct 〉 where c1 is the left joined class and κAtt = 〈a1,at 〉 a calculate attribute
expression.

First (i) is proven. Therefore letms ∈ I (Msource) be a source model instance. mt = q
′(ms)

satis�es all constraints in C because all constraints in C do not depend on at and are
satis�ed according to the premises. So it just has to be shown that all new constraints in
C′ \C are satis�ed.

The attributeMapping invariant is true, because of the de�nition of the calculate attribute
expression. All other constraints are immediate satis�ed because all target class instances
have a mapping and so the sets con.allInstances()->select(j| j.target = self) are not empty.

We show (ii) by constructing a translation q′−1. Let ct be an instance of ct inm′t .
For all instances ct no additional update operations are emitted and so the Put-Eqality

is not in�uenced.

Aggregation expressions in ModelJoin can be handled similar to calculate attributes,
because the aggregation function can be expressed as OCL expression and therefore no
extra de�nition extension is given here.

4.5.3. Handling of Additional Supertypes and Subtypes

Because keep supertype and keep subtype operations do not in�uence the system state of
the target model, in particular no additional instances of the super-/subtype are created
and only the metamodel hierarchy is extended, no additional trace classes are needed. The
constraints for keep operation nested in a keep supertype and keep subtype operators
should be created such as they would be part of the outer join or keep reference operator.

4.5.4. Regarding Multiplicity Restrictions of the Source Metamodels

We silently ignored the multiplicity restrictions of references and attributes in the source
model. The multiplicity restrictions can be violated by the translation of a create class
instance operation. This is for example the case, if a source attribute does not get mapped
to a target class attribute and so its value is missing for new class instances. This problem
could be handled in three ways:

(1) For each primitive type there is an default value, that is used for missing values.

(2) The syntax of ModelJoin is extended, so that a value or function to generate the
missing attributes can be given at view de�nition time.

(3) The missing attribute values are requested from the user at translation time or
updated by the user manually after the translation.

The same problem arises with outgoing references for newly created source classes and
could be handled in the same way as for attributes. We propose a solution for (1) and (2)
by introducing source attribute update expressions in chapter 5.3.

53

4. Constraints for Translatable Views

4.6. Deciding Translatability

We have shown that the induction statement holds for all ModelJoin operators and an
empty ModelJoin view de�nition. In conclusion, we can formulate the induction statement
for an arbitrary ModelJoin view de�nition:

Theorem 19 (Translatability). Let q : I (Ms) → I (Mt) be a ModelJoin expression with a set

of OCL-Constraints C , then the Induction statement holds for q and C . More precisely:

(i) For all source model instances ms , the resulting target model instance mt = q′(ms)
satis�es all OCL constraints in C .

(ii) For all pairs 〈ms ,m
′
t 〉 ∈ I (Ms) × I (M

′
t) a target model instancem′t , that satis�es C , is

translatable.

Proof. The properties can be shown for every ModelJoin expressions by induction over
the used ModelJoin operators using the corresponding induction step theorems.

To check the OCL constraints, we need to generate the OCL constraints for the ModelJon
view de�nition and check them against the source and target model.

De�nition 33. Let q : I (Ms) → I (Mt) be a ModelJoin view de�nition. We de�ne OCLq :
I (Ms) × I (Mt) → {true, f alse} as the function, that decides, if the OCL expression for q
do hold for a given instance pair 〈ms ,m

′
t 〉 ∈ I (Ms) × I (Mt).

Using the OCL constraints and the inductive de�nition of q−1, we have found a solution
for the Restricted View-Update-Problem:

Theorem 20 (Solution for the Restricted View-Update-Problem). Let Q ∈ Ms ×Mt be a

ModelJoin view de�nition, then the inductively de�ned translation q−1 together with the set

Vr (ms) = {mt ∈ I (Mt) | OCLq (ms ,mt)} solve the Restricted View-Update-Problem.

Proof. Let Q ∈ Ms × Mt be a ModelJoin view de�nition. A translation q−1 exists by
construction. Further Theorem 19 show the totality of Vr (ms) and for all pairs 〈ms ,m

′
t 〉 ∈

I (Ms) × I (M
′
t) with m′t ∈ Vr (ms), that the model m′t is translatable. So the PutGet- and

GetPut-Property holds for q−1.

4.7. Inferring About the Translatability of Updates

It might be desired to show the translatability of a given update sequence in general.
Currently we need a concrete models to check the OCL constraints and decide the trans-
latability. To decide the translatability in general, we need to check the OCL constraints
for generality. This can be done manually or using an automatic solver. Clavel et al. [19]
showed for a subset of OCL that OCL Constraints can be checked for unsatis�ability by
translating them into �rst order logic. Then automated theorem prover (e.g., Prover9 [47])
and SMT solver (e.g., Yices [5]) can automatically check the unsatis�ability. Alternatively
interactive proof tools could may be used. For example the KeY tool [10] can translate OCL
constraints into �rst order predicate logic. The user then can interact wit the KeY theorem

54

4.7. Inferring About the Translatability of Updates

prover to logically reason about a update operation. The proposed tools and approaches
may not support all needed OCL constructs. We will demonstrate only the basic approach
by manually proo�ng an easy example.

We know, that the constraints are satis�ed before the update. Therefore we can use the
OCL constraints generated by the ModelJoin expression as premise:

Theorem 21. Let q : I (Ms) → I (Mt) be a ModelJoin view de�nition andu : I (Mt) → I (Mt)
be a update operation. If

∀ms ∈ I (Ms) (OCLq (ms ,q(ms)) ⇒ OCLq (ms ,u (q(ms))))

then u is translatable for all target models.

Showing the generality of OCL constraints is very hard. However for some cases it is
possible and Theorem 21 can be applied. For example we can show the translatability in
the following case:

Consider the ModelJoin view de�nition in Listing 4.4 and the update operation in
Listing 4.5.

� �
1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name as name

4 keep attributes uml.NamedElement.name as alias

5 }� �
Listing 4.4: Example ModelJoin view de�nition.

� �
1 update jointarget.Interface {

2 name: "foo",

3 alias: "foo"

4 } where "jointarget.Interface.name = ’bar’"� �
Listing 4.5: Example ModelJoin update operation.

55

4. Constraints for Translatable Views

The generated OCL expressions are:

context con
inv keepMappingPairs:
classi�er.Interface.allInstances->forAll(left |

uml.Interface.allInstances->forAll(right |
(left.name = right.name) = (varname (left) = varname (right))

)
inv attributeMappingName:
self.target.name = varname (self.left)
inv attributeMappingAlias:
self.target.alias = varname (self.right)
context jointarget.Interface
inv noNewTargetInstances:
con.allInstances()->select(tj | tj.target = self)->notEmpty()
inv attributeTargetMappingName:
self.name = var

jointarget.Interface
name (self)

inv attributeTargetMappingAlias:
self.alias = var

jointarget.Interface
name (self)

The update semantic of the update operation withms ,mt ,m
′
t like in Theorem 21 is

σ
m′t
Att(name) (c) =

{
“foo”, σmt

Att(name) (c) = “bar”
σmt

Att(name) (c), else

σ
m′t
Att(alias) (c) =

{
“foo”, σmt

Att(alias) (c) = “bar”
σmt

Att(alias) (c), else

σ
m′t
Ref(r) = σ

mt
Ref(r)

σ
m′t
Class(c) = σ

mt
Class(c)

We want to show the translatability of the update operation in general. As addi-
tional premise we suppose, that there exists no source class instance of the classes classi-
fier.Interface and uml.Interface named “foo”. Combining this premise and Theorem 21, the
following statement must be shown.

∀c1 ∈ σ
σms

Class(classifier.Interface) : σ
ms
Att(name) (c1) , “foo”

∧∀c2 ∈ σ
σms

Class(uml.Interface) : σ
ms
Att(name) (c2) , “foo”

∧OCLq (ms ,mt)

=⇒ OCLq (ms ,m
′
t)

We �rst show the invariant keepMappingPairs: Let c1 ∈ σ
σms

Class(classifier.Interface) and
c2 ∈ σ

σms

Class(uml.Interface) be two source instances.

56

4.7. Inferring About the Translatability of Updates

According to the keep attribute de�nition it is

σmt
Att(name) (ct) = σ

ms
Att(name) (c1) and σmt

Att(alias) (ct) = σ
ms
Att(alias) (c1)

Assume that σms
Att(name) (c1) = σ

ms
Att(name) (c2). Let ct ∈ σ

σmt

Class(jointarget.Interface) be
a target class instance with c1 ∼on ct and c2 ∼on ct . We either have

σms
Att(name) (c1) , “bar ′′

=⇒ σ
m′t
Att(name) (ct) = σ

mt
Att(name) (ct) and σm

′
t

Att(alias) (ct) = σ
mt
Att(alias) (ct)

=⇒ σ
m′t
Att(name) (ct) = σ

m′t
Att(alias) (ct)

or

σms
Att(name) (c1) = “bar”

=⇒ σ
m′t
Att(name) (ct) = “foo” and σm

′
t

Att(alias) (ct) = “foo”

=⇒ σ
m′t
Att(name) (ct) = σ

m′t
Att(alias) (ct)

According to the Put-Eqality we have in both cases

varname(c1) = σ
m′t
Att(name) (ct) and

varname(c2) = σ
m′t
Att(alias) (ct)

=⇒ varname(c1) =varname(c2)

Assume now that σms
Att(name) (c1) , σ

ms
Att(name) (c2). For c1 we have either

σms
Att(name) (c1) , “bar”

=⇒ ∀ct ∈ σ
σmt

Class(jointarget.Interface) : c1 ∼on ct → σ
m′t
Att(name) (ct) = σ

mt
Att(name) (ct)

∧∀ct ∈ σ
σmt

Class(jointarget.Interface) : c2 ∼on ct →

(σ
m′t
Att(name) (ct) = σ

mt
Att(name) (ct) ∨ σ

m′t
Att(name) (ct) = “foo”)

=⇒ ∀ct ∈ σ
σmt

Class(jointarget.Interface) : c1 ∼on ct → σ
m′t
Att(name) (ct) = σ

mt
Att(name) (ct)

∧∀ct ∈ σ
σmt

Class(jointarget.Interface) : c2 ∼on ct → σ
m′t
Att(name) (ct) , σ

ms
Att(name) (c1)

or

σms
Att(name) (c1) = “bar”

=⇒ ∀ct ∈ σ
σmt

Class(jointarget.Interface) : c1 ∼on ct → σ
m′t
Att(name) (ct) = “foo”

∧∀ct ∈ σ
σmt

Class(jointarget.Interface) : c2 ∼on ct → σ
m′t
Att(name) (ct) = σ

mt
Att(name) (ct))

=⇒ ∀ct ∈ σ
σmt

Class(jointarget.Interface) : c1 ∼on ct → σ
m′t
Att(name) (ct) = “foo”

∧∀ct ∈ σ
σmt

Class(jointarget.Interface) : c2 ∼on ct → σ
m′t
Att(name) (ct) , “foo”

57

4. Constraints for Translatable Views

According to the Put-Eqality we have in both cases

varname(c1) = σ
m′t
Att(name) (ct) and

varname(c2) = σ
m′t
Att(alias) (ct)

=⇒ varname(c1) , varname(c2)

In conclusion, the invariant keepMappingPairs holds.
The invariants attributeMappingName, attributeMappingAlias, attributeTargetMapping-

Name and attributeTargetMappingAlias hold because the used meta variables do map to the
instance itself. The invariant noNewTargetInstances holds, because no new instances were
created by the update operation.

In summary, we have shown that, the update operation is translatable in all cases, if
there exists no source class instance of the classes classifier.Interface and uml.Interface
named “foo”.

58

5. Additional Translation Strategies for
Updated Views

In the previous chapter we have chosen one �xed translation strategy for each ModelJoin
operator. However for some operations, various translation strategies are possible. In this
chapter we propose additional translation strategies. For each translation strategy we
de�ne the translation algorithm and the set of constraints, which should be generated, if
the translation strategy is chosen.

5.1. Translation of New Target Class Instances

5.1.1. Mapping Meta Functions

If target class instances are created by an update operations, di�erent source class instances
could by created at update translation. Since there is no mapping information present
for the new instances, the mapping must be either guessed from the join de�nition or
explicitly provided by the user.

To handle both cases in an uni�ed way, we de�ne the following mapping meta functions:

De�nition 34 (mapping meta function). Let c, ct ∈ Class be classes with c ∼on ct . A
function mapsTo〈c,ct 〉

: Exprtc × Exprtct → ExprBoolean is called a mapping meta function, i�
mapsTo

σ

〈c,ct 〉
(c, ct) = true implies c ∼on ct . The interpretation function is de�ned as

mapsTo
σ

〈c,ct 〉
(c, ct) = I

[[
mapsTo〈c,ct 〉

(c, ct)
]]

(〈σ , {c→ c, ct→ ct }〉)

For a natural join, the join con�rming attributes de�ne the mapping relation in the
get direction. Similarly for theta joins, the theta expression de�nes the mapping relation.
Therefore, we can argue, that the join con�rming attributes, respectively the attributes
and references used in the theta join expression are a good criteria to decide whether a
source class should map to a new target class. More precisely, if the attribute values and
links of a source class instance c are equal to the corresponding attributes and links of the
target class ct , then c should map to ct .

A natural join expression on= 〈c1, c2, ct 〉 can be interpreted as a theta join onθ= 〈c1, c2, ct 〉
with the join expression θ (v1,v2) = AND

〈a1,a2,at 〉∈A
on
c1,c2,ct

(v1.a1 = v2.a2). Therefore, we will
just consider the case for the theta join here.

Now we want to derive the mapsTo meta function from a join expression θ . Therefore
we have to extract the attributes and references used in θ . For this purpose, we de�ne the
extraction functions EAtt and ERef:

59

5. Additional Translation Strategies for Updated Views

De�nition 35 (attribute extraction function). Let ϕ ∈ Exprt be an OCL expression and
v ∈ free(ϕ) be a free variable in ϕ of type tc , then the attribute extraction function EAtt

v :
Exprt → P (Att) is de�ned as

EAtt
v [ϕ] =

{a},
if ϕ = v .a,
with a ∈ Att∗c

let ... ,vi =v, ...
in Att

v

[
EAtt
vi [α]

] , if ϕ = let ... ,vi =v, ... in α
α ∈ Expr

EAtt
v [α1] ∪ ... ∪ EAtt

v [αn] ,
if ϕ = γ (α1, ... ,αn),
with γ an OCL expression with
subexpressions α1, ... ,αn

De�nition 36 (reference extraction function). Let ϕ ∈ Exprt be an OCL expressions
and v ∈ free(ϕ) a free variable in ϕ of type tc , then the reference extraction function

ERef
v : Exprt → P (Ref) is de�ned as

ERef
v [ϕ] =

{r },
if ϕ = v .r ,
with r ∈ Ref

let ... ,vi =v, ...
in Ref

v

[
ERef
vi [α]

] , if ϕ = let ... ,vi =v, ... in α
α ∈ Expr

ERef
v [α1] ∪ ... ∪ ERef

v [αn] ,
if ϕ = γ (α1, ... ,αn),
with γ an OCL expression with
subexpressions α1, ... ,αn

With the extraction function we can de�ne the mapping function for a join expression
θ :

De�nition 37 (mapping meta functions for join conditions). Let c, ct ∈ Class be classes
with c ∼on ct and θ : Exprtc1 ×Exprtc2 → ExprBoolean be an OCL expression, then mapsTo

θ
〈c,ct 〉

:
Exprtc × Exprtct → ExprBoolean is the mapping meta function for ct with

mapsTo
ϕ (c1,c2)
〈c1,ct 〉

(c1, ct) = ANDa∈EAtt
c1 [ϕ (c1,c2)](var

ct
a (ct) = vara (c1)) and

ANDr∈ERef
c1 [ϕ (c1,c2)](var

ct
r (ct)->forAll(t |vara (c1)->exists(s |mapsTo(s, t)))) and

ANDr∈ERef
c1 [ϕ (c1,c2)](vara (c1)->forAll(s |var

ct
r (ct)->exists(t |mapsTo(s, t))))

60

5.1. Translation of New Target Class Instances

In the previous section we disallowed to map existing source class instances to new
target class instances. We want to relax this restriction and allow two or more new target
class instances to map to the source class instance created by an update operation. However
since these newly created source class instances do not exist at the constraint checking
time, we cannot use the previous mapsTo functions. Instead, we need to represent the
source class instance by the corresponding new target class instance:

De�nition 38 (target mapping meta function). Let c, ct ∈ Class be classes with c ∼on ct .
A function mapsTo

ct
〈c,ct 〉

: Exprtct × Exprtct → ExprBoolean is called a target mapping meta

function, i� mapsTo
σ

〈c,ct 〉
(c′t , ct) = true implies there should exists an instance c , so that

c ∼on ct and c ∼on c′t after the translation. The interpretation function is de�ned as

mapsTo
ct ,σ

〈c,ct 〉
(c, ct) = I

[[
mapsTo

ct
〈c,ct 〉

(c, ct)
]]

(〈σ , {c→ c, ct→ ct }〉)

We can derive the target mapping function from a join expression θ :

De�nition 39 (target mapping meta functions for join conditions). Let c, ct ∈ Class be
classes with c ∼on ct and θ : Exprtc1 × Exprtc2 → ExprBoolean be a OCL expression, then
mapsTo

ct ,θ
〈c,ct 〉

: Exprtct × Exprtct → ExprBoolean is the target mapping meta function for ct with

mapsTo
ϕ (c1,c2)
〈c1,ct 〉

(c′t , ct) = ANDa∈ERef
c1 [ϕ (c1,c2)](var

ct
a (ct) = var

ct
a (c′t)) and

ANDr∈ERef
c1 [ϕ (c1,c2)](var

ct
r (ct) = var

ct
a (c′t))

5.1.2. Mapping Strategies

If we guess the mapping, we may argue that it is not always desired to map new target
class instances to existing source class instances, when the mapping meta function returns
true, because there is a one-to-one or one-to-many relationship between the source class
and target class and the mapping of new target instances to already mapped source class
instances may disregards this relationship and maps the identity of the new target class
instance to a already mapped source class behind the scene.

Therefore we propose three possible strategies for a update translation:

Map to le� (right) Use all possible existing left (right) classes as instance mapping source
for the new target class instance and create the missing right (left) source class
instance at update translation.

Map to either le� or right Use either all left or all right class instances as instance mapping
source for the new target class instance. Create the missing right or left source class
instance at update translation

Do not map Do not use any existing left or right class instance as mapping source for the
new target class instance.

61

5. Additional Translation Strategies for Updated Views

In all cases: If the new target class cannot be mapped to an existing instance, then new
source class instances should be created for both sides at update translation. Map to both
is not possible, because then there is already a target class instance that maps to these
source classes and an update translation would not be possible, because for one matching
source pair, only one instance is created in the query function.

As an example, consider the ModelJoin view de�nition in Listing 5.1 with the two source
class instances and two new target class instances given in Figure 5.1. The result for each
mapping strategy for the translation of the new target class instances are given in the
following table:

� �
1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name as nameInJava,

4 uml.NamedElement.name as nameInUml

5 }� �
Listing 5.1: Example ModelJoin view de�nition joining java interfaces with um interface

by name and keeping the name attributes of each source model class.

sq : classifiers.Interface

name = “StoreQueryIf”

s : uml.Interface

name = “StoreIf”

newSq : jointarget.StoreIF

nameInJava = “StoreQueryIf”
nameInUml = “StoreQueryIf”

newS : jointarget.StoreIF

nameInJava = “StoreIf”
nameInUml = “StoreIf”

mapsTo(sq, newSq) = true mapsTo(s, newS) = true

mapsTo(sq, newS) = false mapsTo(s, newSQ) = false

Figure 5.1.: A source model and target model instance with a source class instance for each
source model and two new target class instances that map to one source class
each.

62

5.1. Translation of New Target Class Instances

Translation
Strategy

Translation of
new Class In-
stance

Translation Operations New Mappings

Map to left newSq

createClass(uml.Interface) (

{aname = “StoreQueryIf”}

)

sq ∼on newSq

newS Translation not allowed

Map to right newSq Translation not allowed

newS

createClass(classifier.Interface) (

{aname = “StoreIf”}

)

s ∼on newS

Map to either
left or right

newSq

createClass(uml.Interface) (

{aname = “StoreQueryIf”}

)

sq ∼on newSq

newS

createClass(classifier.Interface) (

{aname = “StoreIf”}

)

s ∼on newS

Do not map newSq Translation not allowed
newS Translation not allowed

5.1.2.1. Notation

To derive the OCL constraints for the di�erent strategies, we de�ne some shorthand
notations:
isNew (vt) = con.allInstances()->select(j | j.target = vt)->isEmpty()

toDeleteLeft (v1) = con.allInstances()->select(j | j.left = v1).target.oclIsUnde�ned()
toDeleteRight (v2) = con.allInstances()->select(j | j.right = v2).target.oclIsUnde�ned()

matchingLeft (vt) = Instancesc1->select(left | var c1→ct
θ (le�,vt),vt

)
matchingRight (vt) = Instancec2->select(right | var c2→ct

θ (vt ,right),vt
)

5.1.2.2. Do Not Map Strategy

We have already used the do not map strategy in the join de�nition extensions. For
completeness we repeat it here for a general mapping expression θ :
context ct
–– The new target class instances should not map to an existing left source class instance

inv newTargetInstancesLeft:
isNew (self) implies matchingLeft (self)->isEmpty()
–– The new target class instances should not map to an existing right source class instance

63

5. Additional Translation Strategies for Updated Views

inv newTargetInstancesRight:
isNew (self) implies matchingRight (self)->isEmpty()
–– No two new target class instances should map to the same left class or map to the same right

class

inv newTargetInstances:
isNew (self) implies
ct .allInstances->select(other | isNew (other) and other <> self)->forAll(other |
not var c1→ct ,c2→ct

θ (self,other),self,other and not var c1→ct ,c2→ct
θ (other,self),self,other

)
–– The new created source class instances map to this target instance

inv newTargetInstancesMap:
isNew (self) implies let self2 = self in var c1→ct ,c2→ct

θ (self,self2),self,self2

Let ct ∈ σClass(ct) be a new target class instance. The translation creates a new instance
of both source classes c1 and c2.

The newTargetInstancesLe� and newTargetInstancesRight invariant ensures that the target
class instances ct does not map to an existing source class instance c1 ∈ σClass(c1) or
c2 ∈ σClass(c2).

Two di�erent target instances can map to the same left or right source class instance.
However if two target class instances map to the same left source class instance, then they
can not map to the same right source class instance and vice versa. For each source class
instance pair for which the join condition holds, only one target class instance can exist.
The newTargetInstances invariant ensures, that this is the case for all source class pairs.

Lastly the newTargetInstancesMap invariant ensures, that the join condition holds for
the pair of source class instance of each target class instance.

5.1.2.3. Map to Le� (Right) Strategy

In the map to left (respectively right) strategy, new target instances may only map to
existing left (respectively right) source class instances. New target instances mapping to
existing right (respectively left) source class instances will be forbidden.

context ct
–– The new target class instances should not map to an existing right source class instance

inv newTargetInstancesRight:
isNew (self) implies matchingRight (self)->isEmpty()
–– For each existing matching left source class instance there must be exactly one new target class

instance that only maps to the matching left source class instance.

inv newTargetInstancesLeft:
isNew (self) implies matchingLeft (self)->forAll(left |

64

5.1. Translation of New Target Class Instances

let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

θ
〈c1,ct 〉

(le�, target) and mapsTo
ct ,θ
〈c2,ct 〉

(self, target)
)
in mappingTarget->size() = 1 and matchingLeft (self)->forAll(otherLeft |
mapsTo

θ
〈c1,ct 〉

(otherLe�,mappingTarget) implies otherLeft = left
)

)
–– If there are no matching left source class instances, then a new left source class instance should

be created at update translation. In this case, for all matching new created right class instances,

there must be exactly one target class instance that maps only to the new left and new right class

instances.

inv newTargetInstancesLeftNew:
isNew (self) and matchingLeft (self)->isEmpty() implies
ct .allInstances->select(right | isNew (right) and var c1→ct ,c2→ct

θ (self,right),self,right)->forAll(right |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

ct ,θ
〈c1,ct 〉

(self, target) and mapsTo
ct ,θ
〈c2,ct 〉

(right, target)
)
in mappingTarget->size() = 1 and ct .allInstances->select(otherRight |
isNew (otherRight) and var c1→ct ,c2→ct

θ (self,right),self,right
)->forAll(otherRight |
mapsTo

ct ,θ
〈c2,ct 〉

(otherRight,mappingTarget) implies otherRight = right
)

)
–– No two new target class instances should map to the same left class and right class instance.

inv newTargetInstances:
isNew (self) implies
ct .allInstances->select(other | isNew (other) and other <> self)->forAll(other |
not (mapsTo

ct ,θ
〈c1,ct 〉

(other, self) and mapsTo
ct ,θ
〈c2,ct 〉

(other, self))
)
–– The new created source class instances map to this target instance

inv newTargetInstancesMap:
isNew (self) implies let self2 = self in var c1→ct ,c2→ct

θ (self,self2),self,self2

Let ct ∈ σClass(ct) be a new target class instance.
The translation strategy for match only left is: If there is an existing matching left

class instance c1 ∈ σClass(c1), then no left source class instance is created and the existing
source class is used as left mapping source: c1 ∼on ct . If no matching left class instance
c1 exists, then a new class instance cnew1 ∈ I (c1) is created and used as mapping source:
cnew1 ∼on ct . A right source class instance c2 ∈ I (c2) with c2 ∼on ct is always be created. The
case for match only right is symmetric.

The newTargetInstancesRight invariant ensures, that the new target class instance ct does
not map to existing right source class instances c2 ∈ σClass(c2).

The newTargetInstancesLe� invariant ensures that, for each pair of an existing left
source class c1 ∈ σClass(c1) and a right source class instance to create cnew2 ∈ I (c2) with

65

5. Additional Translation Strategies for Updated Views

θ (c1, c2)c1,c
new

2
= true, there exists exactly one target class instance ct with c1 ∼on ct and

cnew2 ∼on ct . Further it checks, that the target class instance ct does not map to another left
source class c′1 ∈ σClass(c1), because a target class can only map to one left source class.

The newTargetInstancesLe� invariant ensures that, if there is no pair of an existing
left source class c1 ∈ σClass(c1) and a right source class instance to create cnew2 ∈ I (c2)
with θ (c1, c2)c1,cnew2

= true, then for all pairs of the new left source class instance to create
cnew1 ∈ I (c1) and an existing right source class instance or right source class to create
c2 ∈ I (c2), there exists exactly one target class instance ct ∈ σClass(ct) with cnew1 ∼on ct and
c2 ∼on ct . Further it check, that ct only maps to the right source class instance c2, because
a target class can only map to one right source class.

The newTargetInstances and newTargetInstancesMap invariants are the same as in the do
not map strategy.

5.1.2.4. Match Le� or Right

context ct
–– If there are nomatching left source class instances, then for each existingmatching right source

class instance there must be exactly one new target class instance that only maps to the matching

right source class instance, else the new target class instance should not map to an existing right

source class instance.

inv newTargetInstancesRight:
isNew (self) implies if matchingLeft (self)->isEmpty() then
matchingRight (self)->forAll(right |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

θ
〈c2,ct 〉

(right, target) and mapsTo
ct ,θ
〈c1,ct 〉

(self, target)
)
in mappingTarget->size() = 1 and matchingRight (self)->forAll(otherRight |
mapsTo

θ
〈c2,ct 〉

(otherRight,mappingTarget) implies otherRight = right
)

)
else
matchingRight (self)->isEmpty()

endif
–– If there are no matching right source class instances, then for each existing matching left

source class instance there must be exactly one new target class instance that only maps to the

matching left source class instance, else the new target class instance should not map to an exist-

ing left source class instance.

inv newTargetInstancesLeft:
isNew (self) implies if matchingRight (self)->isEmpty() then

66

5.1. Translation of New Target Class Instances

matchingLeft (self)->forAll(left |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

θ
〈c1,ct 〉

(le�, target) and mapsTo
ct ,θ
〈c2,ct 〉

(self, target)
)
in mappingTarget->size() = 1 and matchingLeft (self)->forAll(otherLeft |
mapsTo

θ
〈c1,ct 〉

(otherLe�,mappingTarget) implies otherLeft = left
)

)
else
matchingLeft (self)->isEmpty()

endif
–– If there are no matching left source class instances, then a new left source class instance should

be created at update translation. In this case, for all matching new created right class instances,

there must be exactly one target class instance that maps only to the new left and new right class

instances.

inv newTargetInstancesLeftNew:
isNew (self) and matchingLeft (self)->isEmpty() implies
ct .allInstances->select(right | isNew (right) and var c1→ct ,c2→ct

θ (self,right),self,right)->forAll(right |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

ct ,θ
〈c1,ct 〉

(self, target) and mapsTo
ct ,θ
〈c2,ct 〉

(right, target)
)
in mappingTarget->size() = 1 and ct .allInstances->select(otherRight |
isNew (otherRight) and var c1→ct ,c2→ct

θ (self,otherRight),self,otherRight
)->forAll(otherRight |
mapsTo

ct ,θ
〈c2,ct 〉

(otherRight,mappingTarget) implies otherRight = right
)

)
–– If there are no matching right source class instances, then a new right source class instance

should be created at update translation. In this case, for all matching new created left class in-

stances, there must be exactly one target class instance that maps only to the new left and new

right class instances.

inv newTargetInstancesRightNew:
isNew (self) and matchingRight (self)->isEmpty() implies
ct .allInstances->select(left | isNew (left) and var c1→ct ,c2→ct

θ (self, le�),self, le�)->forAll(left |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

ct ,θ
〈c2,ct 〉

(self, target) and mapsTo
ct ,θ
〈c1,ct 〉

(le�, target)
)
in mappingTarget->size() = 1 and ct .allInstances->select(otherLeft |
isNew (otherLeft) and var c1→ct ,c2→ct

θ (self,otherLe�),self,otherLe�
)->forAll(otherLeft |
mapsTo

ct ,θ
〈c1,ct 〉

(otherLe�,mappingTarget) implies otherLeft = left
)

67

5. Additional Translation Strategies for Updated Views

)
–– No two new target class instances should map to the same left class and right class

inv newTargetInstances:
isNew (self) implies
ct .allInstances->select(other | isNew (other) and other <> self)->forAll(other |
not (mapsTo

ct ,θ
〈c1,ct 〉

(other, self) and mapsTo
ct ,θ
〈c2,ct 〉

(other, self))
)
–– The new created source class instances map to this target instance

inv newTargetInstancesMap:
isNew (self) implies let self2 = self in var c1→ct ,c2→ct

θ (self,self2),self,self2

Let ct ∈ σClass(ct) be a new target class instance.
The translation strategy for match left or right is: If there is an existing matching left

class instance c1 ∈ σClass(c1), then no left source class instance is created and the existing
source class is used as left mapping source: c1 ∼on ct . If no matching left class instance c1
does exist, then a new class instance cnew1 ∈ I (c1) is created and used as mapping source:
cnew1 ∼on ct . The same applies to the right source class.

The invariants are similar to the ones in Map to left (right) strategy. However depend
now on the existence of a new left or new right source class instance.

5.1.3. Handling of Keep Attribute, Calculate Attribute and Keep References

If we allow to map to existing source classes, we have to make sure that the Get-Eqality
and Put-Eqality holds for these mappings, too. Therefore we have to extend the
constraints for keep attribute, calculate attribute and keep reference expressions. We use
the mapsTo meta functions to introduce the additional constraints.

For keep attribute expressions, the following additional constraints should be cre-
ated:

context ct
inv attributeNewMapping:
isNew (self) implies
Instancesc1->forAll(source | mapsTo

θ
〈c1,ct 〉

(source, self) implies self.at = vara1 (source))
inv attributeNewTargetMapping:
isNew (self) implies
ct .allInstances()->forAll(other | mapsTo

ct ,θ
〈c1,ct 〉

(other, self) implies self.at = var cta1 (other))

The constraints for a source class attribute of the right join source are symmetric.
For calculate attribute, the following additional constraints should be created:

context ct
inv attributeNewMapping:
isNew (self) implies
Instancesc1->forAll(left |

68

5.1. Translation of New Target Class Instances

Instancec2->forAll(right |
mapsTo

θ
〈c1,ct 〉

(left, self) and mapsTo
θ
〈c2,ct 〉

(right, self) implies self.at = ϕ (left, right)
)

)
inv attributeNewTargetMappingLeft:
isNew (self) implies
ct .allInstances()->forAll(other |
mapsTo

ct ,θ
〈c1,ct 〉

(other, self) implies self.at = var c1→ct ,c2→ct
ϕ (other,self),other,self

)
inv attributeNewTargetMappingRight:
isNew (self) implies
ct .allInstances()->forAll(other |
mapsTo

ct ,θ
〈c2,ct 〉

(other, self) implies self.at = var c1→ct ,c2→ct
ϕ (self,other),self,other

)

For keep reference, the following additional constraints should be created:

context ct
inv referenceNewMapping:
isNew (self) implies
Instancesc1->forAll(source | mapsTo

θ
〈c1,ct 〉

(source, self) implies self.rt = varr (source))

5.1.4. Translation Algorithm for Target Class Instances

Because the do not map and map to left (right) strategies are more restricted versions of
the map to left or right strategy the same algorithm can be used for all three strategies.
Algorithm 1 shows the translation algorithm for all three strategies.

69

5. Additional Translation Strategies for Updated Views

Algorithm 1 Translation algorithm for new target class instances of a theta join onθ=

〈c1, c2, ct 〉
1: procedure translateJoinTargetct (target)
2: if isNew (target) then
3: left← matchingLeft (target)->�nd(left |
4: mapsTo

θ
〈c1,ct 〉

(le�, target)
5:)
6: if left.oclIsUnde�ned() then
7: V1 ← attribute values for the left source class instance
8: left← createClass(c1) (V1).
9: else

10: update attributes and references of left
11: right← matchingRight (target)->�nd(right |
12: mapsTo

θ
〈c2,ct 〉

(right, target)
13:)
14: if right.oclIsUnde�ned() then
15: V2 ← attribute values for the right source class instance
16: right← createClass(c2) (V2).
17: else
18: update attributes and references of right
19: else
20: join =← con.allInstances->�nd(j | j.target = target)
21: Update attribute values and links of join.left and join.right

70

5.1. Translation of New Target Class Instances

5.1.5. Limitations of Guessed Mappings

Guessing the mapping works well, if the set Eleft = EAtt
c1 [ϕ (c1, c2)] ∪ ERef

c1 [ϕ (c1, c2)] forms
a unique key for all left source class instances of c1 and the set Eright = EAtt

c2 [ϕ (c1, c2)] ∪
ERef
c2 [ϕ (c1, c2)] forms a unique key for all right source class instances of c2. For each new

target class the mapping left source class and right source class instance is then uniquely
determined. More precisely, for each new target class instance ct ∈ I (ct), there exists at
most one left source class instance c1 ∈ I (c1) with mapsTo

θ

〈c1,ct 〉
(c1, ct) = true and there

exists at most one right source class instance c2 ∈ I (c2) with mapsTo
θ

〈c2,ct 〉
(c2, ct) = true .

This can be easily veri�ed by making the assumption, that for a new target class instance
ct ∈ σClass(ct), there would be two left source class instances c1, c

′
1 ∈ σClass(c1) with

c1 , c
′
1 which map to ct . Then from the de�nition of the mapping meta function, it follows,

that for the two source class instances c1 and c′1 the values of Eleft are equal. A contradiction
to the unique key property of Eleft.

If Eleft or Eright does not form a unique key, then the mapping for a new target class
instance may be impossible to be guessed uniquely. In this case the translation for the
new target class would be disallowed by the OCL constraints, because the mapping is
ambiguous. To handle such cases, the mapping must be manually speci�ed to resolve the
ambiguities.

Consider for example the ModelJoin expression in Listing 5.2 with the simpli�ed metamo-
del and model given in Figure 5.2. In this example the sets Eleft and Eright are Eleft = {name},
Eright = {namespace}, where Eright does not form an unique key. For example the instances
cu1, cu2 ∈ I (java.CompilationUnit) have the same value for the attribute namespace. Let
new ∈ I (jt.ComponentFile) be a new target model class instance. The class instance new
could map to either cu1 or cu2 (see Figure 5.3). The mapping is ambiguous. A unique
mapping could be determined by the filename attribute. However this is not part of the
join condition and therefore not used by the mapping meta function.

� �
1 theta join uml.Component with java.CompilationUnit

2 where "containers.CompilationUnit.namespace.includes(uml.Component.name)" as jointarget.

ComponentFile {

3 keep attributes uml.Component.name as componentName,

4 commons.NamedElement.name as filename,

5 commons.CompilationUnit.namespaces

6 }� �
Listing 5.2: Example ModelJoin view de�nition for ComponentFiles joining each uml

component with its compilation units.

5.1.6. Manual Mapping

The mapping of new target class instances to existing source class instances could be
either manually speci�ed at view de�nition time or at the update translation.

71

5. Additional Translation Strategies for Updated Views

uml.Component

name: String

java.CompilationUnit

name: String

namespace: Sequence{String}

c1 : uml.Component

name = ’TradingSystem’

cu1 : java.CompilationUnit

name = ’tradingsystem.inventory.gui.store.OrderButton.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

cu2 : java.CompilationUnit

name = ’tradingsystem.inventory.gui.store.Store.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

jt1 : jt.ComponentFile

filename = ’tradingsystem.inventory.gui.store.OrderButton.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

componentName = ’TradingSystem’

jt2 : jt.CompilationUnit

filename = ’tradingsystem.inventory.gui.store.Store.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

componentName = ’TradingSystem’

∼&

∼&

∼&

∼&

Figure 5.2.: Simpli�ed metamodels and models for the ModelJoin view de�nition in List-
ing 5.2

At view de�nition time the mapping could be speci�ed by supplying either the meta
mapping function explicitly or by giving a unique key, that is used instead of the attributes
and references in the mapping expression.

In the example of Figure 5.3, the attribute filename could be used as unique key for the
mapping function. To specify the key at view creation time, the ModelJoin syntax must
be extended. We propose the syntax extension with mapping keys listOfAttributes for join
expressions. An example for an extended ModelJoin view de�nition is given in Listing 5.3.

The mapping meta functions then would use the provided key attributes to �nd the
mapping source classes. Therefore let Akey

c1 ⊆ Att∗c1 the given key attributes of the left
source class and A

key
c2 ⊆ Att∗c2 the given key attributes of the right source class. The used

meta mapping function for the left source class are then de�ned as:

mapsTo〈c1,ct 〉(c1, ct) = AND
a∈A

key
c1

(varcta (ct) = vara (c1))

mapsTo
ct
〈c1,ct 〉(c

′
t , ct) = AND

a∈A
key
c1

(varcta (ct) = var
ct
a (c′t))

The meta mapping functions for the right source class are de�ned symmetrically.

72

5.1. Translation of New Target Class Instances

c1 : uml.Component

name = ’TradingSystem’

cu1 : java.CompilationUnit

name = ’tradingsystem.inventory.gui.store.OrderButton.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

cu2 : java.CompilationUnit

name = ’tradingsystem.inventory.gui.store.Store.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

new : jt.ComponentFile

filename = ’tradingsystem.inventory.gui.store.OrderButton.java’

namepace = Sequence{ ’tradingsystem’, ’inventory’, ’gui’, ’store’ }

componentName = ’Store’

c2 : uml.Component

name = ’Store’

?∼& ∼&
∼&

creates
mapsTo(cu2, new) = true

mapsTo(cu1, new) = true

Figure 5.3.: The mapping for the new instance of jointarget.ComponentFile cannot be
guessed from the join condition in Listing 5.2, because the attribute namespace
of the right source class is not unique.

5.1.7. Mappings Between Di�erent ModelJoin Expressions

We have disallowed the creation of new target class instances, if one of its source classes
was involved in another ModelJoin join expression. We now want to relax this constraint.
Let onθ= 〈c1, c2, ct 〉 and onθ= 〈c1, c

′
2, c
′
t 〉 be two join expressions with a common source class

c1 (see Figure 5.4). If we allow the creation of new instances ct ∈ I (ct), new instances of c1
may be created during translation. This instances c1 ∈ I (c1) could form new join pairs with
existing instances c′2 ∈ σClass(c

′
2). This may lead to new instances c′t ∈ I (c

′
t), that must exist

in the view before translation (see Figure 5.5). Further c1 could not only form mapping pairs
with existing instance c′2, it could form mapping pairs with instanced c′2 ∈ I (c

′
2) that are

created by the update translation of new instance c′t ∈ I (c
′
t) (see Figure 5.6). To check, that

these target class instances exist, additional constraints are necessary. Let onθ= 〈c1, c2, ct 〉
be a theta join expression. The noConflictsWithOtherMappings invariant from the join
extensions should be dropped and new constraints should be created. To formulate these
constraints we must extend the target mapping meta function from De�nition 39 to allow
the mapping between instances of two di�erent target class instances:

De�nition 40 (extended target mapping meta function). Let c, ct , c′t ∈ Class be classes
with c ∼on ct , c ∼on c′t and θ : Exprtc1 × Exprtc2 → ExprBoolean be an OCL expression, then

let mapsTo
c ′t ,ct ,θ

〈c,ct 〉
: Exprtc ′t

× Exprtct → ExprBoolean be the target mapping meta function for ct
with

73

5. Additional Translation Strategies for Updated Views

� �
1 theta join uml.Component with java.CompilationUnit

2 where "containers.CompilationUnit.namespace.includes(uml.Component.name)"

3 as jointarget.ComponentFile

4 with mapping keys java.CompilationUnit, uml.Component.name {

5 keep attributes uml.Component.name as componentName,

6 commons.NamedElement.name as filename,

7 commons.CompilationUnit.namespaces

8 }� �
Listing 5.3: Extended version of the ModelJoin view de�nition in Listing 5.2 to specify the

key for the meta mapping functions.

c1 c2

ct

∼./

c′2

c′t

∼./ ∼./∼./

Figure 5.4.: Source class c1 that is used in two join expressions onθ= 〈c1, c2, ct 〉 and onθ ′=

〈c1, c
′
2, c
′
t 〉.

mapsTo
ϕ (c1,c2)
〈c1,ct 〉

(c′t , ct) = ANDa∈ERef
c1 [ϕ (c1,c2)](var

ct
a (ct) = var

c ′t
a (c′t)) and

ANDr∈ERef
c1 [ϕ (c1,c2)](var

ct
r (ct) = var

c ′t
a (c′t))

The extended target mapping function is only de�ned, if the used target meta variables
are de�ned. It the extended target mapping meta function is unde�ned, the content of this
subsection can not be applied. The expression for the equality of the target meta variables
for reference can only be evaluated, if the target class of the target reference is the same in
both target classes. If this is not the case, the content of this subsection can not be applied
too. Now we want to formulate new constraints for the map left or right strategy, that
respect new target class instance in other join expressions:

74

5.1. Translation of New Target Class Instances

∼./

c1 c2

ctc′t

∼./∼./creates

c′2

∼./

new new

Figure 5.5.: If the source class c1 is involved in two join expressions onθ= 〈c1, c2, ct 〉 and
onθ= 〈c1, c

′
2, c
′
t 〉, the creation of a new target instance c′t could lead to the

creation of a new source class instance c1 that forms a mapping pair with an
existing source class instance c2.

context ct
–– If there are no matching left source class instances then a new left source class instance is

created at translation. For all other join expressions, that share the left source class as one of its

join sources, for each matching

inv newTargetInstancesRight:
isNew (self) implies if matchingc1 (self)->isEmpty() then
AND{〈c ′,c ′t ,θ ′〉 | onθ ′=〈c1,c ′,c ′t 〉∨onθ ′=〈c ′,c1,c ′t 〉} (matchingc ′ (self)->forAll(other |
let mappingTarget = c ′t .allInstances->select(target | isNew (target))->select(target |
mapsTo

θ ′
〈c1,c ′t 〉

(other, target) and mapsTo
ct ,c ′t ,θ

′

〈c1,c ′t 〉
(self, target)

)
in mappingTarget->size() = 1 and matchingc ′ (self)->forAll(otherOther |
mapsTo

θ ′
〈c ′,ct 〉

(otherOther,mappingTarget) implies otherOther = other
)

))
else
matchingRight (self)->isEmpty()

endif
–– If there are no matching left source class instances then a new left source class instance should

be created at update translation. In this case, for all matching new created right class instances,

there must be exactly one target class instance that maps only to the new left and new right class

instances.

inv newTargetInstancesLeftNew:
isNew (self) and matchingLeft (self)->isEmpty() implies

75

5. Additional Translation Strategies for Updated Views

AND{〈c ′,c ′t ,θ ′〉 | onθ ′=〈c1,c ′,c ′t 〉∨onθ ′=〈c ′,c1,c ′t 〉} (c
′
t .allInstances->select(other |

isNew (other) and var c1→ct ,c ′→c ′t
θ ′(self,other),self,other

)->forAll(other |
let mappingTarget = c ′t .allInstances->select(target | isNew (target))->select(target |
mapsTo

ct ,θ ′

〈c1,c ′t 〉
(self, target) and mapsTo

c ′t ,θ
′

〈c ′,c ′t 〉
(other, target)

)
in mappingTarget->size() = 1 and c ′t .allInstances->select(otherOther |
isNew (otherOther) and var c1→ct ,c ′→c ′t

θ (self,otherOther),self,otherOther
)->forAll(otherOther |
mapsTo

c ′t ,θ
′

〈c ′,c ′t 〉
(otherOther,mappingTarget) implies otherOther = other

)
))

where

matchingc (vt) = Instancesc ->select(left | var c→ct
θ (le�,vt),vt

)

if vt is of type ct and c is the left source class of a join with condition θ . If c is the right
source class of a join instead, then the symmetric expression is used. The invariants
newTargetInstancesLe� and newTargetInstancesRightNew are de�ned analogously.

If ct is not the target class of a keep reference expressionκRef = 〈r , rt 〉withassociates (r) =
〈c, ĉ〉 and associates (rt) = 〈ct , ĉt 〉 instead of a join, then the following constraints should
be created instead:

context ĉt
–– If the new created source instance forms a join pair in a join expression with an existing join

source class, then the new target instance must exist.

inv newTargetInstances:
AND{〈c ′,c ′t ,θ ′〉 | onθ ′=〈ĉ,c ′,c ′t 〉∨onθ ′=〈c ′, ĉ,c ′t 〉} (matchingc ′ (self)->forAll(other |
let mappingTarget = c ′t .allInstances->select(target | isNew (target))->select(target |
mapsTo

θ ′
〈ĉ,c ′t 〉

(other, target) and mapsTo
ct ,θ ′

〈ĉ,c ′t 〉
(self, target)

)
in mappingTarget->size() = 1 and matchingc ′ (self)->forAll(otherOther |
mapsTo

θ ′
〈c ′,ct 〉

(otherOther,mappingTarget) implies otherOther = other
)

))
–– If the new created source instance forms a join pair in a join expression with a new to create

join source class, then the new target instance must exist.

inv newTargetInstancesNew:
AND{〈c ′,c ′t ,θ ′〉 | onθ ′=〈ĉ,c ′,c ′t 〉∨onθ ′=〈c ′, ĉ,c ′t 〉} (c

′
t .allInstances->select(other |

isNew (other) and var ĉ→ct ,c ′→c ′t
θ ′(self,other),self,other

)->forAll(other |

76

5.1. Translation of New Target Class Instances

let mappingTarget = c ′t .allInstances->select(target | isNew (target))->select(target |
mapsTo

ct ,θ ′

〈ĉ,c ′t 〉
(self, target) and mapsTo

c ′t ,θ
′

〈c ′,c ′t 〉
(other, target)

)
in mappingTarget->size() = 1 and c ′t .allInstances->select(otherOther |
isNew (otherOther) and var ĉ→ct ,c ′→c ′t

θ (self,otherOther),self,otherOther
)->forAll(otherOther |
mapsTo

c ′t ,θ
′

〈c ′,c ′t 〉
(otherOther,mappingTarget) implies otherOther = other

)
))

Because target class instances can now map to source class instances, that are not their
left or right join source class, we need additional constraints to prevent con�icting attribute
values:
context ct
inv attributeNewMapping:
isNew (self) implies
AND{〈c ′,c ′t ,θ ′〉 | onθ ′=〈c1,c ′,c ′t 〉∨onθ ′=〈c ′,c1,c ′t 〉} (

Instancesc1->forAll(source | mapsTo
θ
〈c1,ct 〉

(source, self) implies
AND〈at ,a〉∈{〈at ,a〉∈Att∗ct ×Att∗c1 | a∼onat∧a∼ona

′
t ,a
′
t ∈Att∗

c′t
} (self.at = vara (source))

)

inv attributeNewMappingNew:
isNew (self) implies
AND{〈ct ,c ′t ,θ ′〉 | onθ ′=〈c1,c ′,c ′t 〉∨onθ ′=〈c ′,c1,c ′t 〉} (

c ′t .allInstances()->select(other |
isNew(other) and matchingc ′ (other)->isEmpty()

)->forAll(other |
mapsTo

θ
〈c ′t ,ct 〉

(other, self) implies
AND〈at ,a′t 〉∈{〈at ,a′t 〉∈Att∗ct ×Att∗

c′t
| a∼onat∧a∼ona′t ,a∈Att∗c1 }

(self.at =other.a′t)
)

)

Links must be checked in a similar way:
context ct
inv linksNewMapping:
isNew (self) implies
AND{〈c ′,c ′t ,θ ′〉 | onθ ′=〈c1,c ′,c ′t 〉∨onθ ′=〈c ′,c1,c ′t 〉} (

Instancesc1->forAll(source | mapsTo
θ
〈c1,ct 〉

(source, self) implies
AND〈rt ,r 〉∈{〈rt ,r 〉∈Ref∗ct ×Ref∗c1 | r∼onrt∧r∼onr

′
t ,r
′
t ∈Ref∗

c′t
} (self.rt = varr (source))

)

inv attributeNewMappingNew:
isNew (self) implies
AND{〈ct ,c ′t ,θ ′〉 | onθ ′=〈c1,c ′,c ′t 〉∨onθ ′=〈c ′,c1,c ′t 〉} (

77

5. Additional Translation Strategies for Updated Views

c ′t .allInstances()->select(other |
isNew(other) and matchingc ′ (other)->isEmpty()

)->forAll(other |
mapsTo

θ
〈c ′t ,ct 〉

(other, self) implies
AND〈rt ,r ′t 〉∈{〈rt ,r ′t 〉∈Ref∗ct ×Ref∗

c′t
| a∼onrt∧a∼onr ′t ,a∈Att∗c1 }

(self.rt =other.r ′t)
)

)

5.2. Translation of Deleted Target Class Instances

There are di�erent ways to translate a deleted target class instance, that was created by
a join expression. In this section we want to evaluate the possible translation strategies
for deleted target class instances and check how the constraints must be adapted for each
strategy.

5.2.1. Deletion Strategies

A join target class instance can have a left and a right source class instance. If one of these
source class instances would not exist, then the target class instance would not exist, if
the join is not an outer join. So there are three possible delete strategies to satisfy the
PutGet-Property:

Delete le� and right Delete both, the left and right source class instance.

Delete only le� (right) Delete only the left (right) source class instance.

We enforce a consistent deletion by updating the class instance meta functions in the
following way:

Instances
′
c1 := Instancesc1->exclude(left | toDeleteLeft(left))

Instances
′
c2 := Instancesc2->exclude(left | toDeleteRight(right))

where toDeleteLeft respectively toDeleteRight evaluated to true, if the target class was
deleted in the target model. To adopt the behavior for a di�erent translation strategy, just
these meta functions must be adopted.

5.2.1.1. Delete Le� and Right

For the delete left and right strategy the meta function evaluates to true for both source
class instances, if the target class instance was deleted.

toDeleteLeft(v1) := (let n = con.allInstances()->select(n| j.left = v1)->asOrderedSet()
in j->notEmpty() and j->�rst().target.oclIsUnde�ned()

)
toDeleteRight(v2) := (let n = con.allInstances()->select(n| j.right = v2)->asOrderedSet()

78

5.3. ModelJoin Expressions for Source Attribute Updates

in j->notEmpty() and j->�rst().target.oclIsUnde�ned()
)

5.2.1.2. Delete Le� (Right)

For the delete left strategy the meta function evaluates only to true for the left source class
instance, if a target class instance was deleted.

toDeleteLeft(v1) := (let n = con.allInstances()->select(n| j.left = v1)->asOrderedSet()
in j->notEmpty() and j->�rst().target.oclIsUnde�ned()

)
toDeleteRight (v2) = false

5.3. ModelJoin Expressions for Source Attribute Updates

For the view de�nition keep calculated attribute and keep aggregate expressions can be
used to de�ne the query function for attribute values. If these attribute values are changed,
the changes can not easily be propagated back to the source models, because the query
function can be an arbitrary OCL expression and so can not be inverted in general. The
generated constraints for these ModelJoin constructs can currently only ensure, that the
source model elements or respectively the corresponding target model elements already
have the correct values at translation time to produce the updated calculated attribute
value. If the source model elements, the expression depends on, do not have corresponding
target model elements the view can not be translated without updating the source model
elements manually.

As an example consider the ModelJoin View De�nition in Listing 5.4. The calculated
attribute implementationName is derived from the source attribute name by striping the “If”
pre�x from the interface name. The ModelJoin view de�nition is based on the convention
that the interface of a type is named as the name of the type with a pre�xed “If”. For
example the interface of the class Store is named StoreIf. In the current form changes to
the implementationName attribute value can not be translated. If the attribute value would
be changed, the OCL-constraints that ensure the GetPut-Property would be violated and
a translation would not be possible without changing the value of the source attribute
name of the corresponding source instance manually.

Because the function de�ned by the OCL expression used for the calculated attribute is
not invertible in general and even if it would be, automatically computing the inverse is a
hard problem on its own, we do not want not to try to invert the function automatically.
Instead we want to allow the author of the ModelJoin view de�nition to supply the OCL
expressions, that should be used at translation to update the source attributes. We introduce
a new source attribute update ModelJoin operator:

De�nition 41 (Source attribute update). Let c ∈ Class be a source, ct ∈ Class be a target
class with c ∼on ct , at : tc → t ∈ Att∗c be an attribute of c and ϕ : Exprtct → Exprt a function.
The source attribute update operator is de�ned as:

79

5. Additional Translation Strategies for Updated Views

∼./

c1 c2

ctc′t

∼./∼./

creates

c′

∼./

creates

ĉt

ĉ1

∼./∼./

new new new

Figure 5.6.: If the source class c1 is involved in two join expressions onθ= 〈c1, c2, ct 〉 and
onθ= 〈c1, c

′
2, c
′
t 〉, the creation of a new target instance c′t could lead to the

creation of a new source class instance c1 that forms a mapping pair with class
instance c2 that are created by the translation of the target class instance ĉt of
ct .� �

1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep calculated attribute commons.NamedElement.name.substring(

4 1, commons.NamedElement.name.size() - 2

5) as implementationName : String

6 }� �
Listing 5.4: ModelJoin view de�nition with calculated attribute expression.

δ −1ϕ = 〈ct ,a〉 ∈ Class × Att∗c

where the new attribute value of a for after the translation is de�ned by the function ϕ:

∀c ∈ σClass(c)∀ct ∈ σClass(ct) (c ∼on ct ⇒ σAtt(a) (c) = ϕ (ct))

A proposal for a concrete syntax can be found in the example of Listing 5.5.
It is to note, that a source attribute update expression is may not well-de�ned. A

source class instance c can map to two di�erent target class instances ct , c
′
t and the update

expression may evaluate two di�erent values depended on the given target instance:
ϕ (ct) , ϕ (c

′
t). For a given model it can be easily checked if the source attribute updates

expression is well de�ned, by using the mapping relation and evaluating ϕ for all target
class instances that map to the same source class instance and comparing the result. So an
error can be thrown, if there are con�icts for a given model. In general we leave it up to
the ModelHoin view author to supply a well de�ned update expression.

Next we want to integrate the update expression into our OCL constraints by extending
the de�nition of the corresponding meta variables;

80

5.3. ModelJoin Expressions for Source Attribute Updates

� �
1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep calculated attribute commons.NamedElement.name.substring(

4 1, commons.NamedElement.name.size() - 2

5) as implementationName : String

6 source attribute commons.NamedElement.name updates to

7 jointarget.Interface.implementationName.concat(’If’)

8 }� �
Listing 5.5: ModelJoin view de�nition from Listing 5.4 extended by a source attribute

update expression

De�nition 42 (Extension for source attribute update). Let c ∈ Class be a source, ct ∈
Class be a target class with c ∼on ct , at : tc → t ∈ Att∗c be an attribute of c and
ϕ : Exprtct → Exprt be an OCL expression and δ −1ϕ = 〈ct ,a〉 be a source attribute update
expression.

If ct is created by a join expression and c is the left join source class, then the following
meta variable extension is used:

var ′a (v) := (let j = con.allInstances()->select(j| j.left = v)->asOrderedSet()
in if j->notEmpty() and not j->�rst().target.oclIsUnde�ned() then
ϕ (j->first().target)

else
vara (v)

endif
)

If ct is created by a keep reference expression, then the following meta variable extension
is used:

var ′a (v) := (let k = cκRef .allInstances()->select(k| k.source = v)->asOrderedSet()
in if k->notEmpty() and not k->�rst().target.oclIsUnde�ned() then
ϕ (k->first().target)

else
vara (v)

endif
)

In addition the following target meta variable can be de�ned:

var cta (v) := ϕ (v)

A source attribute update expression solves one of our previous problems: In section 4.3.2
we have seen that not all OCL expressions can be rewritten for new target class instances,
because some target meta variables may not be de�ned. This limits the creation of new

81

5. Additional Translation Strategies for Updated Views

target class instances, because some attributes or references are missing and cannot
be derived automatically. The extended ModelJoin de�nition for Listing 4.3 is given in
Listing 5.7.� �

1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name as interfaceName

4 keep calculated attribute commons.NamedElement.name.substring(

5 1, commons.NamedElement.name.size() - 2

6) as implementationName

7 source attribute uml.NamedElement.name updates to jointarget.Interface.interfaceName

8 }� �
Listing 5.6: Extended version of the ModelJoin de�nition in Listing 4.3 with a update to

expression.

Further we want to introduce a variant of the source attribute update expression for
default attribute value for new created source class instances at update translation. We
have discussed in chapter 4.5.4, that some source attributes may be unde�ned for new
source class instances created by update translations. To be able to supply default values
for these new instances, we introduce the source attribute default ModelJoin operator. In
this variation the given formula ϕ is only used for the attribute value of new source class
instances. If the source class instance does already exist, the value of the source attribute
is left untouched. We propose a concrete syntax for this operator in Listing 5.7.� �

1 source attribute uml.NamedElement.name defaults to jointarget.Interface.interfaceName� �
Listing 5.7: Default source attribute value expression.

82

6. Automatic Fixes for Untranslatable
Views

Executing an update operation on the target model can lead to an untranslatable target
model, because certain constraints are violated. Further updates are required to restore
the translatability of the updated target model. Consider the following example: An
update operation creates a new target class instance. The translation of the new instance
would lead to further new target classes, which are not present in the view. The corre-
sponding constraints are violated. These missing target class instances, could be created
automatically by detecting the problem and creating the missing target class instance
before translation. Such an automatic �x could be proposed to the user after the update
operation or before the translation. The user could accept the �x, repair the target model
manually or undo his change, if it was unintended. The proposed automatic �x should not
undo the update operation, instead it should apply a minimal set of necessary changes to
re�ect the update in a translatable target model. In the example above, the automatic �x
should not delete the new target class instance, it should create the missing target class
instance.

I(Ms)
[I(Mt)]v

q
[q [I(Ms)]]v

û
mt

m̂′
t

ms

m′
t

m′
s

q
ufix

Figure 6.1.: The update operation û leads to an untranslatable target model m̂′t . But there
may be an update operation u f ix that can be automatically derived and that
leads to a translatable target modelm′t again.

More precisely we want to claim the following properties for an automatic �x operation:

De�nition 43 (Valid �x). A update operation u f ix : I (Mt) → I (Mt) is a valid �x for a
update operation u : I (Mt) → I (Mt), if the following two properties do hold:

1. The �xed target model is translatable: ∀mt ∈ I (Mt) (u f ix (u (mt)) is translatable)

83

6. Automatic Fixes for Untranslatable Views

2. The �x re�ects the update operation, this means that the attributes and links changes
by the update operation are preserved by the �x operation:

∀c ∈ Class ∀c ∈ σu (mt)
Class (c) (

∀a ∈ Att∗c (σ
u (mt)
Att (a) (c) , σmt

Att(a) (c) ⇒ σ
uf ix (u (mt))

Att (a) (c) = σu (mt)
Att (a) (c))

∧∀r ∈ Ref∗c (L
u (mt) (r) (c) , Lmt (r) (c) ⇒ Luf ix (u (mt)) (r) (c) = Lu (mt) (r) (c)))

An automatic �x can be interpreted as a relaxation of the OCL-constraints. We replace
an OCL constraint with a weaker one. The weaker oen is a precondition for the algorithm
executing the �x. A target model, which satis�es only the weaker constraint, can then be
�xed by the algrthm to satis�es the original stronger constraint.

Not for all update operation such a �x may exist. Gruschko et al. [12] introduce
a classi�cation for changes to Ecore-based metamodels into three classes, Burger and
Gruschko [15] adapted these for MOF-based metamodels. We adapt them further for
updates to the target model:

• A non-breaking update leads to a translatable target model and does not need any
�xes.

• For breaking and resolvable updates, an algorithm can be de�ned, that �xes the target
model, so that it is translatable after the �x.

• A breaking and non resolvable update can not be �xed automatically and needs
manual interaction.

6.1. Automatic Creation of Missing Target Class Instances

The PutGet-Property states that for each source class instance pair, for which the join
condition holds, a corresponding target class instance exists after translation. In other
words, querying the unmodi�ed source model after a translation does not create any new
target class instances. We enforce this by the OCL constraints allowing only the translation
of a target model, if the required target class instances exist. However, the missing target
class instances could be created automatically at update translation, because these can be
derived from the corresponding source class instances.

For a theta join we propose Algorithm 2 for this purpose. In the procedure create-
MissingJoinTargets we check for each new target class instance, if the translation of
the instance would lead to new left or right source class instances. This is the case if
there are no left or right source class instances, which map to the new instance (the set
matchingLe�(target) respectively matchingRight(target) is empty). If this is the case, we
check in the procedure createMissingJoinTargetsForNewLeft respectively create-
MissingJoinTargetsForNewRight, if all target class instances for the new source class
exist.

84

6.1. Automatic Creation of Missing Target Class Instances

In createMissingJoinTargetsForNewLeft we �rst check for each existing right
source class instance, for which the join condition with the new left source class instance
holds, if there is a new target class instance. If this is not the case, we create a new
target instance according to the join de�nition from the updated attribute values and links
obtained from the meta variables. Not only existing right source class instances could
form new join pairs with the new left source class, also new created right source class
instances could be join partners. Therefore we collect all new target class instances, for
which the join condition holds for its right source class in matchingRightTarget.

For each instance in matchingRightTarget we check if a target class instance exists. If not,
we create the missing target class instance with the updated attribute values and links ob-
tained from the meta variables. The procedure createMissingJoinTargetsForNewRight
behaves symmetrically for the case, if a new right source class is created by the translation.

The algorithm is directly derived from the OCL constraints given in Section 5.1.2.4. The
newTargetInstancesLe�, newTargetInstancesLe�New and newTargetInstancesRight, newTar-
getInstancesRightNew invariants from the Match left or right strategy in Section 5.1.2.4 can
be relaxed to:

context ct
inv newTargetInstancesLeft:
isNew (self) implies if matchingRight (self)->isEmpty() then
matchingLeft (self)->forAll(left |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

θ
〈c1,ct 〉

(le�, target) and mapsTo
ct ,θ
〈c2,ct 〉

(self, target)
)
in (mappingTarget->size() = 1 and matchingLeft (self)->forAll(otherLeft |
mapsTo

θ
〈c1,ct 〉

(otherLe�,mappingTarget) implies otherLeft = left
)) or mappingTarget->size() = 0

)
else
matchingLeft (self)->isEmpty()

endif
inv newTargetInstancesLeftNew:
isNew (self) and matchingLeft (self)->isEmpty() implies
ct .allInstances->select(right | isNew (right) and var c1→ct ,c2→ct

θ (self,right),self,right)->forAll(right |
let mappingTarget = ct .allInstances->select(target | isNew (target))->select(target |
mapsTo

ct ,θ
〈c1,ct 〉

(self, target) and mapsTo
ct ,θ
〈c2,ct 〉

(right, target)
)
in (mappingTarget->size() = 1 and ct .allInstances->select(otherRight |
isNew (otherRight) and var c1→ct ,c2→ct

θ (self,otherRight),self,otherRight
)->forAll(otherRight |
mapsTo

ct ,θ
〈c2,ct 〉

(otherRight,mappingTarget) implies otherRight = right
)) or mappingTarget->size() = 0

)

85

6. Automatic Fixes for Untranslatable Views

The invariants for the right source class, namely newTargetInstancesRight and newTar-
getInstancesRightNew can be relaxed analogically.

We show that the original constraints hold after the execution of createMissingJoin-
Targets, if the relaxed constraints did hold and the mapping of the missing target class
instances is uniquely determined. Suppose that the relaxed constraints from above hold.
We �rst check the not relaxed version of newTargetInstancesLe� after the execution of the
algorithm. Let ct be a arbitrary target class instance for which both expressions: isNew(self)
and matchingRight(self)->isEmpty() evaluate to true. For all left source class instances c1 in
the set matchingLe�(self) either mappingTarget->size() = 1 or mappingTarget->size() = 0 holds,
before the execution. At execution of Algorithm 2 the procedure createMissingJoinTar-
getsForNewRight is called for the instance ct . In this procedure for all le� in the set
matchingLe�(self) it is checked if mappingTarget->isEmpty() and if this is the case, a new tar-
get class instance is created, else no actions is performed. The de�nition of mappingTarget
is the same as in the relaxed and not relaxed constraint newTargetInstancesLe�. Therefore
in the case of mappingTarget->size() = 1 no action is performed. In the case of mappingTarget-
>size() = 0 the new target class instance is created with the source attribute values and
links of the left source class c1 and the corresponding right source attribute values and
links of ct , resulting in a target class instance c′t for which mapsTo

σ

〈c1,ct 〉
(c1, c

′
t) = true and

mapsTo
ct ,σ

〈c2,ct 〉
(ct , c

′
t) = true. After the creation the set mappingTarget for c1 contains exactly

the instance c′t , so mappingTarget->size() = 1. According to the premise the left mapping of
c′t is unique, this means there exists no other left source class instances that map to c′t . So
the not relaxed version of newTargetInstancesLe� is satis�ed.

For the relaxed version of newTargetInstancesLe�New a similar argument can be given:
If mappingTarget->isEmpty(), then the missing target class instance is created, that satis�es
the mapping relation. After the execution of Algorithm 2 the set mappingTarget exactly
contains the new created instance and because the mapping is uniquely determined, the
not relaxed version of newTargetInstancesLe�New is satis�ed.

For newTargetInstancesRight and newTargetInstancesRightNew the argumentation can be
given symmetrically.

6.2. Automatic Calculated Values of Derived Model Elements

De�ning a view has the advantage, that certain attributes and references are automatically
derived from the source model. However the PutGet-Property requires that all model
elements, including calculated attributes or aggregations, are equal to the ones calculated
by the query function after the translation. So the derived elements have to be adopted
manually before the translation.

Instead we could make the derived model elements non-editable for the user. The values
for the derived elements, could be calculated automatically on the �y at the update of the
target model. This can be done, because the derived elements depend on certain elements
in the source model. These source model elements can have in turn corresponding target
model elements, which can be used as data source.

Whenever an target model element is updated, the depended calculated attributes can
be updated. Let δϕ = 〈c1, c2,at 〉 be a calculate attribute expression with the OCL expression

86

6.3. Automatic Propagation of Updated Attribute Values

Algorithm 2 Automatically create missing target class instances onθ= 〈c1, c2, ct 〉

1: procedure createMissingJoinTargets
2: for target ∈ ct .allInstances() do
3: if isNew (target) then
4: if matchingLeft (target)->isEmpty() then
5: .On Update translation a new left source class would be created,

so create the missing target class instances for this new left source

class instance

6: left← target
7: createMissingJoinTargetsForNewLeft(left)
8: if matchingRight (target)->isEmpty() then
9: .On Update translation a new right source class would be created,

so create the missing target class instances for this new right source

class instance

10: right← target
11: createMissingJoinTargetsForNewRight(right)

ϕ : Exprtc1 × Exprtc2 → Exprt. The target attribute at can be automatically updated by
Algorithm 5. The algorithm uses the normal rewrite and the rewrite for new target classes
for ϕ to update the value of at .

6.3. Automatic Propagation of Updated Attribute Values

If an attribute value in the view is changed, there can be other target model elements
that depend on the same source attribute and must therefore be updated as well. These
additional updates could be proposed to the user, so that these must not be done manually,
before the translation. The constraints, that enforce that attributes are changed in a
consistent way have the form v1.at = vara (v2). If such a constraint is violated, either the
attribute value of a was changed and the meta variable has the old value or the attribute
referenced from the meta variable was changed and the value of the attribute must be
updated. If both changed, it is unclear which change is the intended. The set of changed
(updated) attributes Achanдed can be determined by comparing the source attribute with
the target attributes or by the knowledge about the update operation.

Algorithm 6 can be used to propagate the changes. The algorithm runs as long as
attribute gets changes or it detects con�icting changes. For each OCL constraint it extracts
all comparisons, that have the form v1.at = vara (v2) or v1.at = varcta (v2) where v1,v2 are
variables and at ,a are attributes. If the value of the attribute and the meta variable are
di�erent, then it is checked, which one was changed, updates the unchanged attribute and
adds the attribute to the set of changed attributes.

87

6. Automatic Fixes for Untranslatable Views

Algorithm 3 Automatically create missing target class instances for a new left source
class instance

1: procedure createMissingJoinTargetsForNewLeft(left : ct)
2: . For each existing right class instance for which the join expression holds

a new target class instance must exist.

3: for right ∈ matchingRight(target) do
4: mappingTargets← ct .allInstances->select(target | isNew (target))
5: ->select(target |
6: mapsTo

ct ,θ
〈c1,ct 〉

(le�, target) and mapsTo
θ
〈c2,ct 〉

(right, target)
7:)
8: if mappingTargets->isEmpty() then
9: V1 ← {va | a ∈ Att∗c1, va = var

ct
a (le�)}

10: V2 ← {va | a ∈ Att∗c1, va = vara (right)}
11: L1 ← {lr | r = 〈c1, ĉ〉 ∈ Ref, lr = varctr (le�)}
12: L2 ← {lr | r = 〈c2, ĉ〉 ∈ Ref, lr = varr (right)}
13: create new target class instance with source attributes V1, V2

and links L1, L2 according to the de�nition of ct .
14: . For each new right class instance that would be created by update translation

and for which the join expression expression holds a new target class

instance must exist.

15: matchingRightTarget← ct .allInstances->select(right |
16: isNew (right) and varc1→ct ,c2→ct

θ (le�,right),le�,right
17:)
18: for right ∈ matchingRightTarget do
19: mappingTargets← ct .allInstances->select(target | isNew (target))
20: ->select(target |
21: mapsTo

ct ,θ
〈c1,ct 〉

(le�, target) and mapsTo
ct ,θ
〈c2,ct 〉

(right, target)
22:)
23: if mappingTargets->isEmpty() then
24: V1 ← {va | a ∈ Att∗c1, va = var

ct
a (le�)}

25: V2 ← {va | a ∈ Att∗c1, va = var
ct
a (right)}

26: L1 ← {lr | r = 〈c1, ĉ〉 ∈ Ref, lr = varctr (le�)}
27: L2 ← {lr | r = 〈c2, ĉ〉 ∈ Ref, lr = varctr (right)}
28: create new target class instance with source attributes V1, V2

and links L1, L2 according to the de�nition of ct .

Algorithm 4 Automatically create missing target class instances for a new right source
class instances

1: procedure createMissingJoinTargetsForNewRight(right : ct)
2: Analogous to Algorithm 3, by exchanging “left” with “right” and vise versa.

88

6.3. Automatic Propagation of Updated Attribute Values

Algorithm 5 Automatically updates the calculated attribute δϕ = 〈c1, c2,at 〉
1: procedure updateCalculatedAttributeat
2: for target ∈ ct .allInstances()->select(target| not isNew (target)) do
3: join← con.allInstances()->�nd(j | j.target = target)
4: target.at ← varϕ (join.le�,join.right)

5: for target ∈ ct .allInstances()->select(target| isNew (target)) do
6: target.at ← let target2 = target in varc1→ct ,c2→ct

ϕ (target,target2),target,target2

Algorithm 6 Automatically propagation updated attribute values
1: procedure propagateAttributeValues(Achanдed)
2: repeat
3: attributeChanged← false
4: for constraint ∈ OCL-Constraints do
5: for v1.at =vara (v2) ∈ constraint or v1.at =var

ct
a (v2) ∈ constraint do

6: if v1.at <>vara (v2) or v1.at <>varcta (v2) then
7: v′2.a

′
t ← target attribute usage in vara (v2) or varcta (v2)

8: if 〈v1,at 〉 ∈ Achanдed and 〈v′2,a
′
t 〉 < Achanдed then

9: v1.at ← vara (v2)
10: Achanдed ← Achanдed ∪ {〈v1,at 〉}

11: if 〈v1,at 〉 < Achanдed and 〈v′2,a
′
t 〉 ∈ Achanдed then

12: v′2.a
′
t ← v1.at

13: Achanдed ← Achanдed ∪ {〈v
′
2,a
′
t 〉}

14: if 〈v1,at 〉 ∈ Achanдed and 〈v′2,a
′
t 〉 ∈ Achanдed then

15: return Error(“Con�icting attribute changes”)
16: attributeChanged← true
17: until not attributeChanged

89

7. Evaluation

In this section the �ndings from the previous chapters will be evaluated. We �rst summarize
under which conditions atomic update operations are translatable in general. Then we
evaluate the translatability of updates in two case study examples.

7.1. Translatability of Updated Model Elements in General

It would be desired, that all atomic update operation on the target model can be translated.
However this cannot be fully archived, because the PutGet-Property implies certain
constraints for the target modelmt ∈ I (Mt), so thatmt ∈ q [I (Ms)]. Therefore we evaluate
for each atomic update operation in which cases a translation is not possible and how
the proposed approach limits the translatability of updates. Further we discuss, if these
limitations are useful or could be avoided if another approach would have been chosen. We
use atomic update operation for this part of the evaluation, because common sequences of
update operation can be hardly found without a concrete metamodel example. We would
have to analyze a large set of concrete metamodels to �nd those common update patterns,
which is beyond the scope of this thesis.

7.1.1. Translatability of a Updated Attribute Value

First we consider an attribute update operation updateAtt(at) (ct ,v) for a target attribute
at : tct → t ∈ Att∗ct of the target model class instance ct ∈ σClass(ct) with a valuev of type
t . In our approach the changed attribute value can be translated, if all of the following
requirements hold for the target model:

C1.1 If a source attribute a ∈ Att∗c with a ∼on at is involved in a join condition θ of a join
onθ= 〈c1, c2, c

′
t 〉, for all other elements e ∈ Att ∪ Ref used in the join condition θ ,

the value of the corresponding target model elements et ∈ Att ∪ Ref with e ∼on et
must be updated, so that the value of the join condition θ does not change:

∀c1 ∈ σClass(c1)∀c2 ∈ σClass(c2)

(θ (le�, right)
le�,right

(c1, c2) = varθ (le�,right),le�,right(c1, c2))

For example consider the update operation

updateAtt(jointarget.Interface.javaName) (ct , “StoreIf”)

for a target class instance ct ∈ σClass(jointarget.Interface) of the target model de�ned
by the ModelJoin view de�nition in Listing 7.1. Let c1 ∈ σClass(classifiers.Interface)

91

7. Evaluation

and c2 ∈ σClass(uml.Interface) be the source classes of ct . Then the join condition
θ (v1,v2) = v1.name = v2.name holds for c1 and c2 before the translation. However
it does not hold after translation, because

var commons.NamedElement.name(c1) = “StoreIf”

andvaruml.NamedElement.name(c2) has the old value σAtt(uml.NamedElement.name) (c2).
So the further update operation

updateAtt(jointarget.Interface.umlName) (ct , “StoreIf”)

is necessary to update varuml.NamedElement.name(c2).

C1.2 If a source attribute a ∈ Att∗c with a ∼on at is used in a calculated attribute expression
δϕ = 〈c1, c2,a

′
t 〉, the value of the calculated attribute must be updated as well, so that:

∀c1 ∈ σClass(c1)∀c2 ∈ σClass(c2)∀c
′
t ∈ σClass(c

′
t)

(c1 ∼on c′t ∧ c2 ∼on c′t → σAtt(a
′
t) (c

′
t) = varϕ (le�,right) (c1, c2))

This can be done manually or automatically using the algorithm given in Section 6.2.
For example consider the update operation

updateAtt(jointarget.Interface.javaName) (ct , “StoreIf”)

for a target class instance ct ∈ σClass(jointarget.Interface) of the target model de�ned
by the ModelJoin view de�nition in Listing 7.1. The corresponding source attribute
commons.NamedElement.name is used in the keep calculated attribute expression
for implementationName, so the further update operation

updateAtt(jointarget.Interface.implementationName) (ct , “Store”)

is necessary.

C1.3 If a source attribute a ∈ Att∗c with a ∼on at is mapped to multiple target attributes
A = {a′t ∈ Att | a ∼on a′t }, the value of all these target attribute values must be
updated as well, so that:

∀a′t :tc ′t → t ∈ A∀c′t ∈ σClass(c
′
t)∀ct ∈ σClass(ct)∀c ∈ Class

(∀c ∈ σClass(c) (c ∼on c′t ∧ c ∼on ct) → σAtt(a
′
t) (c

′
t) = σAtt(at) (ct))

This can be done manually or using the algorithm given in Section 6.3. For example
consider the update operation

updateAtt(jointarget.Interface.javaName) (ct , “StoreIf”)

for a target class instance ct ∈ σClass(jointarget.Interface) of the target model de�ned
by the ModelJoin view de�nition in Listing 7.1. The corresponding source attribute
commons.NamedElement.name does also map to jointarget.Interface.javaNameAlis, so
the further update operation

updateAtt(jointarget.Interface.javaNameAlis) (ct , “StoreIf”)

is necessary.

92

7.1. Translatability of Updated Model Elements in General

� �
1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep calculated attribute commons.NamedElement.name.substring(

4 1, commons.NamedElement.name.size() - 2

5) as implementationName : String

6 keep attributes commons.NamedElement.name as javaName

7 keep attributes commons.NamedElement.name as javaNameAlias

8 keep attributes uml.NamedElement.name as umlName

9 keep outgoing members.MemberContainer.members as type jointarget.Operation {

10 keep attributes commons.NamedElement.name

11 }

12 }� �
Listing 7.1: ModelJoin view de�nition with di�erent attribute expression.

So without further actions not all attribute value changes can be translated directly.
Condition C1.1 would not be strictly necessary, if it was allowed to change the mapping

of a join target class instance ct with the attribute update, so that ct has di�erent source
class instances after the translation than before. Like discussed in Section 4.4 this would
change the identity, in terms of the mapping relation, of the target class instance ct behind
the scene. We argued, that this is not a desired behavior, because the target class instances
in the target model represent their mapping sources and an update to a target class instance
should therefore update the source instances and not change the mapping. Dropping this
condition would not be possible with the proposed approach. The unchangeable trace
model implies a �xed source class instance to target class instance mapping for existing
source class instances. So the limitation is useful, if the mapping for existing instances
should not be changed.

Condition C1.2, C1.3 would not be strictly necessary, if we did not want not consider
the PutGet-Property. In an approach that does not ful�ll the PutGet-Property, these
condition could be dropped. While a single attribute update cannot con�ict with other
update, an update sequence with multiple attribute updates can have con�icts. Such
a con�ict occurs, if two target attributes at ,a′t ∈ Att, which map to the same source
attribute a ∈ Att get updated with di�erent values. For such a con�ict it is unclear how
to translate the updated attribute values, because a could get either the value of at or
a′t . The PutGet-Property ensures, that a translation can be determined and so is very
useful in the multiple update case. However in the case of the single attribute update the
PutGet-Property could be relaxed to only the updated elements. Unchanged target model
elements then need to be omitted at update translation. In the current approach an extra
step is necessary: The user has to �x the target model before the translation. This can be
done either manually or automatically using one of the proposed algorithms. That is a
disadvantage, because this extra step is more work for the user. An advantage however is,
that the user gets an explicit feedback over which attributes need to be updated as well. He
or she then can check, if these changes are desired, before performing the translation. If
the update algorithm can be applied, the additional work is minimal. In the case of single
attribute updates, the algorithm can always be applied, because no con�ict can occur.

93

7. Evaluation

7.1.2. Translatability of a Updated Link

Next we want to consider a create link operation createRef(rt) (ct , ĉt) and a delete link
operation deleteRef(rt) (ct , ĉt) for a reference rt ∈ Ref between two target classes ct , ĉt ∈
Class. In our approach a removed or added link can be translated, if all of the following
requirements do hold for the target model:

C2.1 If a source reference r ∈ Ref with r ∼on rt is involved in a join condition θ of a join
onθ= 〈c1, c2, c

′
t 〉, for all other elements e ∈ Att ∪ Ref used in the join condition θ ,

the value of the corresponding target model elements et ∈ Att ∪ Ref with e ∼on et
must be updated, so that the value of the join condition θ does not change:

∀c1 ∈ σClass(c1)∀c2 ∈ σClass(c2)

(θ (le�, right)
le�,right

(c1, c2) = varθ (le�,right),le�,right(c1, c2))

C2.2 If a source reference r ∈ Ref with r ∼on rt is used in a calculated attribute expression
δϕ = 〈c1, c2,a

′
t 〉, the value of the calculated attribute must be updated as well, so that:

∀c1 ∈ σClass(c1)∀c2 ∈ σClass(c2)∀c
′
t ∈ σClass(c

′
t)

(c1 ∼on c′t ∧ c2 ∼on c′t → σAtt(a
′
t) (c

′
t) = varϕ (le�,right) (c1, c2))

This can be done manually or using the given algorithm in Section 6.2.

C2.3 If a source reference r ∈ Ref with r ∼on rt is mapped to multiple target references
R = {r ′t ∈ Ref | r ∼on r ′t }, the links of all these target references must be updated as
well, so that:

∀r ′t ∈ {r
′
t ∈ R | associates(r

′
t) = 〈c

′
t , ĉt 〉}∀c

′
t ∈ σClass(c

′
t)∀ct ∈ σClass(ct)∀c ∈ Class

(∀c ∈ σClass(c) (c ∼on c′t ∧ c ∼on ct) → (L(r ′t) (c
′
t) = L(rt) (ct)))

This can only be done manually.

C2.4 If a link is removed and the linked target class instance ĉt is not linked by another
target reference or is a join target, then the ĉt must be deleted from the target model,
so that:

∀rt ∈ {rt ∈ Ref | associates(rt) = 〈c′t , ĉt 〉}∀c
′
t ∈ σClass(c

′
t) (ĉt < L(rt) → (ĉt < σClass(ĉ))

For example consider the delete link operation

deleteRef(members.MemberContainer.members) (ct , ĉt)

for the both target class instances ct ∈ σClass(jointarget.Interface) and
ĉt ∈ σClass(jointarget.Operation) of the target model de�ned by the ModelJoin view
de�nition in Listing 7.1. The class instance ĉt would not exist without being linked
in the reference members. So it must be delete with a further update operation:

deleteClass(jointarget.Operation) (ĉt)

94

7.1. Translatability of Updated Model Elements in General

C2.5 If a link is added, the linked target class instance ĉt must have a corresponding source
class instance:

∀ĉt ∈ L(rt)∃ĉ ∈ σClass(ĉ) (ĉ ∼on ĉt)

For example, the create reference operation

createRef(members.MemberContainer.members) (ct , ĉt)

is not possible, if ct ∈ σClass(jointarget.Interface) is an existing target class instance
and ĉt ∈ σClass(jointarget.Operation) was newly created and so has not source class
instance.

For Conditions C2.1 and C2.2 the same applies like in the cases C1.1 and C1.2.
For Condition C2.3 we have not de�ned an algorithm for an automatic �x. However

such an algorithm may would be possible, because the case is very similar to the one for
attributes.

Condition C2.4 would not be strictly necessary, if the PutGet-Property was not be
considered. Let ĉt be a target class instance, that is only created by one or multiple keep
reference expressions. In ModelJoin the instance ĉt only exists in the target model, if
it is linked by a target reference rt with associates(rt) = 〈c

′
t , ĉt 〉. This property and the

PutGet-Property forces the user to delete ĉt , if it is not linked by any target reference rt
anymore. This has the disadvantage, that for the user it may not be clear, that the deletion
of the target class instance ĉt does not lead to a deletion of the corresponding source class
instance ĉ with ĉ ∼on ĉt . Not forcing the user to delete the target class would lead to a
violation of the PutGet-Property. However it would be more intuitive, if the target class
instance ĉt was not needed to be deleted explicitly. A further disadvantage is, that the
user can only remove the link, but cannot delete the source class instance ĉ , because these
cases cannot be distinguished in our approach.

Condition C2.5 limits the update operation signi�cantly. New target class instances
can not be added to existing references. This is the case, because of the Put-Eqality
of the corresponding meta variable of the reference. To satisfy the Put-Eqality the
meta variable varr would need to contain the source instance ĉ of ĉt . However this is
not possible, if ĉ does not exist, yet. The condition would not be necessary to satisfy the
PutGet-Property.

7.1.3. Translatability of a Class Instance Creation

In this section a create class instance operation createClass(ct) (V), which created a new
instance ct of the target model class ct ∈ Class with the attribute values V = {va ∈
I (t) | a ∈ Att∗ct } will be considered. In our approach a created target class instance can be
translated, if all of the following requirements do hold for the target model:

C3.1 All model elements E = {e1, ... , en} of the source classes c ∈ Class with c ∼on ct used
in either a join condition θ or a keep calculated attribute expression ϕ must have
corresponding target model elements:

∀ei ∈ E (∃et ∈ Att ∪ Ref(ei ∼on et)

95

7. Evaluation

Alternatively a source attribute update expression can be used instead of attributes
in the target model (see chapter 5.2). Further for all join conditions and the formulas
of all calculated attribute expression a rewrite that only depends on target model
elements must be possible:

∀θon = 〈c1, c2, ct 〉

varc1→ct
θ (le�,right),le�,var

c2→ct
θ (le�,right),right,var

c1→ct ,c2→ct
θ (le�,right),le�,right are de�ned and well-typed

∀δϕ = 〈c1, c2,at 〉

varc1→ct ,c2→ct
ϕ (le�,right),le�,right is de�ned and well-typed

For example in the ModelJoin view de�nition in Listing 7.1 all necessary target meta
variables are de�ned. The set of model elements is

E = {commons.NamedElement.name, uml.NamedElement.name}

The attributes map to their corresponding target class elements: jointarget.Insterface.javaName
and jointarget.Insterface.umlName.

C3.2 If one of the source classes c ∈ Class with c ∼on ct is referenced by a reference
r ∈ Ref with associates(r) = 〈c′, c〉, all corresponding target references R = {rt ∈
Ref | r ∼on rt } must have the same target class:

∃ĉ′t ∈ Class∀rt ∈ {rt ∈ Ref | associates(rt) = 〈c′′t , ĉt 〉}(associates(r) = 〈c
′′
t , ĉ
′
t 〉)

C3.3 If the translation of the new created target class instance ct ∈ σClass(ct) leads to new
join pairs, the new target class instances must be created:

∀θon =〈c1, c2, ct 〉

(@c1 ∈ σClass(c1) (mapsTo
σ

〈c1,ct 〉
(c1, ct) = true) →

(∀c2 ∈ σClass(c2) (var
c1→ct
θ (le�,right),le�(ct , c2) = true→

∃!c′t ∈ σClass(ct) (mapsTo
σ ,ct
〈c1,ct 〉

(ct , c
′
t) ∧mapsTo

σ

〈c2,ct 〉
(c2, c

′
t))

∧(∀c′′t ∈ σClass(ct) (var
c1→ct ,c2→ct
θ (le�,right),le�,right(ct , c

′′
t) = true→

∃!c′t ∈ σClass(ct) (mapsTo
σ ,ct
〈c1,ct 〉

(ct , c
′
t) ∧mapsTo

σ ,ct
〈c2,ct 〉

(c′′t , c
′
t)))

∧(@c2 ∈ σClass(c2) (mapsTo
σ

〈c2,ct 〉
(c2, ct) = true) →

(∀c1 ∈ σClass(c1) (var
c2→ct
θ (le�,right),right(c1, ct) = true→

∃!c′t ∈ σClass(ct) (mapsTo
σ ,ct
〈c2,ct 〉

(ct , c
′
t) ∧mapsTo

σ

〈c1,ct 〉
(c1, c

′
t))

∧(∀c′′t ∈ σClass(ct) (var
c1→ct ,c2→ct
θ (le�,right),le�,right(ct , c

′′
t) = true→

∃!c′t ∈ σClass(ct) (mapsTo
σ ,ct
〈c2,ct 〉

(ct , c
′
t) ∧mapsTo

σ ,ct
〈c1,ct 〉

(c′′t , c
′
t)))

This can be done manually or using the algorithm given in Section 6.1. For example,
recall the example in chapter 5.1.4.

96

7.1. Translatability of Updated Model Elements in General

C3.4 The new created target class instance ct ∈ σClass(ct) must map uniquely to either
only one left, only one right or no source class instance:

∀θon =〈c1, c2, ct 〉

(∃!c1 ∈ σClass(c1) (mapsTo
σ

〈c1,ct 〉
(c1, ct)) ∧ @c2 ∈ σClass(c2) (mapsTo

σ

〈c2,ct 〉
(c2, ct)))

∨(∃!c2 ∈ σClass(c2) (mapsTo
σ

〈c2,ct 〉
(c2, ct)) ∧ @c1 ∈ σClass(c1) (mapsTo

σ

〈c1,ct 〉
(c1, ct)))

∨(@c1 ∈ σClass(c1) (mapsTo
σ

〈c1,ct 〉
(c1, ct)) ∧ @c2 ∈ σClass(c2) (mapsTo

σ

〈c2,ct 〉
(c2, ct)))

For example, where this is not the case, recall the example in chapter 5.1.5.

Condition C3.1 could be relaxed using another approach: For example the missing values
could be requested at translation time. Because we want to check the PutGet-Property
before translation and the OCL constraints are created at view creation time the constraint
is required in our approach. To infer the value of the join conditions θ and formula ϕ of
keep calculated attribute expressions for the new source class instances c ∈ σClass(c), that
may get created at the translation of the create class instance operation, the values must
be present in the target model. Without these values, the constraints necessary to check
the PutGet-Property could not be evaluated. The condition only depends on the view
de�nition and not on the target model. Therefore the condition must be considered at
view de�nition time. If the view was designed with C3.1 in mind, all needed values for the
translation are present in the target model and so the PutGet-Property can be checked
without getting further values from the user.

Condition C3.2 is not strictly necessary. Let r ∈ Ref be a reference in the source model
with associates(r) = 〈c, ĉt 〉. In another approach it could be allowed to use the source class
ĉ ∈ Class in two di�erent keep reference expressions κRef = 〈r , rt 〉,κ

′
Ref = 〈r , r

′
t 〉 with

associates(rt) = 〈ct , ĉt 〉, associates(r
′
t) = 〈c

′
t , ĉ
′
t 〉, which do not have the same target class:

ĉt , ĉ
′
t . In this case the source class ĉ in would map to two di�erent target classes ĉt and ĉ′t .

This can lead to multiple target class instances ĉt ∈ σClass(ĉt), ĉt ∈ σClass(ĉ
′
t) of di�erent

classes that map to the same source class instance ĉ ∈ σClass(ĉ). A user may not expect
this behavior and the dependencies between the target references rt and r ′t of di�erent
types may not be obvious from the target metamodel. However the condition limits the
set of possible view de�nitions. To check if the two or more target references rt , r ′t of
di�erent target type, can be translated back to the one source reference r , so that the
PutGet-Property is satis�ed, further constraints would be necessary. We would need to
check for each linked target class instance ĉt ∈ L(rt) (ct), if there is a target class instance
ĉ′t ∈ L(r

′
t) (ct) linked in the other target reference that shares the same source class: ĉ ∼on ĉt

and ĉ ∼on ĉ′t . For new created target class instances, this is di�cult, because their source
classes do not exist before translation. It may be possible to express these checks with
OCL and extend our approach, but this needs to be evaluated further.

Condition C3.3 would not be strictly necessary, if the PutGet-Property is considered.
The missing target class instances could be fully created at translation time or at the
next query after translation. In our approach the additional step of creating the missing
target class instances manually or by using the given algorithm is more work for the user.
However the user has the ability to check the result, before doing the actual translation
and may adapt the new created instance for further requirements.

97

7. Evaluation

Condition C3.4 is not strictly necessary. However, without this restriction there could
be situations in which the new target class instance ct of a join θon = 〈c1, c2, ct 〉 would
map to two di�erent left source class instances c1, c

′
1. If the translation of the new created

target class instance ct , creates a new instance of the right join source class c2 ∈ I (c2), it is
unclear if ct is the target class of the source instances c1 and c2 or the source instances c′1
and c2. There may are situations where the exact mapping does not matter. However in our
approach a unique mapping is needed. This could be provided manually (see chapter 5.1.6).

7.1.4. Translatability of a Class Instance Deletion

Finally a delete class instance operation deleteClass(ct) (ct), which deletes the instance ct
of the target class ct ∈ Class will be considered. In our approach the operation can be
translated, if all of the following requirements hold for the target model:

C4.1 If the translation of the deleted class instance leads to a deletion of a source class
instance ct ∈ σClass(ct) with c ∼on ct , then all other target class instances c′t ∈
σClass(ct), which would not exist without the instances c must be deleted as well:

∀c′t ∈ Class(c ∼on c′t → (@c′t ∈ σClass(c
′
t) (c ∼on c′t))

With the exception that c is a source class of a outer join with the target class c′t ,
where c′t exists without c .

Condition C4.1 would not be strictly necessary, if the PutGet-Property was not con-
sidered. The target class instances c′t , which would not exist in the target model after
translation, could be deleted directly as part of the translation. This would have the
advantage, that the user does not have to perform this additional step. However the user
would not see the full e�ect before the translation was performed. In our approach an
algorithm, that could delete the corresponding target class instances, could be de�ned,
similar to the algorithm for missing target class instances.

7.2. Application in Case Study Examples

In this section we will evaluate, if the �ndings are applicable in concrete example cases.
Since ModelJoin is not used in real practical applications yet, no real application can be
used and general modeling examples are used instead. For the case study we have therefore
chosen the Common Component Modelling Example (CoCoME) [34] and the Media Store
example from the upcoming Palladio Book [58].

7.2.1. Common Component Modelling Example (CoCoME)

The CoCoME describes a trading system for a supermarket that handles sales. This includes
the Cash Desk activities, like using a Bar Code Scanner or paying by credit card or cash as
well as administrative tasks like ordering products or generating reports. The description
of the trading system includes requirements, use case analysis, architectural component

98

7.2. Application in Case Study Examples

model with several views, system tests and test scenarios. In addition there is a Java
implementation.

Using the Java Model Parser and Printer (JaMoPP) [33], the source code of the Java
implementation can be converted from the text representation to a model representation
and vice versa.

Hence we have two models describing the trading system: A UML model of the archi-
tecture and a Java metamodel instance of the implementation. With ModelJoin a UML
view of the trading system can therefore be extended with implementation details using
the model representation of the source code. Further more, translated updates cannot only
update the UML models, but also the Java source code by using JaMoPP to keep the model
and text representation in sync.

The �ndings of the thesis will be evaluated by analyzing a concrete ModelJoin view
de�nition. It will be checked, if desired updates are possible and lead to the expected
changes to the source models.

7.2.1.1. metamodels

EMFText Java Using JaMoPP the java source code can be converted to a EMFText Java
model [24]. The model contains the abstract syntax tree of the java source with
source code positions and comments. For each java source code �le, a Compilation
Unit class instance is created which contains in particular the classes and interface
including their members de�ned in the java source �le.

UML component diagram The UML component diagram [56] shows the components of
the software system and which service these provide and require, including the
interface used for communication.

7.2.1.2. Component Diagram and Java Source Code Example

For the evaluation we use the UML Inventory component diagram from [34]. The used EMF
UML2 model is given in Figure 7.1. It shows the components of the Inventory forming the
di�erent layers of the trading system. The components are connected through provided and
required interface connectors. A component is implemented as a Java package containing
multiple classes, implementing the component behavior. While in the UML diagram only
the interface names of the components services are given, the interface de�nitions in the
java source codes do contain additional information, such as the method signatures. We
assume the software engineer wants to create a view containing the interfaces with their
method signatures and the components providing these interfaces and therefore creates
the ModelJoin view de�nition in Listing 7.2.

7.2.1.3. Changing the Name of an Interface

First the e�ect of changing an attribute in the target model will be evaluated.

99

7. Evaluation

Inventory

GUI

Application

Data

Database

StoreIf

StoreIf

ReportingIf

ReportingIf

EnterpriseQueryIf

EnterpriseQueryIf

PersistenceIf

PersistenceIf

StoreQueryIf

StoreQueryIf

JDBCIf

JDBCIf

Figure 7.1.: The Inventory component of the CoCoME trading system with subcomponents
and provided and required interfaces.

Task We assume the user wants to update the name of the jointarget.Interface class
instance with the name “StoreIf” to “StoreInfoIf”. The user performs the update operations
in Listing 7.3.

Expected result The source attributes uml.Interface.name, classifiers.Interface.name and
classifier.Class.name of the corresponding source class instances gets updated.

Actual result All OCL constraints are ful�lled and on translation the source attributes
get updated. The result meets the expectation.

Notes It is to note that if an update operation for one of the attributes would be dropped,
the translation would not be allowed anymore. For example dropping the update for the
implName attribute of the jointarget.Interface class instance, would lead to the following
errors:

100

7.2. Application in Case Study Examples

� �
1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget.Interface {

3 keep attributes commons.NamedElement.name

4 keep calculated attribute "classifiers.Interface.name.substring(1, classifiers.Interface

.name.size() - 2).concat(’Impl’)" as jointarget.Interface.implName : String

5 keep outgoing members.MemberContainer.members of type members.InterfaceMethod as type

jointarget.Operation {

6 keep attributes commons.NamedElement.name

7 keep outgoing parameters.Parametrizable.parameters of type parameters.

OrdinaryParameter as type jointarget.Parameter {

8 keep attributes commons.NamedElement.name

9 }

10 }

11 source attribute uml.NamedElement.name updates to "jointarget.Interface.name"

12 }

13

14 theta join classifiers.Class with uml.InterfaceRealization

15 where "uml.InterfaceRealization.contract.name.oclAsType(String).substring(1, uml.

InterfaceRealization.contract.name.oclAsType(String).size() - 2).concat(’Impl’) =

classifiers.Class.name"

16 as jointarget.InterfaceRealization {

17 keep attributes commons.NamedElement.name

18 keep outgoing uml.Dependency.client of type uml.Component as type jointarget.Component {

19 keep attributes uml.NamedElement.name

20 }

21 keep outgoing uml.InterfaceRealization.contract of type uml.Interface as type jointarget

.Interface

22 }� �
Listing 7.2: ModelJoin view de�nition for the UML and Java example. It includes the

UML interfaces joined with the java interface de�nitions, the UML interface
realization elements joined with the implementing classes, the corresponding
components and interface operations including parameters.

� �
inv mjtrace::join_Interface_Interface_Interface::attributeMapping_Interface_implName:

The value of the calculated attribute "Interface.implName" is not up to date.� �
This could be solved by either updating the calculated attribute values manually or

using the proposed update �x in Section 6.2.

7.2.1.4. Adding an Interface

Next the translatability of created instances will be evaluated.

Task We assume the user wants to create a new jointarget.Interface instance with the name
“OrderIf”, a operation with name “getOrderDetails” and a parameter named “orderNo”.
The user performs the update operation in Listing 7.4.

101

7. Evaluation

� �
1 update jointarget.Interface {

2 name: "StoreInfoIf"

3 implName: "StoreImpl"

4 } where "jointarget.Interface.name = ’StoreIf’"

5

6 update jointarget.InterfaceRealization {

7 name: "StoreInfoImpl"

8 } where "jointarget.InterfaceRealization.name = ’StoreImpl’"� �
Listing 7.3: Update operation to change the name of the interface and the name of the

corresponding interface realization.

� �
1 create jointarget.Parameter {

2 name: "orderNo"

3 } as parameter

4

5 create jointarget.Operation {

6 name: "getOrderDetails"

7 parameters: OrderedSet{parameter}

8 } as operation

9

10 create jointarget.Interface {

11 name: "OrderIf"

12 implName: "OrderImpl"

13 members: OrderedSet{operation}

14 }� �
Listing 7.4: Update operation to create a new interface with a new operation with one

parameter.

Expected result A new instance of the source classes classifiers.Interface, uml.Interface,
members.InterfaceMethod and parameters.OrdinaryParameter are created and the attribute
values and links are set according to the corresponding target class instances.

Actual result All OCL constraints are ful�lled and on translation the source class instances
get created and the links and attribute values are set. The result meets the expectation.
However the new created class instance does not form a complete compilation unit in
the EMFText Java model. The missing elements, like for example imports and package
declarations, must be created manually. There is currently no mechanism for creating
additional model elements.

7.2.1.5. Deleting an Interface

Next the translatability of created instances will be evaluated.

Task We assume the user wants to delete the jointarget.Interface instance with the name
“StoreIf” and the corresponding instance of jointarget.InterfaceRealization. The user per-
forms the update operation in Listing 7.5.

102

7.2. Application in Case Study Examples

� �
1 cascade delete jointarget.Interface

2 where "jointarget.Interface.name = ’StoreIf’"

3

4 delete jointarget.InterfaceRealization

5 where "jointarget.InterfaceRealization.name = ’StoreImpl’"� �
Listing 7.5: Update operation to delete an interface and the corresponding interface

realization.

The cascade keyword indicates that all linked instances in the target model shall be
deleted as well.

Expected result The corresponding source class instances of uml.Interface, classifier.Inter-
face, classifiers.Class, uml.InterfaceRealization, members.InterfaceMethod and parameters.Or-
dinaryParameter get deleted.

Actual result All OCL constraints are ful�lled. The corresponding source classes instances
of uml.Interface, classifier.Interface, classifiers.Class and uml.InterfaceRealization get deleted.
However the instances of typemembers.InterfaceMethod and parameters.Ordinary-Parameter
do not get deleted, because removing the link and instance from the target model only
removes the corresponding link in the source model and does not delete the instance. The
two intends: Delete a source class instance and remove the link to the source class instance
are not distinguishable for a class created by keep reference expressions, because in both
cases the link and the instances in the target model are removed. This is necessary to
ful�ll the PutGet-Property, however seems to be a problematic case.

7.2.2. Palladio Media Store Example

As further example the media store example from the upcoming Palladio Book will be
used. The Media Store example describes a �le hosting system for audio �les. Users can
primarily download audio �les, but also shall be allowed to upload own audio �les. There
exists an example project for Palladio with System, Execution Environment, Component
Allocation and Usage Models.

7.2.2.1. metamodels

Service E�ect Specification (SEFF) For performance measurements a service of a compo-
nent can be described by a Service E�ect Speci�cation (SEFF) [9]. It describes called
internal and external actions, resource acquire and release and the control �ow
including loops, branches and forks. An action must have one start and one stop
action, which mark the beginning and ending of activities. An internal action models
a component internal activity like doing a computation. An external call action
describes a call to an external component. Conditional branches can be handled by
Probabilistic Branches which contain the branch probabilities and actions to execute
in each branch.

103

7. Evaluation

UML activity diagram The source of an SEFF can be a UML activity diagram [56]. Activity
diagrams can be used to model the stepwise activities or actions of computations or
organizational work�ows. The modeled work�ow or computation can be composed
among other nodes from Actions, Start State, Stop State and Decision Nodes.

7.2.2.2. DB-Cache SEFF and UML Activity Diagram Example

For the evaluation we use the DB-Cache example from the Palladio Media Store Example
Project. We suppose that the caching behavior was modeled by a UML activity diagram
and then the corresponding SEFF was derived from it. The graphical representation of
the two models can be seen in Figure 7.2. While both models describe the same behavior,
they contain di�erent information. The SEFF contains the branch probabilities, random
variables and hardware resource demands needed for the performance analysis. The
activity diagram contains requirements and details about the behavior to implement.

DBCache.queryDB

checkIfInCache

queryDB getCacheEntry

returnEntry

Start

isInCache?

End

 true false false true

Figure 7.2.: The UML activity diagram (left) and SEFF diagram (right) for the queryDB
operation of the DBCache component.

104

7.2. Application in Case Study Examples

To combine the information from the two models and keep the models in sync, a view
with the ModelJoin view de�nition in Listing 7.6 is created. In the view the Internal
Actions and External Action of the SEFF are joined with the OpaqueAction. The name of
the UML OpaqueAction respectively the entityName of the SEFF action is used to identify
the correspondence between the source model classes. Similarly the UML DecisionNode
and SEFF BranchAction are joined. As common subclass the ActivityNode from the UML
model and the AbstractAction from PCM is kept. The control �ow in the UML Model is
modeled by instances of the ControlFlow class with a source and target reference. In SEFF
the control �ow is not a �rst class entity. It is de�ned through predecessor and successor
references of the actions. Therefore the UML ControlFlow actions are joined with the
Actions directly, where the name of the predecessor or successor matches the name of the
target or source references.

7.2.2.3. Renaming an Action

First the e�ect of changing an attribute in the target model will be evaluated:

Task We assume the user wants to update the name of the jointarget.ExternalCallAction
by changing the name from “queryDB” to “queryDatabase”. The user performs the update
operations in Listing 7.7:

Expected result The source attribute uml.OpaqueAction.name and the source attribute
pcm.se�.ExternalCallAction.entityName are updated for the corresponding source class
instances to“queryDatabase”.

Actual result All constraints are ful�lled and on translation the source attributes
uml.OpaqueAction.name and pcm.se�.ExternalCallAction.entityName of the corresponding
source class instances are updated. The actual result therefore meets the expectation.

Notes If the update operations for the Edges would be dropped, the checking of the OCL
constraints would lead to a violation of the following invariants with corresponding error
messages:� �
inv mjtrace::join_ControlFlow_AbstractAction_BackEdge::attributeMapping_BackEdge_name:

The value of the calculated attribute "BackEdge.name" is not up to date.

inv mjtrace::join_ControlFlow_AbstractAction_ForwardEdge::attributeMapping_ForwardEdge_name:

The value of the calculated attribute "ForwardEdge.name" is not up to date.� �
The translation would get rejected, because the OCL checking detected two problems

with the updated target model:

P1 The value of the calculated attributes jointarget.ForwardEdge.name and jointarget.Back-
Edge.name does not con�rm to the updated attributes values. The PutGet-Property
is violated because after the translation the value of these attributes would change,
so the Problem was correctly detected.

Problem P1 can be solved by either updating the calculated attribute values manually or
by using the proposed update �x in Section 6.2.

105

7. Evaluation

7.2.2.4. Deleting an Edge

Task We assume the user wants to delete an edge. The user performs the update opera-
tions in Listing 7.8:

Expected result The corresponding source class instance uml.ControlFlow get deleted and
the links pcm.se�.AbstractActtion.successor_AbstractAction and pcm.se�.AbstractActtion.pre-
decessor_AbstractAction get unset.

Actual result All constraints are ful�lled and on update translation the source classes
uml.ControlFlow, pcm.se�.StartAction and pcm.se�.LoopAction get deleted. This behavior is
unexpected by the user, because he or she may expect that only the references get unset
in the se� model. However the de�ned join condition indicates the actual behavior and
our approach in its current form does not allow to model this behavior.

Notes Dropping the delete operation for the jointarget.BackEdge instance, the checking
of the OCL constraints would lead to a violation of the following OCL invariants with
corresponding error messages:� �
mjtrace::join_ControlFlow_AbstractAction_ForwardEdge::consistentDeletion_BackEdge:

The deletion of a target class instance of type "ForwardEdge" leads to the deletion of

other target class instances of type "BackEdge".� �
The translation was rejected, because the OCL checking detected one problem with the

updated target model:

P1 The deletion of the jointarget.ForwardEdge instance would lead to the deletion of a
jointarget.BackEdge as well. However the jointarget.BackEdge was not deleted in the
target model. Therefore the PutGet-Property would be violated.

Problem P1 could be solved by deleting the corresponding jointarget.BackEdge instance
as well.

7.2.2.5. Creating a New Action

Task We assume the user wants to create a new jointarget.InternalAction class instance.
The user performs the update operation in Listing 7.9:

Expected result An instance of the corresponding source class instances uml.OpaqueAction
and pcm.se�.InternalAction are created.

Actual result The checking of the OCL constraints leads to a violation of the following
invariants with corresponding error messages:� �
jointarget::ExternalCallAction::noNewTargetInstances:

It is not allowed to create new instaces of type "ExternalCallAction" because these

cannot be checked for side effects.� �
106

7.3. Conclusion of the Evaluation

The translation was rejected, because the OCL checking detected one problem with the
updated target model:

P1 The source class pcm.se�.AbstractAction (or a concrete subclass) is used in all four
theta join expressions. However not all used source mode elements in the join
conditions for the target classes jointarget.ForwardEdge and jointarget.BackEdge have
a corresponding target model element. The not mapped source model elements
are the references pcm.se�.AbstractActtion.successor_AbstractAction and pcm.se�.Ab-
stractAction.predecessor_AbstractAction.

The actual result does not match the users expectations. The translation cannot be
performed in this case because of Problem P1, which cannot be solved by the user. A
source attribute update expression cannot be used in this case, because the not mapped
source model elements are references and not attributes. A similar construct for references
would be needed here.

7.3. Conclusion of the Evaluation

For atomic update operation on the target model most of the conditions for translatability
are useful considering the PutGet-Property. The conditions ensure that the translation is
uniquely determined.

If one of the conditions for the translatability of updated attribute values or links is
violated, it requires minimal manual work to restore the condition. In some cases even an
algorithm to restore the conditions can be used. However Condition C2.4 is problematic:
A deletion of a linked target class instance does not lead to a deletion of the corresponding
source class instance may be confusing for the user. Further Condition C2.5 is a strong
restriction. It disallows the linking of new target class instances from existing target class
instances. A new target class instance must be translated �rst, before it can be linked from
an existing target class instance. However this is not possible in all cases.

The translatability of created class instances depends mostly on the view de�nition.
Because the constraints get created at view de�nition time, all elements necessary to
check the translatability of the new created class instance must be present in the target
model. If the view de�nition is not designed with updatability in mind, a violation of these
conditions leads to untranslatable new target class instances.

The translation of a deleted class instance is always possible under Condition C4.1. It
requires some work to restore the condition manually, however an algorithm can likely be
created.

The case study examples have con�rmed that most of the target model elements are
updateable, if the view de�nitions are designed with updatability in mind. All update
operation on the view were translatable in the CoCoME case. Further we have seen that
the constraint checking prevents the translation of inconsistent or ambiguous updates. In
most cases the actual translation result meets our intuitive expectation. An exception is
the deletion of a class instance created by a keep reference expression in 7.2.1.5. Another
limitation is, that new created target class instances only lead to the creation of the
corresponding source class instances. It is not possible to create a complete compilation

107

7. Evaluation

unit in 7.2.1.4, because the classes of the missing source class instances do not have
corresponding target classes.

The Palladio Media Store Example case shows, that the translatability of new target
class instances is problematic, if a source class is used in multiple join conditions and
not all elements in join conditions have target elements in the view. Source attribute
expressions are one way to supply the value for missing target attributes, however there is
no construct for references yet. However such a construct is needed in the case in 7.2.2.5.

7.4. Limitations and Validity of the Case Study

Since ModelJoin is a new proposal for a view de�nition language and there is just an
experimental implementation, it is not yet used in real world cases. Therefore the ModelJoin
view de�nitions used in the case study are not from real world examples and are created
speci�cally for this case study. We tried to model practical scenarios and therefore used
common model examples. However it is unclear, if the results of this evaluation ful�lls
real world requirements. This requires further evaluation in a real ModelJoin use case.

The expected translation results, used to value the actual translation results, are not
empirical researched and are chosen in an intuitive way by the author of this thesis. To
determine if the expected results are empirically valid, a user study is necessary. However
this is beyond the scope of this work.

108

7.4. Limitations and Validity of the Case Study

� �
1 theta join uml.OpaqueAction with pcm.seff.InternalAction

2 where "uml.OpaqueAction.name = pcm.seff.InternalAction.entityName"

3 as jointarget.InternalAction {

4 keep attributes uml.OpaqueAction.body

5 keep supertype uml.ActivityNode as type jointarget.Action {

6 keep attributes uml.NamedElement.name

7 }

8 keep supertype pcm.seff.AbstractAction as type jointarget.AbstractAction {}

9 source attribute pcm.core.entity.NamedElement.entityName updates to "jointarget.

InternalAction.name"

10 }

11

12 theta join uml.OpaqueAction with pcm.seff.ExternalCallAction

13 where "uml.OpaqueAction.name = pcm.seff.ExternalCallAction.entityName"

14 as jointarget.ExternalCallAction {

15 keep supertype uml.ActivityNode as type jointarget.Action

16 keep supertype pcm.seff.AbstractAction as type jointarget.AbstractAction

17 keep outgoing pcm.seff.ExternalCallAction.calledService_ExternalService as type

jointarget.OperationSignature {

18 keep attributes pcm.core.entity.NamedElement.entityName

19 }

20 source attribute pcm.core.entity.NamedElement.entityName updates to "jointarget.

ExternalCallAction.name"

21 }

22

23 theta join uml.DecisionNode with pcm.seff.BranchAction

24 where "uml.DecisionNode.name = pcm.seff.BranchAction.entityName"

25 as jointarget.DecisionNode {

26 keep supertype uml.ActivityNode as type jointarget.Action

27 keep supertype pcm.seff.AbstractAction as type jointarget.AbstractAction

28 keep outgoing pcm.seff.BranchAction.branches_Branch of type pcm.seff.

ProbabilisticBranchTransition as type jointarget.Tansition {

29 keep attributes pcm.seff.ProbabilisticBranchTransition.branchProbability

30 keep outgoing pcm.seff.AbstractBranchTransition.branchBehaviour_BranchTransition of

type pcm.seff.ResourceDemandingBehaviour as type jointarget.Behaviur {

31 keep outgoing pcm.seff.ResourceDemandingBehaviour.steps_Behaviour as type

jointarget.AbstractAction

32 }

33 }

34 source attribute pcm.core.entity.NamedElement.entityName updates to "jointarget.

DecisionNode.name"

35 }� �

109

7. Evaluation

� �
36 theta join uml.ControlFlow with pcm.seff.AbstractAction

37 where "uml.ControlFlow.target.name = (if pcm.seff.AbstractAction.successor_AbstractAction.

oclIsUndefined() then ’’ else pcm.seff.AbstractAction.successor_AbstractAction.

entityName endif)"

38 as jointarget.ForwardEdge {

39 keep supertype uml.ActivityEdge as type jointarget.Edge {

40 keep calculated attribute "’Edge from ’.concat(uml.ActivityEdge.source.name.toString

()).concat(’ to ’).concat(uml.ActivityEdge.target.name.toString())" as jointarget.Edge.

name : String

41 keep outgoing uml.ActivityEdge.source as type jointarget.Action

42 keep outgoing uml.ActivityEdge.target as type jointarget.Action

43 keep outgoing uml.ActivityEdge.guard of type uml.LiteralBoolean as type jointarget.

BooleanLiteral {

44 keep attributes uml.LiteralBoolean.value

45 }

46 }

47 }

48

49 theta join uml.ControlFlow with pcm.seff.AbstractAction

50 where "uml.ControlFlow.source.name = (if pcm.seff.AbstractAction.predecessor_AbstractAction.

oclIsUndefined() then ’’ else pcm.seff.AbstractAction.predecessor_AbstractAction.

entityName endif)"

51 as jointarget.BackEdge {

52 keep supertype uml.ActivityEdge as type jointarget.Edge

53 }� �
Listing 7.6: ModelJoin view de�nition for the PCM example.

� �
1 update jointarget.ExternalCallAction {

2 name: "queryDatabase"

3 } where "jointarget.OpaqueAction.name = ’queryDB’"

4

5 update jointarget.ForwardEdge {

6 name: "Edge from isInCache? to queryDatabase"

7 } where "jointarget.FowardEdge.name = ’Edge from isInCache? to queryDB’"

8

9 update jointarget.ForwardEdge {

10 name: "Edge from queryDatabase to returnEntry"

11 } where "jointarget.ForwardEdge.name = ’Edge from queryDB to returnEntry’"

12

13 update jointarget.BackEdge {

14 name: "Edge from queryDatabase to returnEntry"

15 } where "jointarget.BackEdge.name = ’Edge from queryDB to returnEntry’"

16

17 update jointarget.BackEdge {

18 name: "Edge from isInCache? to queryDatabase"

19 } where "jointarget.BackEdge.name = ’Edge from isInCache? to queryDB’"� �
Listing 7.7: Update operations to rename an action and the corresponding edges.

110

7.4. Limitations and Validity of the Case Study

� �
1 delete jointarget.ForwardEdge

2 where "jointarget.ForwardEdge.name = ’Edge from getCacheEntry to returnEntry’"

3

4 delete jointarget.BackEdge

5 where "jointarget.BackEdge.name = ’Edge from getCacheEntry to returnEntry’"� �
Listing 7.8: Update operations to delete pair of ForwardEdge and BackEdge.

� �
1 create jointarget.InternalAction {

2 name: ’putInCache’,

3 body: Set{’Puts the entry from the query into the cache’}

4 }� �
Listing 7.9: Update operation to create a new action.

111

8. Related work

8.1. Update Translation for Relational Views

For relational views the research of the View-Update-Problem mainly focuses on the
concept of “translation under constant complement” introduced by Bancilhon and Spyratos
[7]. In this case the problem of translating a view update is solved by �nding a suitable
“complementary” view that does not change under update translations and the information
of the database can be reconstructed from the view and its complement view. Cosmadakis
and Papadimitrious [21] showed that �nding a minimum complement of a given view is
NP-complete. They use the concept of functional dependencies [4] in the relational model.

While the complement view approach gives us the theoretical background and shows
that view update are not always possible, not always unique and need additional informa-
tion to solve ambiguities (i.e. complement view) it does not provide a useful mechanism
for translating view updates.

Masunaga[45] described an algorithm for propagating updates against views de�ned in
relational algebra to their base relations. He proposes that whenever semantic ambiguities
arise these must be resolved by either the user or knowledge about the database scheme.

Keller [38] has formulated �ve criteria for acceptable view update translations. He
relaxes the no side e�ects constraints of the the complementary view concept by arguing
that it is to restrictive and does not allow certain useful translators. Further he enumerates
a complete list of translator that satisfy these criteria for select, project and join views on
relations in Boycee-Codd Normal Form [20].

This approach was extended by Barsalou, Siambela, Keller and Wiederhold [8] for
object-based views. They describe an algorithm that enumerates all valid translations of
the various update operations on view objects. A view object is a hierarchical subset of a
normalized database scheme allowing object-oriented access to a relational database. The
translator can then be chosen at view object generation time and used to translate all view
updates.

Medeiros and Tompa [48] have developed a tool that predicts the side e�ects of an
arbitrary mapping policies. In addition the algorithm shows if a desired update is re�ected
back the view, if the translated updates is applied to the database.

8.2. Update Translation for Tree Views

Of particularly interest in relational databases is the creation of XML views that provide
an XML-document like view to a legacy relation database. For this purposes views are
de�ned by a nested relational algebra [26]. A nested relational algebra is an extension of
the classical relational algebra operations by a nest and unnest operation. Braganholo,

113

8. Related work

Davidson and Heuser [13] studied �rst the updated of those nested views. They identi�ed
classes of XML views for which update can automatically translated, because the nest
operation is invertible. In their case, there exists an isomorphic mapping between the view
and the database relations, so that the translation of the view updates is unambiguous.

Tatarinov, Ives, Halevy and Weld [60] proposed a more �ne grained set of update op-
erations for XML views and integrates these in an XQuery language extensions. They
compared numerous approaches for implementing a core set (inset, delete) of this opera-
tions. Since the mapping is also unambiguous in their cases the algorithms only di�er in
performance aspects.

In contrast to XML views of relational database the View-Update-Problem was also
studied directly in the context of object-oriented database systems. School, Laasch and
Tresch [59] prosed a query language that produces updateable views. The de�ned query
language satis�es the concept of “object preservation”. This means that a query never
generates new object, so that a query result is always a set of existing objects. An update on
the view is then directly an update on the database, which greatly simpli�es the problem.

8.3. Linguistic Approaches to the View-Update-Problem

Another approach for the View-Update-Problem is to target it at the syntax level of the
language used to declare views. Di�erent forms of bi-directional programming have been
developed in di�erent use cases and communities including programming languages,
databases, program transformations, constrained-based user interfaces and quantum
computing.

Foster et al. [27] identify three major classes for theses languages:

Bi-directional languages form pairs of a query and translation function to lenses. Like in
our approach the query function creates a view from the source data. The translation
function takes both, the source data and the view, and returns the updated source
data. The get function can project away some information and the translation
function can restore them.

Bijective languages form a bijection between the source data and the view. The translation
function only takes the view as an argument and returns a (perhaps partial) updated
source data.

Reversible language consist of functions that can be applied in reverse, so that from the
output the original source data can be computed. The inverse function can only be
applied to a unmodi�ed output, so no update translation is possible.

8.3.1. Bi-Directional Transformation Languages

Bi-Directional Transformations are studied intensively in the context of constraint-based
user interfaces.

Foster et al. [27] propose a domain speci�c programming language for the View-Update-
Problem in the case of tree-structured data. All expressions in this language denote

114

8.3. Linguistic Approaches to the View-Update-Problem

bi-directional transformation between a “concrete” tree and an “abstract view”. They call
these transformations dubbed lenses and de�ne two essential laws that guarantee the “well
behaved” lenses of these lenses. These laws are similar to the correct update translations
proposed by Dayal and Bernstein [22] for relational databases. The GetPut law states that,
if an abstract view is generated from a concrete tree and is immediately putback without
modi�cation the concrete tree does not change. The PutGet law on the other hand archives
that the putback operation must capture all the information contained in the abstract view.
If an updated abstract view is put back, getting the abstract view again without changing
the concrete tree yields the same abstract view.

Their lenses feature familiar constructs from functional programming (composition,
mapping, projection, conditionals, recursion) together with some special operations for
tree manipulation.

Another approach taken by Meertens [49] is even more general: He de�nes get and
putback as a relation between the view and model and not just as functions. He introduced
the concept of constraint maintainers which are a pair of functions, that computes the
necessary updates so that a constraint of the relation is maintained. One function for each
directions of update translation from one side of the relation to the other. His constraint
maintainers operate on list like data structures.

Mu, Hu and Takeichi [51] recently proposed a functional injective language to de�ne
transformations, so that synchronization behavior can be automatically derived by alge-
braic reasoning. In another paper [35] they developed an editor for structured documents,
where the user can perform a sequence of editing operations on the document view and
the editor automatically derives an document source and a transformation that produces
the document view. The used bidirectional transformation language not only describes the
relationship between the source document and view, it also describes the data dependencies
in the view.

8.3.2. Bijective Transformation Languages

This �eld of languages includes program inversion and inverse computing. Dijkstra
introduced program inversion as deriving the inverse program from a program [23].
Inverse computing computes a possible input of a program for a particular output [46].
Abramov and Glück [3] survey fundamental concepts in inverse programming and present
an algorithm for inverse computation in a �rst-order functional language.

Abiteboul et al. [2] proposed a declarative language for the correspondence and transla-
tion between data stored in di�erent formats. The de�ned rules can be used to translate
the data from one format to another. The rules are de�ned by predicates which express the
relation between two data sources. In their approach the two data models in the correspon-
dence contain the same information in a di�erent tree structure. Later [1] they proposed a
query language for structured data stored in �les. They use a grammar annotated with
program information, so that a �le can be viewed as database structure, such that it can be
queried and updated. Querying involves parsing the �le and updating serializing in the
grammar.

Ohori and Tajima [53] developed a typed polymorphic calculus for views and object
sharing. Their calculus allows the de�nition of views which includes objects from di�erent

115

8. Related work

classes in an object-orientated database. Similar to ModelJoin the classes in the view (the
view type) and the transformation is de�ned by the calculus. As operations union of
di�erent classes, projection and calculated properties can be used.

8.3.3. Reversible Transformation Languages

The languages in this class can only partially be used for update translation, because only
the unmodi�ed output of the original function is accepted by the reverse function.

Landauer [40] argued that functions with a not single-valued inverse are logically
irreversible and this is associated with physical irreversibility. Bennet [11] and [41]
showed independently that a Turing machine can be made logically reversible. This is
done by saving the intermediate results of each step. Bekkers [6] proposed an abstract
computer model and programming language with just injective primitive operations. This
has the advantage that no check pointing or saving of intermediate results has to be done.
More languages with just injective primitives have been developed (e.g. [52], [44] or [30]).

116

9. Conclusion

We have formulated the View-Update-Problem for ModelJoin views, and adapted two
fundamental well known properties, the GetPut- and PutGet-Property, for models
de�ned in MOF or Ecore metamodels. To check if an update target model satis�es these
properties, we have chosen OCL as validation language. We have extended ModelJoin
with a trace model and de�ned a scheme to derive OCL constraints for a ModelJoin view
de�nition. We have shown that the target model is translatable if all constraints are ful�lled
and that an unmodi�ed target model satis�es all constraints.

Furthermore, we have discussed alternative translation strategies for target model up-
dates and described how the OCL constraints need to be adapted to re�ect these strategies.
We have introduced multiple strategies for translating newly created target class instances
and deleted target class instances. We have extended ModelJoin by source attribute update
expressions to allow the update of unmapped attributes in the source model at update
translation. These can be used to fully de�ne the translation behavior at view de�nition
time.

Additionally we have proposed specialized algorithms for �xing untranslatable target
models. These algorithms can be used to make a target model translatable after applying
an update operation by adapting dependent model elements. These include the automatic
creation of missing target class instance, the automatic calculation of derived model
elements, and the propagation of updated attribute values.

Finally, we have evaluated our approach for atomic update operations on the target
model and in two case study examples. The evaluation has shown that almost all of the
conditions for translatability are useful, the PutGet-Property ensures consistent target
models and that the translation can be uniquely determined. Further, all but one chosen
update operation were translatable in the case study example cases.

Our approach introduces a translation semantic to allow the editability of ModelJoin
views. By choosing one of the proposed translation strategies, the semantic of a target
model update can be �xed. Furthermore, the derived OCL constraints can be used to check
the translatability of an updated view. Using standard OCL constraints allows the easy
integration of the translatability check into existing tools. With the introduction of the
trace model, target model updates can be translated in a state based approach, without
losing the concrete mapping of the target model elements to the source model elements.

We have seen that not all updated target models, which ful�ll the GetPut-Property,
can be translated. The generated constraints are too restrictive in some cases. Especially
join conditions involving unmapped references cannot be checked for new instances
easily. Further, if source classes are involved in multiple joins, newly created target model
instances cannot be translated in all cases. In future work, the constraints could be relaxed
more by improving the rewrite function for target class instances and introducing concepts
for changing source references, similar to source attributes at update translation.

117

9. Conclusion

Currently the checking of the OCL constraints is unnecessarily slow, because OCL
constraints for Ecore models do not support bidirectional navigation for references, and
�nding a referencing class instance has linear time cost. In the future, a formulation
of the constraints without using OCL or by extending OCL for Ecore with support for
bidirectional navigation [18] may speed up the translatability check signi�cantly for large
models.

We have always used the OCL constraints to decide the translatability for a concrete
target model. It would be desirable to decide the translatability for a sequence of update
operation on the target model in general. In some cases it is possible to decide for a given
metamodel and update operation, if the update operation can be translated independent
of the model. It has to be studied if the generated OCL constraints can be used to show
the translatability in general.

The validity of the case study for the chosen examples is questionable, because we were
not able to use real world cases. When there are applications of ModelJoin, these could be
used in a second case study to �nd more problematic cases.

118

Bibliography

[1] Serge Abiteboul, Sophie Cluet, and Tova Milo. “A logical view of structure �les”. In:
VLDB Journal (1998).

[2] Serge Abiteboul, Sophie Cluet, and Tova Milo. “Correspondence and translation for
heterogeneous data”. In: Database Theory—ICDT’97. Springer, 1997, pp. 351–363.

[3] Sergei M Abramov and Robert Glück. “Principles of inverse computation and the
universal resolving algorithm”. In: The essence of computation 2566 (2002), pp. 269–
295.

[4] W.W. Armstrong. “Dependency Structures of Database Relationship”. In: Proceedings
of IFIP 14. North-Holland, Amsterdam, 1974, pp. 580–583.

[5] L. Moura B. Dutertre. “Yices: An SMT Solver”. 2008. url: http://yices.csl.sri.
com/.

[6] HenryG. Baker. “NREVERSAL of fortune — The thermodynamics of garbage col-
lection”. English. In: Memory Management. Ed. by Yves Bekkers and Jacques Co-
hen. Vol. 637. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1992, pp. 507–524. isbn: 9783540559405. doi: 10 . 1007 / BFb0017210. url: http :
//dx.doi.org/10.1007/BFb0017210.

[7] F. Bancilhon and N. Spyratos. “Update Semantics of Relational Views”. In: ACM
Trans. Database Syst. 6.4 (Dec. 1981), pp. 557–575. issn: 0362-5915. doi: 10.1145/
319628.319634. url: http://doi.acm.org/10.1145/319628.319634.

[8] Thierry Barsalou et al. “Updating Relational Databases Through Object-based
Views”. In: Proceedings of the 1991 ACM SIGMOD International Conference on Man-

agement of Data. SIGMOD ’91. Denver, Colorado, USA: ACM, 1991, pp. 248–257.
isbn: 0897914252. doi: 10.1145/115790.115831. url: http://doi.acm.org/10.
1145/115790.115831.

[9] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software 82.1
(2009). Special Issue: Software Performance - Modeling and Analysis, pp. 3–22. issn:
0164-1212.

[10] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Veri�cation of Object-

oriented Software: The KeY Approach. Berlin, Heidelberg: Springer-Verlag, 2007. isbn:
3-540-68977-X, 978-3-540-68977-5.

[11] C. H. Bennett. “Logical Reversibility of Computation”. In: IBM J. Res. Dev. 17.6
(Nov. 1973), pp. 525–532. issn: 0018-8646. doi: 10.1147/rd.176.0525. url: http:
//dx.doi.org/10.1147/rd.176.0525.

119

http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://dx.doi.org/10.1007/BFb0017210
http://dx.doi.org/10.1007/BFb0017210
http://dx.doi.org/10.1007/BFb0017210
http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1145/319628.319634
http://doi.acm.org/10.1145/319628.319634
http://dx.doi.org/10.1145/115790.115831
http://doi.acm.org/10.1145/115790.115831
http://doi.acm.org/10.1145/115790.115831
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1147/rd.176.0525

Bibliography

[12] Richard F. Paige Boris Gruschko, Dimitrios S. Kolovos. “Towards synchronizing mod-
els with evolving metamodels”. In: In Proc. Int. Workshop on Model-Driven Software

Evolution held with the ECSMR. 2007.
[13] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser. “On the up-

datability of XML views over relational databases”. In: International Workshop on

Web and Databases, San Diego, California, June 12-13, 2003. 2003, pp. 31–36. url:
http://www.cse.ogi.edu/webdb03/papers/06.pdf.

[14] Erik Burger. “Flexible Views for View-Based Model-Driven Development”. In: Pro-
ceedings of the 18th international doctoral symposium on Components and architec-

ture. WCOP ’13. Vancouver, British Columbia, Canada: ACM, 2013, pp. 25–30. isbn:
9781450321259. doi: 10.1145/2465498.2465501. url: http://doi.acm.org/10.
1145/2465498.2465501.

[15] Erik Burger and Boris Gruschko. “A Change Metamodel for the Evolution of MOF-
Based Metamodels”. In: Proceedings of Modellierung 2010. Ed. by Gregor Engels,
Dimitris Karagiannis, and Heinrich C. Mayr. Vol. P-161. GI-LNI. Klagenfurt, Austria,
Mar. 2010. url: http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.
pdf.

[16] Erik Burger et al. ModelJoin. A Textual Domain-Speci�c Language for the Combina-

tion of Heterogeneous Models. Tech. rep. 1. Karlsruhe Institute of Technology, Faculty
of Informatics, 2014. url: http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000037908.

[17] Erik Burger et al. “View-based model-driven software development with ModelJoin”.
English. In: Software & Systems Modeling (2014), pp. 1–24. issn: 1619-1366. doi:
10.1007/s10270-014-0413-5. url: http://dx.doi.org/10.1007/s10270-014-
0413-5.

[18] Jordi Cabot et al. “Proceedings of the Workshop on OCL and Textual Modelling (OCL
2010): Navigating Across Non-Navigable Ecore References via OCL”. In: Electronic
Communications of the EASST 36 (2011).

[19] Manuel Clavel, Marina Egea, and Miguel Angel García de Dios. “Checking un-
satis�ability for OCL constraints”. In: Electronic Communications of the EASST 24
(2010).

[20] Edgar F Codd. Recent Investigations in Relational Data Base Systems. IBM Thomas J.
Watson Research Division, 1974.

[21] Stavros S. Cosmadakis and Christos H. Papadimitriou. “Updates of Relational Views”.
In: J. ACM 31.4 (Sept. 1984), pp. 742–760. issn: 0004-5411. doi: 10.1145/1634.1887.
url: http://doi.acm.org/10.1145/1634.1887.

[22] Umeshwar Dayal and Philip A. Bernstein. “On the Correct Translation of Update
Operations on Relational Views”. In: ACM Trans. Database Syst. 7.3 (Sept. 1982),
pp. 381–416. issn: 0362-5915. doi: 10.1145/319732.319740. url: http://doi.acm.
org/10.1145/319732.319740.

120

http://www.cse.ogi.edu/webdb03/papers/06.pdf
http://dx.doi.org/10.1145/2465498.2465501
http://doi.acm.org/10.1145/2465498.2465501
http://doi.acm.org/10.1145/2465498.2465501
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037908
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037908
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/10.1145/1634.1887
http://doi.acm.org/10.1145/1634.1887
http://dx.doi.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740

Bibliography

[23] Edsger W Dijkstra. “Program inversion”. In: Program Construction. Springer, 1979,
pp. 54–57.

[24] EMFText Concrete Syntax Zoo Java 5. http : / / www . emftext . org / index . php /
EMFText_Concrete_Syntax_Zoo_Java_5.

[25] Anthony Finkelstein et al. “Viewpoints: A framework for integrating multiple per-
spectives in system development”. In: International Journal of Software Engineering
and Knowledge Engineering 2.01 (1992), pp. 31–57.

[26] S. J. Fischer and P. C. Fischer. “Nested relational structures”. In: Advances in Com-

puting Research (1986), 3:269–307.
[27] J. Nathan Foster et al. “Combinators for Bi-directional Tree Transformations: A

Linguistic Approach to the View Update Problem”. In: SIGPLAN Not. 40.1 (Jan.
2005), pp. 233–246. issn: 0362-1340. doi: 10.1145/1047659.1040325. url: http:
//doi.acm.org/10.1145/1047659.1040325.

[28] Eclipse Foundation. Eclipse Modeling Framework (EMF). http://www.eclipse.org/
modeling/emf/. retrieved 2 June 2015.

[29] Eclipse Foundation. EMFDocumentation. http://download.eclipse.org/modeling/
emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html. re-
trieved 2 June 2015.

[30] Robert Glück and Masahiko Kawabe. “A Program Inverter for a Functional Language
with Equality and Constructors”. English. In: Programming Languages and Systems.
Ed. by Atsushi Ohori. Vol. 2895. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pp. 246–264. isbn: 9783540205364. doi: 10.1007/978-3-540-
40018-9_17. url: http://dx.doi.org/10.1007/978-3-540-40018-9_17.

[31] Thomas Goldschmidt. “View-based textual modelling”. PhD thesis. Karlsruhe, 2011.
isbn: 9783866446427. url: http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000022234.

[32] Thomas Goldschmidt, Ste�en Becker, and Erik Burger. “View-based Modelling-A
Tool Oriented Analysis”. In: Proceedings of the Modellierung. 2012.

[33] Florian Heidenreich et al. Jamopp: The java model parser and printer. Techn. Univ.,
Fakultät Informatik, 2009.

[34] Sebastian Herold et al. “CoCoME-the common component modeling example”. In:
The Common Component Modeling Example. Springer, 2008, pp. 16–53.

[35] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. “A programmable editor for
developing structured documents based on bidirectional transformations”. In: Pro-
ceedings of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics-

based program manipulation. ACM. 2004, pp. 178–189.
[36] IBM. INSTEAD OF Triggers - All Views are Updatable! 2002. url: http://www.ibm.

com/developerworks/data/library/techarticle/0210rielau/0210rielau.html

(visited on 11/18/2015).

121

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Java_5
http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Java_5
http://dx.doi.org/10.1145/1047659.1040325
http://doi.acm.org/10.1145/1047659.1040325
http://doi.acm.org/10.1145/1047659.1040325
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://dx.doi.org/10.1007/978-3-540-40018-9_17
http://dx.doi.org/10.1007/978-3-540-40018-9_17
http://dx.doi.org/10.1007/978-3-540-40018-9_17
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022234
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022234
http://www.ibm.com/developerworks/data/library/techarticle/0210rielau/0210rielau.html
http://www.ibm.com/developerworks/data/library/techarticle/0210rielau/0210rielau.html

Bibliography

[37] ANSI/ISO/IEC International Standard (IS). Database Language SQL – Part 2: Foun-

dation (SQL/Foundation). ANSI/ISO/IEC 9075:2011. Dec. 2011.
[38] Arthur M. Keller. “Algorithms for Translating View Updates to Database Updates for

Views Involving Selections, Projections, and Joins”. In: Proceedings of the Fourth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems. PODS ’85. Portland,
Oregon, USA: ACM, 1985, pp. 154–163. isbn: 0897911539. doi: 10.1145/325405.
325423. url: http://doi.acm.org/10.1145/325405.325423.

[39] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. “Model Compari-
son: A Foundation for Model Composition and Model Transformation Testing”. In:
Proceedings of the 2006 International Workshop on Global Integrated Model Manage-

ment. GaMMa ’06. Shanghai, China: ACM, 2006, pp. 13–20. isbn: 1595934103. doi:
10.1145/1138304.1138308. url: http://doi.acm.org/10.1145/1138304.1138308.

[40] R. Landauer. “Irreversibility and Heat Generation in the Computing Process”. In: IBM
Journal of Research and Development 5.3 (July 1961), pp. 183–191. issn: 0018-8646.
doi: 10.1147/rd.53.0183.

[41] Yves Lecerf. “Machines de Turing réversibles. Récursive insolubilité en n ∈ N de
l’équation u = θn, où θ est un “isomorphisme de codes””. In: Comptes Rendus 257.18
(1963), p. 2597.

[42] Jens Lechtenbörger. “The Impact of the Constant Complement Approach Towards
View Updating”. In: Proceedings of the Twenty-secondACMSIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems. PODS ’03. San Diego, California:
ACM, 2003, pp. 49–55. isbn: 1581136706. doi: 10.1145/773153.773159. url: http:
//doi.acm.org/10.1145/773153.773159.

[43] Yuehua Lin, Jing Zhang, and Je� Gray. “Model comparison: A key challenge for
transformation testing and version control in model driven software development”.
In: Control in Model Driven Software Development. OOPSLA/GPCE: Best Practices for

Model-Driven Software Development. Springer, 2004, pp. 219–236.
[44] Christopher Lutz and Howard Derby. “Janus: a time-reversible language”. In: Caltech

class project (1982).
[45] Yoshifumi Masunaga. “A Relational Database View Update Translation Mechanism”.

In: Proceedings of the 10th International Conference on Very Large Data Bases. VLDB
’84. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1984, pp. 309–320.
isbn: 0934613168. url: http://dl.acm.org/citation.cfm?id=645912.671143.

[46] John McCarthy. “The inversion of functions de�ned by Turing machines”. In: Au-
tomata studies (1956), pp. 177–181.

[47] W. McCune. “Prover9 and Mace4”. 2005–2010. url: http://www.cs.unm.edu/
~mccune/prover9/.

[48] ClaudiaBauzer Medeiros and FrankWm. Tompa. “Understanding the implications of
view update policies”. English. In: Algorithmica 1.1-4 (1986), pp. 337–360. issn: 0178-
4617. doi: 10.1007/BF01840451. url: http://dx.doi.org/10.1007/BF01840451.

122

http://dx.doi.org/10.1145/325405.325423
http://dx.doi.org/10.1145/325405.325423
http://doi.acm.org/10.1145/325405.325423
http://dx.doi.org/10.1145/1138304.1138308
http://doi.acm.org/10.1145/1138304.1138308
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1145/773153.773159
http://doi.acm.org/10.1145/773153.773159
http://doi.acm.org/10.1145/773153.773159
http://dl.acm.org/citation.cfm?id=645912.671143
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
http://dx.doi.org/10.1007/BF01840451
http://dx.doi.org/10.1007/BF01840451

Bibliography

[49] Lambert Meertens. Designing Constraint Maintainers for User Interaction. Tech. rep.
1998.

[50] Microsoft. Transact-SQL-Reference CREATE VIEW (Transact-SQL). 2014. url: https:
//msdn.microsoft.com/de-de/library/ms187956(v=sql.120).aspx (visited on
11/18/2015).

[51] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. “An Algebraic Approach to
Bi-Directional Updating”. In: In ASIAN Symposium on Programming Languages and

Systems (APLAS. Springer, 2004, pp. 2–18.
[52] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. “An Injective Language for

Reversible Computation”. English. In: Mathematics of Program Construction. Ed.
by Dexter Kozen. Vol. 3125. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 289–313. isbn: 9783540223801. doi: 10.1007/978-3-540-
27764-4_16. url: http://dx.doi.org/10.1007/978-3-540-27764-4_16.

[53] Atsushi Ohori and Keishi Tajima. “A Polymorphic Calculus for Views and Ob-
ject Sharing (Extended Abstract)”. In: Proceedings of the Thirteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems. PODS ’94. Min-
neapolis, Minnesota, USA: ACM, 1994, pp. 255–266. isbn: 0897916425. doi: 10.
1145/182591.182623. url: http://doi.acm.org/10.1145/182591.182623.

[54] Object Management Group (OMG). Meta Object Facility (MOF) Core. http://www.
omg.org/spec/MOF/2.4.1/. Version 2.4.1. 2013.

[55] Object Management Group (OMG). Object Constraint Language (OCL). http://www.
omg.org/spec/OCL/2.4/. Version 2.4. 2014.

[56] Object Management Group (OMG). UML Superstructure. http://www.omg.org/
spec/UML/2.2/. Version 2.2. 2009.

[57] Oracle. Database Administrator’s Guide Managing Views. 2008. url: https://docs.
oracle . com / cd / B28359 _ 01 / server . 111 / b28310 / views001 . htm (visited on
11/18/2015).

[58] Ralf H. Reussner et al. Modeling and Simulating Software Architectures - The Palladio

Approach. To appear. MIT Press, 2015.
[59] MarcH. Scholl, Christian Laasch, and Markus Tresch. “Updatable views in object-

oriented databases”. English. In: Deductive and Object-Oriented Databases. Ed. by
C. Delobel, M. Kifer, and Y. Masunaga. Vol. 566. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1991, pp. 189–207. isbn: 9783540550150. doi: 10.1007/3-
540-55015-1_10. url: http://dx.doi.org/10.1007/3-540-55015-1_10.

[60] Igor Tatarinov et al. “Updating XML”. In: Proceedings of the 2001 ACM SIGMOD Inter-

national Conference on Management of Data. SIGMOD ’01. Santa Barbara, California,
USA: ACM, 2001, pp. 413–424. isbn: 1581133324. doi: 10.1145/375663.375720. url:
http://doi.acm.org/10.1145/375663.375720.

123

https://msdn.microsoft.com/de-de/library/ms187956(v=sql.120).aspx
https://msdn.microsoft.com/de-de/library/ms187956(v=sql.120).aspx
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1145/182591.182623
http://dx.doi.org/10.1145/182591.182623
http://doi.acm.org/10.1145/182591.182623
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/
https://docs.oracle.com/cd/B28359_01/server.111/b28310/views001.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/views001.htm
http://dx.doi.org/10.1007/3-540-55015-1_10
http://dx.doi.org/10.1007/3-540-55015-1_10
http://dx.doi.org/10.1007/3-540-55015-1_10
http://dx.doi.org/10.1145/375663.375720
http://doi.acm.org/10.1145/375663.375720

A. Appendix

A.1. Technical Changes to the ModelJoin-Implementation

As part of the thesis the existing experimental ModelJoin implementation [16] was extended
by a trace model and constraint generator. The extended ModelJoin Work�ow can be
found in Figure A.1.

ModelJoin
Query

Metamodel
Synthesis

Transformation
Generation

Input
Metamodels

Model-to-model
Transformation

Trace
Metamodel

Target
Metamodel

Input
Models

Transformation
Exectution

Trace Model

Target Model

Constraint
Generation

OCL
Constraints

OCL Checker

Translation
Engine

references

references

-instance of , -instance of ,-instance of ,

Figure A.1.: Extended ModelJoin Work�ow. Based on Figure 6.7 in [14]. New elements are
highlighted in bold.

A.1.1. Trace Model Generation

The Metamodel synthesis was extended, so that it generates a trace metamodel in addition
to the target metamodel. The trace metamodel contains trace classes like described in
chapter 4.4 and following. These classes reference classes in the input metamodel and
target metamodel. Therefore the trace metamodel depends on the input models and is not
input model independent like the target metamodel. The trace metamodel is currently
only needed for the translatability check.

Further the transformation generator was extended. The generated transformation now
outputs and trace model in addition to the target model.

125

A. Appendix

A.1.2. OCL Constraint Generation and Checking

To generate the OCL-constraints, a constraint generator was created. It takes the trace and
target metamodels as input and outputs an OCL-File (.ocl) with OCL constraints. These
OCL constraints can be used to check if an updated target model can be translated back to
the input models. The OCL generator uses the same target metamodel annotations as the
metamodel generator. The generated OCL constraints can be loaded into the Ecore Model
Editor of the Eclipse IDE. The editor then shows the violated constraints and marks the
corresponding model elements with an error.

Additional an OCL checker was developed that takes the input models, the target and
trace model and the OCL-Constraints as input and checks if the updated target model
ful�lls all constraints.

A.1.3. SVN Locations

The source for the implementation can be found under the following SVN locations:

https://svnserver.informatik.kit.edu/i43/svn/code/MDSD/ModelJoin/Core/

OCL Constraint Generation: trunk/edu.kit.ipd.sdq.mdsd.mj.constraints.generator

OCL Constraint Checker: trunk/edu.kit.ipd.sdq.mdsd.mj.constraints.checker

Trace Model Generation: trunk/edu.kit.ipd.sdq.mdsd.mj.metamodel.generator

A.1.4. Future Enhancements
Translation Engine The actual model transformation, which applies the translation to the input
models, was not yet developed. It could be generated by an additional transformation generator
or use the target and trace model directly to derive the source model updates. The source model
updates, that result from an updated target and trace model are given in chapter 4.5 and for di�erent
translation strategies in chapter 5.

Target Model Annotations With the new trace model some of the annotations in the target
model are redundant. In future versions of ModelJoin, the annotations could be removed and the
information could be obtained from the trace model instead.

126

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goal
	Outline

	Foundations
	View-based Software Development
	Meta-Object Facility (MOF)
	The Ecore Metamodel
	ModelJoin and Vitruvius
	The View-Update-Problem

	The View-Update-Problem for ModelJoin
	ModelJoin View Definitions and Update Operations
	Update Operations for Ecore Models
	Updates for Attribute Values
	Creation and Deletion of References
	Creation and Deletion of Class Instances

	The View-Update-Problem Definition for ModelJoin
	State-based vs. Delta-based Approaches
	Properties of a Valid Translation

	The Restricted View-Update-Problem

	Constraints for Translatable Views
	OCL Expressions
	Meta Notations for OCL
	Meta Variables

	OCL Expression Rewriting
	Rewriting for Existing Source Instances
	Rewriting for New Source Instances
	Class Instance Meta Functions

	The Trace Model
	Constraints Creation
	Constraints for Join Expressions
	Constraints for Keep Expressions
	Handling of Additional Supertypes and Subtypes
	Regarding Multiplicity Restrictions of the Source Metamodels

	Deciding Translatability
	Inferring About the Translatability of Updates

	Additional Translation Strategies for Updated Views
	Translation of New Target Class Instances
	Mapping Meta Functions
	Mapping Strategies
	Handling of Keep Attribute, Calculate Attribute and Keep References
	Translation Algorithm for Target Class Instances
	Limitations of Guessed Mappings
	Manual Mapping
	Mappings Between Different ModelJoin Expressions

	Translation of Deleted Target Class Instances
	Deletion Strategies

	ModelJoin Expressions for Source Attribute Updates

	Automatic Fixes for Untranslatable Views
	Automatic Creation of Missing Target Class Instances
	Automatic Calculated Values of Derived Model Elements
	Automatic Propagation of Updated Attribute Values

	Evaluation
	Translatability of Updated Model Elements in General
	Translatability of a Updated Attribute Value
	Translatability of a Updated Link
	Translatability of a Class Instance Creation
	Translatability of a Class Instance Deletion

	Application in Case Study Examples
	Common Component Modelling Example (CoCoME)
	Palladio Media Store Example

	Conclusion of the Evaluation
	Limitations and Validity of the Case Study

	Related work
	Update Translation for Relational Views
	Update Translation for Tree Views
	Linguistic Approaches to the View-Update-Problem
	Bi-Directional Transformation Languages
	Bijective Transformation Languages
	Reversible Transformation Languages

	Conclusion
	Bibliography
	Appendix
	Technical Changes to the ModelJoin-Implementation
	Trace Model Generation
	OCL Constraint Generation and Checking
	SVN Locations
	Future Enhancements

