Survey on the Applicability of Textual Notations
for the Unified Modeling Language

Stephan Seifermann and Henning Groenda

FZI Research Center for Information Technology, Software Engineering
Haid-und-Neu-Str. 10-14, Karlsruhe, Germany
{seifermann,groenda}@fzi.de

Abstract. The Unified Modeling Language (UML) is the most com-
monly used software description language. Today, textual notations for
UML aim for a compact representation that is suitable for developers.
Many textual notations exist but their applicability in engineering teams
varies because a standardized textual notation is missing. Evaluating no-
tations in order to find a suitable one is cumbersome and guidelines found
in surveys do not report on applicability. This survey identifies textual
notations for UML that can be used instead of or in combination with
graphical notations, e.g. by collaborating teams or in different contexts.
Additionally, it rates the notation’s applicability with respect to UML
coverage, user editing experience, and applicability focused on engineer-
ing teams. Our results facilitate the otherwise unclear selection of a no-
tation tailored for specific scenarios and enables trade-off decisions. We
identified and characterized 21 known notations and 12 notations that
were not covered in previous surveys. We used 20 categories to charac-
terize the notations. Our findings show that a single notation does not
cover more than 3 UML diagram types (mean 2.6), supports all surveyed
state of the art editing features (only one notation supports all), and fits
into existing tool chains.

Keywords: UML, Textual Notation, Survey, Editing Experience

1 Introduction

The Unified Modeling Language (UML) has become the de-facto standard for
describing software systems. The specification defines a graphical but no tex-
tual notation for fully representing the model. Researchers such as Spinellis [34]
argue that textual notations provide compact and intuitive alternatives. For in-
stance, Erb represents UML activity diagram-like service behavior specifications
textually in a developer-friendly way and more compact than graphics.

The absence of a standard leads to many textual notations that do not fully
cover UML modeling partially but focus on supporting documentation, being
compact, or serving as input for code generation. They largely differ in syntax,
UML coverage, user editing experience, and applicability in engineering teams.

The latest surveys covering textual UML notations were performed by Luque,
et al. [24,22,23]. The former two [24,22] focus on the accessibility of UML for

blind students in e-learning and classrooms, respectively. The latter [23] surveyed
tools for use-case and class diagrams used in industry at 20 companies in the
state of Sao Paolo (Brazil). All surveys target notations used in practice. The
literature studies rely on existing studies on the accessibility domain but do not
search for scientifically published notations. The survey of Mazanec and Macek
[25] focuses on textual notations in general but is a few years old and covers few
notations. It does not represent the current development state and available va-
riety of notations and modeling environments. The surveys illustrate the variety
of specialized textual notations but do not analyze the editing experience in an
objective way. The editing experience is, however, crucial for engineering teams
and is hard to survey. The latter degrades the selection quality because it limits
the amount of notations to be tested because of time constraints.

The contribution of this survey is the identification and classification of tex-
tual UML notations including the user experience. Engineering teams can use
the classification for identifying appropriate notations for their usage scenarios.
The classification scheme is tailored to support this selection. This survey ex-
amines usability of notations with respect to their syntax, editors, and modeling
environment. Usability in realistic scenarios is determined by covered diagram
types, supported data formats for information exchanges such as XMI, and syn-
chronization approaches with other notations. It additionally evaluates whether
non-necessary parts of the notation can be omitted. This support for sketching
models eases low-overhead discussion and brainstorming. For instance, the UML
specification allows to omit the types of the class attributes.

This survey extends the trade-off selection discussion and includes two addi-
tional notations with respect to our previously published survey [33]. The two
new notations stem from the latest survey from Luque et al. [24] that we became
aware of in the meantime. This adds two new notations that we reviewed with
the same 20 categories covering applicability in engineering teams. Considering
that survey, we identified 12 notations not covered in surveys of other authors.
We rewrote and extended the discussion to identify drawbacks of the notations
that limit applicability. This allows practitioners to focus their notation evalua-
tions on critical aspects. Tool vendors can identify unique features. Researchers
can develop approaches on how to make notations more applicable.

The remainder of this survey is structured as follows: Section 2 describes the
survey’s review method by defining objectives and the review protocol consisting
of three phases. Section 3 describes the classification scheme based on the defined
objectives. Section 4 presents the extended analysis results in terms of classified
textual notations. Section 5 covers our new extensive discussion of the findings
and discusses the validity of the results. Finally, Section 6 concludes the paper.

2 Review Method

The review process follows the guidelines of Kitchenham and Charters [20] for
structured literature reviews (SLR) in software engineering based on the guide-
lines in the field of medical research. Their guidelines cover the planning, con-

duction, and writing of reviews. Planning involves defining research objectives
and creating a review protocol describing the activities in each review step.
The following sections describe our implementation of the SLR, and mapping
to the proposed method. The results of our search activities are documented and
available for reproducibility at http://cooperate-project.de/CCIS2016.

2.1 Objectives

Our objectives are to determine each notation’s (O1) coverage of the UML,
(02) user editing experience and (O3) applicability in an engineering team.
The reasoning requires an analysis of the textual notations and of the modeling
environments. Section 3 presents the detailed classification scheme based on the
objectives and instructions on information extraction from literature.

2.2 Review Protocol

ad SLR

ad Quality Assurance)

¢

ad Complement)

?

Identlflcatlon of Build Reference Identification of
Research Closure Unpublished
¢ Approaches
{Study Selectlon) [Study Selection)
¢ Check Availability
Study Quallty Study Quality
Assessment Assessment
{Data Extractlon) [Data Extraction) Data Extraction
[Data Synthesis) [Data Synthesis) [Data Synthesis)

‘

Reasoning

O'

Fig. 1. The three phases of the review conduction process used in this survey.

Figure 1 shows an overview of our review protocol. We distinguish three
phases during the conduction: classic SLR, Quality Assurance and Complement.
The classic SLR follows the guidelines of review conduction by Kitchenham,
et al. [20]. We extend the SLR with two additional phases in order to increase
the quality of the results and to take notations into account that are mainly used

http://cooperate-project.de/CCIS2016

in (industrial) practice: The Quality Assurance phase focuses on incoming and
outgoing literature references as suggested by the Snowballing search approach
[40]. In contrast to the original proposal, we use Snowballing only to cross-check
our SLR search strategy. The Complement phase focuses on textual notations
that are available in practice but are not scientifically published.

2.3 Phase 1: SLR

Reviews according to [20] consist of the five activities marked as SLR in Figure 1.

The Identification of Research describes the search strategy for collecting
literature. We chose a keyword-based search approach using the search engines
ACM Digital Library, IEEExplorer, CiteSeer, ScienceDirect, SpringerLink and
Google Scholar. These search engines cover relevant journals and are suggested
by Kitchenham and Charters for the software engineering domain. We did not
include EI Compendex and Inspec as we could not query these search engines
without subscriptions. Their focus is on high-qualitative entries and metadata
and they do not belong to a not-covered established publishing authority. We
are confident that the selected search engines and their metadata are sufficient.

We defined a set of keywords T for identifying textual notations and another
one U for identifying the usage of UML. Table 1 presents both sets as variations
of our original terms teztual notation, and UML. They are based on commonly
used terminology in the modeling domain. A search query is given by V¢, A V,,
with t; € T Au; € U. The query enforces the exact matching of keywords.
It considers abstracts and titles because this restricts the search to literature
that focuses on textual notations for UML. Google Scholar has API restrictions
that limit queries on abstracts to papers that have been released at most one
year ago. This restriction does not apply to our title-based search. We restrict
ScienceDirect queries to computer science papers. We implemented a search on
the SpringLink results enabling keyword identification in the abstract. After
collecting the results of all search engines, we merge them and filter duplicates.

Table 1. Keyword groups used in search queries.

Group Keywords

Textual T CTS, textual modeling, textual modelling, text-based modeling, text-
based modelling, textual notation, text-based notation, textual UML,
text-based UML, textual syntax

UML U UML, unified modeling language, unified modelling language

Study Selection covers a rough screening based on titles and abstracts to
allow spending more time on relevant literature. We focus on textual notations
for graphical parts of the UML specification [27, p. 683]. We exclude all textual
notations only extending UML or its elements rather than expressing UML itself.
We exclude all notations that are not related to UML. We exclude notations not

intended for human usage such as data transfer containers, e.g. XMI serialization
[28]. We include a) primary papers describing a single textual notation, and
b) secondary survey-like papers including their references as primary sources.

The Study Quality Assessment considers title, abstract, and the content of
the full paper. We decide on in-/exclusion of the remaining papers in this step.

Data Extraction is the process of determining the information required to
judge about the fulfillment of the objectives. Section 3 shows the analyzed fea-
tures of the notations, their hierarchy, and individual decision basis in detail.
We reason on the modeling environment based on information found directly
in literature, implemented prototypes, prototype websites, and source code. We
identify prototypes, their website, and the source code by: a) following links in
the papers, b) mining the website of the institute or company of the authors,
¢) and searching for the name of the notation (full name and abbreviation if
used) via the Google search engine and on Githuband visit the first one hun-
dred search results.Data extraction takes place for the declared primary editor.
If there is more than one prototype, we use the declared primary editor and an
IDE-integrated editor. We assume the latter to profit from advanced accessibil-
ity features of the IDE. If there are editors for several IDEs, we decide in favor
of the Eclipse-based one because Eclipse is open source, highly extensible, and
offers many accessibility features’.

Data Synthesis summarizes the information. We show and summarize the
analysis results according to the classification given in Section 3.

2.4 Phase 2: Quality Assurance

The Quality Assurance phase is based on the Snowballing approach [40] of
Wohlin for literature identification. Wohlin suggests starting with an initial set
of relevant literature and including relevant forward and backward references.
We do not use Snowballing as primary source for relevant literature because
its quality heavily depends on the initial literature set as described by Wohlin.
Instead, we accept the overhead of a prior SLR phase with broad search terms
and use Snowballing to verify the quality of our SLR phase as described below.

Build Reference Closure determines the completeness of results from the SLR
phase. We collect all directly referenced and referencing literature for the ana-
lyzed papers. We derive the referenced literature from the references section of
the paper. We use Google Scholar to determine incoming references.

The Study Selection and Study Quality Assessment from phase SLR are ap-
plied to identify additional notations.

We perform Data Extraction on selected papers as in the SLR phase and add
the notation to our database.

Data Synthesis summarizes the information as carried out in the SLR phase.

Reasoning addresses why newly identified notations have been missed in the
SLR phase. Section 5 presents the results. This phase is different from Wohlin’s
Snowballing approach and allows verifying the quality of our SLR phase.

! nttps://wiki.eclipse.org/Accessibility

https://wiki.eclipse.org/Accessibility

2.5 Phase 3: Complement

Identification of Unpublished Approaches focuses on textual notations that are
available in practice but are not scientifically published. We use the Google
search engine to identify the top 5 pages for 'UML textual notation’, "UML
textual notations’, "UML textual notations list’. We mine the resulting websites
to identify new approaches. We follow the links from the identified websites
looking for notations or comparisons of notations.

Additionally, we search for unrecognized scientific surveys or notation com-
parisons. We perform a full-text search via Google Scholar with the names of
the three most popular non-scientific notations. We assume that recent surveys
including non-scientific notations cover them and thereby will be included in the
search results. We determine a notation’s popularity by querying Google with
the name of the notation and comparing the announced results with the amount
of other notations. We only included notations that claim to relate to the UML.

In Check Awailability, we filter all potential notations with dead links.

We perform Data Extraction for new notations, analyze the information, and
add the notation to our database.

Data Synthesis summarizes the information as carried out in the SLR phase.

3 Classification

This section presents the classification and information extraction goals derived
from the three objectives presented in Section 2.1. The objectives cover aspects
of what can be edited based on the textual notation definition (01, O2) as well as
how it can be edited based on modeling environments (02, 03). We use feature
modeling to represent the evaluation classes, their hierarchy, and possible values.
The resulting overview is depicted in Figure 2. The features themselves and how
their values are evaluated for the notations are presented in the following.

Each Textual Notation is defined by a Language (O1, O2) and an optional
Implementation (02, O3) in a modeling environment.

The Implementation is optional and covers all aspects with respect to a mod-
eling environment for a notation. It can have Recent Activity (O3), a License
(03), and can support Change Propagation (02, O3) between different nota-
tions, data Format Exchange (02), and Editor (O2) features.

We divide the classification of the implementation into two parts for a better
overview: integration aspects, and the editor itself. The former covers the features
relevant for integrating an implementation into a tool chain. The latter covers
the editing experience of the editors.

The following subsections will cover the language, integration, and the editor
in that order.

3.1 Language

The mandatory Language definition describes the language’s syntax. It consists
of UML Support (O1) for diagram types, can have Sketch Support (02), inte-
grated Layout Information (02), and be Similar to UML Graphics (02).

Textual Notation

@)
Implementation
License

4 UML Support

{ Sketch Support
Layout
Information

Similar to UML

... (12 more)

Change
Propagation

Release Activity

{ Recent Activity

Ticket Activity |

Open Source Commit Acitivity

Closed Source

Textual to
Graphical

Graphical to
Textual

Via Import/Export

Graphics

Graphical

Folding

C{ Format Exchange Export UML XMI l

Editable

Visualization

LC{ Layoutable |

Syntax
Highlighting
. Syntax
Code Completion
Navigation Outline l

AN

Optional Mandatory Logical XOR Logical OR

Fig. 2. Feature model for analyzed characteristics and their hierarchy.

UML Support is mandatory and describes the supported UML diagram types.
At least one type has to be supported. A type is supported if the documentation
states it to be supported or the modeling environment allows the creation of a
corresponding type. The considered diagram types are based on the UML spec-
ification [27, p. 682]. The abbreviations are based on the official abbreviations
from [27, p. 682], or self-made if there is no official one: Activity Diagram (ACT),
Class Diagram (CLS), Communication Diagram (COM), Component Diagram
(CMP), Composite Structure Diagram (COS), Deployment Diagram (DEP), In-
teraction Overview Diagram (INT), Object Diagram (OBJ), Package Diagram
(PKG), Profile Diagram (PRO), Sequence Diagram (SEQ), State Machine Dia-
gram (STM), Timing Diagram (TIM), and Use Case Diagram (UC).

Sketch Support is optional and can ease the notation’s usage during discus-
sions. Discussions benefit from quick interaction. Formal full-fledged modeling
can extend the interaction time. There is support if only mandatory elements of
UML'’s abstract syntax are required.

Layout Information is optional and states if the textual model can contain
graphical layout information. This information allows to improve graphical pre-
sentations of textual statements. The information is irrelevant to describe the
model itself. The interpretation is difficult as only graphic notations illustrate
graphical positions. The information can be either Mized with model elements
or kept Separated. It is marked as Mized if at least one element has mandatory
layout information.

Similar to UML Graphics is optional and denotes if ASCII art memes graph-
ical elements such as arrows in the textual notation. For instance, the characters
<>--> are similar to the UML graphical representation for an aggregation. This
can work well for people knowing the graphical representation but has adverse
effects when typing or for people using accessibility tools like Braille displays. A
notation is marked as similar if there is at least one ASCII art mapping.

3.2 Integration

The integration covers all features that are relevant for integrating an imple-
mentation into a tool chain. Such a decision is based on the costs, extensibility,
support, maintainability and compatibility to existing tools. The following fea-
tures cover these aspects in more detail.

The Recent Activity is optional and indicates the support status. In contrast
to a maintained project, a discontinued project will not receive bugfixes and
might be incompatible to recent software such as new versions of an IDE. We
determine three activity dates that allow judging project activity. One of them
has to be identifiable: Release Activity relates to the date of the last release.
A release can be a proper release, snapshot, or nightly build. Ticket Activity is
determined by the date of the most recently closed ticket. Commit Activity is
given if we can determine the most recent commit.

The License is optional and can be crucial for using and maintaining the
modeling environment. Open Source licenses allow own bug fixing and the devel-
opment of extensions and adaptations. The individual requirements for a license

depend heavily on the usage context of the modeling environment. An expert
review is required to check for a notation of interest if it applies to the own use
case. We therefore differentiate solely between Open Source and Closed Source
licenses. We rely on the list of the Open Source Initiative [29]. If the license is
listed on their website, we treat the project as open source. All other licenses
are considered Closed Source.

Change Propagation can be supported and addresses transferring changes
from one notation into another. The modification in the modeling environment
for a textual notation can therefore result in an according change in a graphi-
cal notation of the same content. This targets a consistent view of the content
and allows different team members to work with different notations during dis-
cussion. This can mean updates in real-time for close collaboration or based on
exporting and importing models in different environments. We consider the three
cases: Textual to Graphical, Graphical to Textual, and Via Import/Export prop-
agation. Textual to Graphical and Graphical to Textual apply if the modeling
environment includes a textual and a graphical editor. We consider it supported
if changes in one editor are reflected in the other one. Via Import/Export ap-
plies if there is an import or export functionality and notations can be updated
sequentially. It is marked if it provides import and export function for UML
models in the standardized XMI data format.

Data Format Exzchange is optional and allows integrating the modeling re-
sults into other tools or existing tool chains. We only consider fully-automated
exchange procedures provided by the implementation itself. We do not consider
other procedures such as the error-prone manual translation between notations
or tools that is usually done by assistants. A modeling environment can sup-
port the Import or Fxport of a different set of data formats. This feature can
have the value UML XMI as standardized UML data exchange and can list
Custom formats supported by the tools. The values are selected based on the
documentation or file extensions provided in the editing environment.

3.3 Editor

Editor categorizes properties related to user input, interaction, and presentation.
They can be Textual (O2), Graphical (O2) or both. An editor is considered
textual if it contains only text and no graphical elements. Text coloring may be
used. This ensures that textual editors are accessible by accessibility techniques
such as screen readers. Otherwise, it is treated as Graphical.

Textual editors address several features to increase user experience and ac-
cessibility. A textual editor can support Visualization (O2), Refactoring (O2) of
the model, and user Navigation (O2) within the model. Previous surveys did
not focus on the editing experience in detail. Therefore, we selected the features
according to our objectives.

A Visualization is optional and allows focused presentation of content by
means of information hiding. It can support Folding (O2), and Syntax High-
lighting (02).

Folding (un)hides selected partitions of the model, eases comprehension for
complex models and focused presentation. It is selected if there is at least one
partition in a model that can be hidden or shown based on the editor’s UI.

Syntax Highlighting highlights keywords or important structural parts of the
model. It eases comprehension and identifying the structure of models. It is
selected if colors or text formats highlight at least one keyword of the language.

Refactoring is optional and addresses batch changes to the model. For in-
stance, all occurrences of a model element can be replaced with another one
in one single step instead of using a manual search and replace approach. This
feature exists if there is at least one supported refactoring.

Nawvigation is optional and addresses navigation to model elements and pro-
viding an overview to users. There can be support for Code Completion (02),
overviews on model elements by Outline (O2), and model element navigation by
Goto (02). Navigation is selected if at least one of its child features is selected.

Code Completion is optional and provides completion of a language’s syntax
or referenced model elements. It can provide hints on keywords of the Syntax
or model Elements allowed at the current position. It aids users in specifying
correct models and speeds up changes. We consider two types of values: Syntaz-
based and Element-based completion. They are selected if there is at least one
corresponding code completion feature in the editor.

Outline is optional and provides an overview of the elements in a model. This
can include their hierarchical structure. It is selected if there is at least a list of
all top-level elements in a model depicted in the editor.

Goto is optional and allows direct navigation or jumps to specific model
elements. This eases comprehension and look-up of elements. It is selected if
there is navigation or jump support for at least one element type. It is included
if it is directly in the textual notation and excluded if its only in the Outline.

Graphical editors are optional and allow displaying and editing graphical
version of the models. There are many advanced graphical UML editors available
based on the formal UML specification. [18] gives a good overview in his survey of
interoperability of UML tools. [38] illustrates the features of various UML tools.
There are many comparisons between few selected tools such as IBM Rational
Software Architect, MagicDraw, and Papyrus in [32] or between Rational Rose,
ArgoUML, MagicDraw, and Enterprise Architect in [19]. This survey focuses on
the synchronization aspect with textual languages and their editors (03). Our
categories show if the editor is mainly a pure static presentation of the model
or allows interactions. We distinguish for Graphical editors if their content is
Editable (O2) and Persistable (O2). This feature is selected if there is a graphical
presentation of the model in the modeling environment.

Editable is optional and denotes if the graphical content can be modified, e.g.
a user can rename elements. This feature is selected if at least some elements in
the graphical editor can be modified.

Layoutable is optional and denotes if modifications to the graphical layout,
e.g. the position of model elements, can be done. Users can structure the graphi-
cal representation in this way. This feature is selected if elements can be moved.

4 Analysis Results

This chapter presents the analysis results for all notations. Table 2 and Table 3
provide an overview and show the determined characteristics for all notations.
The following paragraphs provide short notation descriptions. They point out
features or provide comments, which are not already covered by the overview.

Alf [26] has been specified by the OMG and is the UML action language. It is
based on Foundational UML (fUML). There is no official editor implementation.

Alloy [16] is a model finder and solver based on the Z notation [15] instead
of UML. The author compares it to UML in sections 4.1 and 6.4 and states that
” Alloy is similar to OCL, the Object Constraint Language (OCL) of UML”2. It
provides a graphical and textual notation but no support for any UML diagrams.
It has a MIT license and does not provide access to source code.

AUML [39] is an extension to UML SEQ diagrams. Winikoff defined a textual
notation for AUML that has been included in the Prometheus Design Tool. It
provides a PNG export but no mechanism to import or export a model.

Ckwne [36] is a web editor that allows specifying UML SEQ diagrams with
a programming language-like syntax. Users can export graphics.

Clafer [41] is a modeling language for CLS diagrams and constraints. The
online tool* provides no graphical view but offers a GraphViz export.

DCharts [10] specifies a meta-model in AToM? ® and a graphical and textual
notation. The textual notation is the leading one and the graphical implemented
only partially [10, p. 35]. No tool or files could be found actually implementing
the theoretical concept. We could not find an advanced textual editor with col-
laboration features for the self-defined language. The publication claims that
there is a transformation from the meta-model to UML state charts.

Earl Grey [25] is a proof of concept for an accessible textual notation. The
Eclipse implementation creates a model during editing but there is no export.

EventStudio [9] is a commercial tool suite for modeling object and message
flows. It supports SEQ, STM, and UC diagrams and can generate images. The
images, however, do not correspond to the official UML graphical syntax.

HUTN [35] is an OMG standard for text-based representation of MOF-based
meta-models, which covers the UML meta-model. Humans can use it easier than
XMI. There is no official reference implementation of an editor.

IOM/T [7] allows specifying protocols for agent communication. It covers
AUML [39] sequence diagrams partially, which we consider as SEQ support.
The notation seems to consist of two papers, the latest in 2007.

MetaUML [11] is a DSL leveraging TeX in the background. It creates graphics
in UML style but no UML models.

2 http://alloy.mit.edu/alloy/faq.html

3 https://sites.google.com/site/rmitagents/software/prometheusPDT
4 http://t3-necsis.cs.uwaterloo.ca:8094

® http://atom3.cs.mcgill.ca/

http://alloy.mit.edu/alloy/faq.html
https://sites.google.com/site/rmitagents/software/prometheusPDT
http://t3-necsis.cs.uwaterloo.ca:8094
http://atom3.cs.mcgill.ca/

Table 2. Language and textual editor implementation characteristics of analyzed tex-
tual UML notations. Characteristics are: not extractable (-), given (v'), or not given
(x). Layout information is: mixed (m) or separated (s).

Language Textual Editor
Vis. [Navigation
g 1E | -
LEEE |nE
< 522 |22
2 28E® (22 &
o SESE (2 H R=
g & o E o - o |8
3 3 SEEEEET 2 o2
5 S 52 E2E EE 5E
Z. - NAOMEO OO I
Alf CLS, ACT, PKG vV X X - - - - - -
Alloy X X X XV X X XX X X
AUML SEQ X X XV X X X X X X
AWMo CLS X X X = = - - - - -
blockdiag: seqdiag, actdiag SEQ, ACT vmv - - - - - - -
Clafer CLS, OBJ X X XV X X X X X X
cwknc SEQ X X XV X X XX X X
Dcharts STM V X X = - - - - - -
Earl Grey CLS, SEQ, STM XXXV VV VY
EventStudio SEQ, STM, UC X s vV X X XX X X
Finite State Machine STM VX XV X X XX X X
Diagram Editor
HUTN all VX X - - - - - - -
IOM/T SEQ X X X - - - - - - -
js-sequence-diagrams SEQ vmv - - - - - - -
MetaUML CLS, STM, ACT, UC, CMP, v m x - - - - - - -
PKG
modsl CLS, COM VXXV VYV XV VY
Nomnoml CLS, OBJ, STM, UC,PKG v mVv - - - - - - -
pgf-umled CLS vVmX v X X X X X X
pgf~umlsd SEQ vVmx v X X XX X X
PlantUML CLS, OBJ, SEQ, STM, ACT, v mv - - - - - - -
UC, CMP, DEP
Quick Sequence Diagram Editor SEQ VX X - - - - - - -
TCD CLS VXV - - - - - -
TextUML CLS, STM X X XV XV XV X X
tUML CLS, STM, COS XXXV VXXV VX
txtUML CLS, STM, ACT XX XV VX xvy Vv x
UML/P CLS, OBJ, SEQ, STM, ACT v s v v vV vV XV v X
UMLet CLS, OBJ, UC, PKG vVmx v X X X X X X
UMLGraph CLS, SEQ vmx - - - - - - -
uml-sequence-diagram-dsl-txl ~SEQ vmv v vy xvvyox
Umple CLS, STM, COS Vs v VvV X X XXX X
USE CLS X 8 X v X X X X X X
WebSequenceDiagrams SEQ vmv - - - - - - -
yUML CLS, ACT, UC VXV - - - - - - -

Table 3. Implementation characteristics (without textual editor) of analyzed textual
UML notations. Characteristics are: not extractable (-), given (v), or not given (x).
The License is: open (O) or closed (C') source.

Graph. Format Exchange
Editor

Z E

S 2,

g 2 2
5 < LS e 3
i E g2 cIENE g
5 g 8 £ 5z |5 g
zZ = 30 €[N iy |2 =
Alf - - - - - -
Alloy 2015 O x dot, xml als
AUML 2014 - T2G - - png X
AWMo 2013 C T2G,G2T - - X X
blockdiag: seqdiag, 2015 O T2G - - png, svg, pdf X
actdiag
Clafer 2015 O x - - own, Python Z3, Choco JS, x

alf, dot
cwknc 2013 O T2G - - png X
Dcharts - - - - - - -
Earl Grey 2012 O x - - X X
EventStudio 2016 C T2G - - pdf, emf, xml, html X
Finite State Machine 2015 O T2G,G2T vv x own own
Diagram Editor
HUTN - - - - - - -
10M/T - - - - - - -
js-sequence-diagrams 2015 O T2G - - svg X
MetaUML 2015 O T2G - - X X
modsl 2009 O T2G - - png,jpg X
Nomnoml 2015 C T2G - - png X
pgf-umlcd 2015 O T2G - - X X
pgf-umlsd 2015 O T2G - - X X
PlantUML 2015 O T2G - - uml, svg, eps, txt, html X
Quick Sequence 2015 O x - - pdf, (e)ps, svg, swi, emf, gif, x
Diagram Editor jpg
TCD - - 1IE - - uml uml
TextUML 2015 O x - - uml X
tUML - - T2GJJE x x uml uml
txtUML 2015 - T2G - - uml X
UML/P - C T2G vV XX X
UMLet 2015 O x v’ Vv bmp, eps, gif, jpg, pdf, png uxf
UMLGraph 2014 O T2G - - png,svg, emf, ps, gif, jpg, fig x
uml-sequence-diagram- 2009 x T2G - - xml, Code X
dsl-txl1
Umple 2015 O T2G,G2T v v uml, tuml, uxf, als, use, emf, x
code, yUML

USE 2015 O T2G v x pdf X
WebSequenceDiagrams - x T2G - - X X
yUML - - T2G - - png, pdf, jpg, json, svg X

modsl® is a text to diagram sketch tool based on Java code specifications.
The proposed default editing environment is Eclipse. It creates graphics in UML
style but no UML models.

pegf-umled” and pgf-umlsd® are both based on PGF/TikZ. They leverage TEX
interpreters. This has a major influence on its syntax and structure. They create
graphics in UML style but no UML models.

PlantUML [31] is a textual notation to diagram tool. CLS diagrams can
be exported as UML files for the StarUML and ArgoUML tools. Imports and
synchronization mechanisms are not available. There are various standalone and
integrated editor implementations.

Quick Sequence Diagram Editor? is a text to diagram sketch tool written in
Java. It creates graphics in UML style but no UML models.

TCD [37] is an ASCII-art converter for CLS diagrams. It provides conversions
from and to UML XMI representations. The implementation is not available.

TextUML [3] exports standard UML models but does not provide a graphical
view. Services such as Cloudfier'® use it as alternative for graphical modeling.

tUML [17] focusses on modeling for validation and verification purposes. The
mentioned prototype is not available.

txtUML [5] uses regular Java syntax for modeling. Java Annotations provide
additional information. There is no dedicated textual or graphical editor but a
Papyrus model can be exported.

UML/P [12] is a textual notation claiming to merge programming and model-
ing by enriching UML models with Java expressions. The Eclipse plugin provides
textual and graphical editors but no import or export.

UMLet!! [1] is a graphical UML sketch tool. It provides graphical UML
shapes. A selected shape is shown in a textual view, which allows to modify the
element. The textual view covers only the selected element. It create graphics in
UML style but no UML models.

UMLGraph [34] uses Java source files and customized JavaDoc comments to
create diagrams. It creates graphics in UML style but no UML models.

uml-sequence-diagram-dsl-tx1'? is a command-line based text to diagram
sketch tool written in the transformation language TXL. The Eclipse IDE plug-
in was not available. The table lists the mentioned features of the guide'3. It
creates graphics in UML style but no UML models.

Umple [21] is a model-to-code generator with textual notations. UML ele-
ments not relevant for code generation such as aggregations are omitted. The
online tool synchronizes the textual and graphical notation.

5 https://code.google.com/p/modsl/

" https://github.com/xuyuan/pgf-umlcd

8 https://code.google.com/p/pgf-umlsd

9 http://sdedit.sourceforge.net/

10 http://doc.cloudfier.com/creating/language/
" yww.umlet . com

12 http://www.macroexpand.org/doku. php

'3 http://www.tx1.ca/eclipse/TXLPluginGuide . pdf

https://code.google.com/p/modsl/
https://github.com/xuyuan/pgf-umlcd
https://code.google.com/p/pgf-umlsd
http://sdedit.sourceforge.net/
http://doc.cloudfier.com/creating/language/
www.umlet.com
http://www.macroexpand.org/doku.php
http://www.txl.ca/eclipse/TXLPluginGuide.pdf

USE [41] aims for specifying systems with including OCL constraints. The
official tool does not provide an editor but textual and graphical views.

AWMo [4]* is a Web application targeting the collaboration of blind and
sighted users. The Web tool does not work, there is no included documentation.
The characteristics have been determined based on the source code, available
presentations and the paper. They define their own simplistic meta-model in-
spired by CLS diagrams for their proof of concept. Collaboration is realized via
store and load mechanism, which maps to Import and Export in the table.

blockdiag!® has the subprojects seqdiag'® and actdiag!”. Both are written
in Python and convert textual diagram descriptions to graphics. The syntax is
Graphviz’s DOT format. The code and release activities are taken from seqdiag
only being representative. It creates graphics in UML style but no UML models.

Finite State Machine Diagram Editor and Source Code Generator!'® has an
own XML Schema Definition, which defines their textual language called Fs-
mML. Conforming XML documents can be Imported and Exported. Links to
model elements are realized via String matching.

js-sequence-diagrams'? is a text to diagram sketch tool written in Java Script.
It is inspired by the commercial WebSequenceDiagram. It parses plain text and
can report basic parsing errors. Its shared with an own license title as simplified
BSD. It creates graphics in UML style but no UML models.

nomnoml?? is a text to diagram sketch tool written in Java Script. The syntax
is oriented at the graphical UML shapes. It creates graphics in UML style but
no UML models.

WebSequenceDiagrams?! is a text to diagram sketch tool written in Java
Script. It creates graphics in UML style but no UML models. A free alternative
is js-sequence-diagrams.

yUML [13] is a text to diagram sketch tool. It creates graphics in UML style
but no UML models.

5 Discussion of Findings

This section discusses the results of the survey presented in the previous sec-
tion. We use the results to reason about the applicability in engineering teams
and especially identify open points and potential improvements. Additionally,
we discuss threats to validity. Section 5.1 focuses on the UML coverage of the
found notations. The quality of the provided user editing experience is covered
in Section 5.2 and Section 5.3 illustrates the issues of using the notations in

' http://garapa.intermidia.icmc.usp.br:3000/awmo/
!5 http://blockdiag.com/en/

16 https://bitbucket.org/blockdiag/seqdiag

7 http://blockdiag. com/en/actdiag/index . html

8 http://www.stateforge.com/

19 https://bramp.github.io/js-sequence-diagrams/
20 https://github.com/skanaar/nomnoml

2! https://wuw.websequencediagrams.com/

http://garapa.intermidia.icmc.usp.br:3000/awmo/
http://blockdiag.com/en/
https://bitbucket.org/blockdiag/seqdiag
http://blockdiag.com/en/actdiag/index.html
http://www.stateforge.com/
https://bramp.github.io/js-sequence-diagrams/
https://github.com/skanaar/nomnoml
https://www.websequencediagrams.com/

20
2 30 2
2 2
525 = 15
s s
Z 20 Z
2 210
£ 15 pe]
8 8
£ 10 &
= = 5
2 g n
= 3=
0 0 B U=
1 N O
0 2 4 6 8 10 12 14 EgEOOBMEOOﬁJEME
CQnncP,Op000AEAH
Supported UML Diagram Types UML Notation

Fig. 3. UML coverage of the surveyed notations.

engineering teams. Threats to internal and external validity are discussed in
Section 5.4.

5.1 UML Coverage

The benefit of a high coverage of UML diagram types is a wide range of appli-
cable scenarios. This stems from an increased probability that a diagram type
required for a scenario is supported by a notation. The results of our survey
with respect to the UML coverage are shown in Figure 3. We discovered that
most notations (14 out of 31) only support a single diagram type. This prohibits
modeling different aspects of a system such as structure and behavior in a sin-
gle model. Relations between elements describing different aspects are hard to
express. The conceptional HUTN notation supports all diagram types but pro-
vides no implementation. In summary, only six notations support four or more
diagram types and are, therefore, not restricted to specific application scenarios.

We found that the most supported diagram types are class (20) and sequence
diagrams (15) as well as state machines (13). Only few notations support other
diagram types as shown in Figure 3. No implementation exists for TIM, PRO,
and INT diagrams. The focus of the notations is in line with research on graphi-
cal UML usage: Dobing and Parsons [6] as well as Erickson and Siau [8] already
identified the class diagram as most commonly used diagram. Both consider se-
quence diagrams and state machines to be in the top five used diagram types.
Reggio et al. [30] achieved similar results and stress that practitioners only use
small subsets of the UML elements. As a consequence, vendors of textual nota-
tions tailor their notations to support the commonly used UML diagram types
and elements in order to facilitate usage. Potential users of the notation have,
nevertheless, to carefully check if it supports the elements required for the envi-
sioned usage scenario.

Syntax Highlighting —

Folding —

Refactoring —

Code Completion (Syntax) -
Code Completion (Element) -
Outline —

Goto ‘ ‘ -

0 5 10 15 20

Fig. 4. Amount of notations that support specific textual editor features.

5.2 User Editing Experience

Even if using state of the art editors increases efficiency when working with
textual representations, only about half of the notations (18 of 33) provide spe-
cialized editors. The support for specific features is visualized in Figure 4.

Basic Features All implementations support syntax highlighting. Around a third
of the implementations provide navigation support including outlines and goto
links. The same amount provides view customization such as folding. This most
probably stems from textual editing frameworks such as Xtext?? generating these
features automatically and without additional effort.

Large Model Handling Most editors, however, lack features required for working
with more complex models as given within industrial contexts. We consider code
completion and refactorings to be such features because they free the user from
knowing the whole model in order to finish their modeling tasks. The support
for code completion is twofold: About 25 % of the implementations support code
completion for syntactical elements such as keywords but lack support for code
completion for elements. Therefore, a user has to remember all usable elements
or has to look them up. Only one surveyed editor supports code completion for
elements. Only two editors support refactorings such as renaming of elements.
The results indicate that the models created with most of the surveyed notations
have a limited maintainability: Refactorings ease restructuring or fixing typos
but the majority of editors do not support them. Finding applicable elements
becomes cumbersome without advanced code completion. Therefore, most no-
tations should be used for small to medium sized models or for simple models
without complex relationships between elements.

Coupling with Graphical Notation Seven implementations include a graphical
editor to visualize the modeled UML diagram and five implementations allow
editing it. In contrast, 22 implementations provide the export of graphics. This
indicates that graphical representations are still in the focus but mostly for
documentation purposes.

22 https://eclipse.org/Xtext

https://eclipse.org/Xtext

5.3 Applicability in Engineering Teams

Active development is crucial to get bug fixes and helps when it comes to upgrad-
ing the editing environment. About half of our surveyed notations had recent
activity in 2015 and later, which means they are actively developed. Unfortu-
nately, only two-thirds of the notations provide a clear license statement, which
is crucial for using a notation and its implementation in professional contexts.

The integration in existing tool chains mainly depends on supported im-
port and export formats. Two-thirds (22) of the surveyed implementations pro-
vide exports in various formats and only five implementations support imports.
Roundtrip engineering, however, requires both features and usage of well-struc-
tured formats. Only 8 out of 22 notations provide well-structured formats for
exports. Four out of five notations allow the import of well-structured formats.
The remainder uses graphics for information exchange. The most prominent well-
structured exchange format are serialized UML models. Basically, this means
that only four notations are ready for integration in existing tool chains that
enable collaborative modeling in various notations, for instance. Information ex-
change is only partial and requires human intervention to reconstruct missing
information including graphical positions, changes in one format or information
not expressible in graphics.

5.4 Threats to Validity

We address four common threats to internal validity: incomplete selection, in-
consistent measurements, biased experimenter, and incomplete information.

We addressed incomplete selection with two additional phases that check the
completeness of search results. During the survey, we found a total of 33 textual
UML notations. Two notations originate from including the latest survey of
Luque et al. [24] in this extended version. These notations are not published
scientifically and therefore did not originate from the first two phases that focus
scientific notations. In addition, they are not popular enough to be listed in the
very first Google search results that we used to find industrial notations. We
would, however, have found the survey of Luque et al. in earlier phases if it had
been published at the time we conducted our literature study.

We found half of the remaining 31 notations in the SLR phase. In the Quality
Assurance phase, we found four new papers and three new notations. The first
phase did not reveal three of these papers [16,14,7] because their main contri-
bution was not about a textual UML notation. Therefore, they did not clearly
indicate that they also cover a textual UML notation in their title or abstract.
The remaining paper [5] is not indexed by the search engines that we used.
The major new result of the completion phase was the textual UML tool list
[2] provided by Jordi Cabot, a professor with research interests in model-driven
software engineering at the ICREA research institute. We found eleven new no-
tations compared to the previous phase. We did not find ten of them in earlier
phases because of their scientific focus. The found notations of the third phase
have not been scientifically published. The remaining notation [4] did use the

term textual language, which we consider to broad for our research subject. Nev-
ertheless, we consider the keywords of the SLR phase and the whole notation
finding process to be successful and appropriate.

The Complement phase did not include an extensive search strategy because
we focus on scientifically published notations in this survey. We complement
previous intensive search strategies with the most common notations used in
industry. To achieve this, we imitate the common search strategy that covers
the very first popular results only. We included all notations of previous surveys
[25,22,23] in the analysis. In total, we found 12 new notations compared to
previous surveys: Alloy, AUML, Clafer, Dcharts, IOM/T, pgf-umled, pgf-umlsd,
TCD, tUML, txtUML, UML/P, and uml-sequence-diagram-dsl-txI.

We addressed inconsistent measurements and biased experimenter with a
rigorous review protocol and instructions for the characteristics extraction. The
characteristics for the notations can be determined in an objective way. Mazanec
et al. [25], however, used subjective characteristics such as readability or sim-
plicity and did not mention how they have been determined.

We addressed incomplete information by using multiple information sources.
We characterized all 33 notations by extracting information from the papers,
and mining websites and source code (if possible). The former is the standard
approach during a SLR but the two latter allow filling the gaps left by the
scientific papers. Especially, the project’s activity and editor features are most
commonly not covered by publications. Only Alf, Dcharts, HUTN, IOM/T, and
TCD did not provide sufficient information to determine these characteristics.

The external validity requires generalizable results. The survey results are
applicable for scenarios that cover collaborative UML editing with textual nota-
tions in general because the characteristics do not focus on a specific scenario.
This is a benefit over the previous surveys [24,22,23] that focused on teaching
UML to visually impaired people or focused on specific UML diagram types in
industry. The fuzzy characteristics in [25] lead to a limited generalization and
applicability.

6 Conclusions

The Unified Modeling Language (UML) is the most commonly used modeling
language. Its specification defines a graphical but no complete textual notation.
Many specialized textual notations evolved but they are incompatible and highly
fragmented with respect to UML coverage, editing experience, and applicabil-
ity in engineering teams. There is no notation that clearly dominates the other
notations in every aspect. Therefore, practitioners have to select a notation per
usage scenario and do many trade-off decisions. This survey facilitates the se-
lection of notations by providing a comprehensive list of 33 UML notations and
their 20 characteristics related to applicability. The characteristics do not focus
on a specific application domain but provide objective selection criteria.

The review method used in the survey produces reproducible and reliable
results. We applied a classic systematic literature review in order to identify

scientifically published approaches. In the second phase, we used snowballing
to build a reference closure in order to find publications not covered by the
keyword-based search from the first phase and to validate the keywords. In a
third phase, we used Google searches to find not-scientifically published notations
and complement our existing results. This approach is beneficial because we
identified about half of the notations in the latter two phases.

The major insights we gained by analyzing our results are: a) Users have
to know the UML diagram types they require in their scenearios because most
notations only support a single diagram type and there is no single implemented
notation that supports all types. b) Using the surveyed notations for complex
UML models degrades the maintainability because almost all implementing tools
do not provide editing support for complex tasks such as refactoring models or
referencing existing elements. ¢) Teams can integrate the textual notation in
existing tool chains mostly by using imports and exports of UML models but only
few notations provide this feature.We could, however, not find a single notation
that is applicable without restrictions and clearly dominates all other notations.
Instead, many notations simply focus on graphics generation for documentation
purposes and do not allow modeling and processing of the modeled information.
A scenario-specific selection process is still necessary.

Practitioners, tools vendors, and researchers can benefit from this survey:
Practitioners can focus on evaluating important characteristics of notations in-
stead of struggling with finding notations and extracting the information with
respect to UML coverage, editing experience, and applicability in engineering
teams. Even if the survey does not cover all relevant aspects, it provides a con-
siderable foundation for preselecting notations. This lowers the evaluation effort,
allows to evaluate more notations within given time constraints, and therefore
enables better selections.

Tool vendors for notations can identify seldom supported features and either
advertise their support for these features or can try to integrate them in order
to increase their market share.

Researchers can identify seldom supported features and can investigate the
reason for the bad coverage. For instance, if tool vendors worry about the com-
plexity of their notation when including further diagram types, researchers can
develop approaches for integrating views in textual modeling frameworks.

We identified two tasks as future work: First, we see a need for notations that
target proper UML modeling. This means a considerable UML diagram type
coverage as well as support for import and export of standard UML models.
Engineering teams cannot integrate other tools into their existing environments.
Second, we need a systematic comparison and rating approach for the supported
UML elements. This requires a definition of the UML elements usually contained
in a UML diagram type and a set of sample models for elements. If the notation
cannot represent the model, it does not support the corresponding element. We
plan to develop guidelines and example models for assessing the UML coverage
of UML notations.

Acknowledgements

This work is funded by the German Federal Ministry of Labour and Social Affairs
under grant 01KM141108.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Auer, M., Tschurtschenthaler, T., Biffi, S.: A flyweight uml modelling tool for
software development in heterogeneous environments. In: EUROMICRO’03. pp.
267-272. IEEE (2003)

Cabot, J.: Modeling languages — uml tools. https://modeling-languages.com/
uml-tools (2015), accessed 04. August 2015

Chaves, R.: Textuml toolkit. http://abstratt.github.io/textuml/readme.html
(2015), accessed 14. August 2015

Del Nero Grillo, F., de Mattos Fortes, R.: Tests with blind programmers using
awmo: An accessible web modeling tool. In: UAHCI'14. pp. 104-113 (2014)
Dévai, G., Kovacs, G.F., An, A Textual, executable, translatable UML. In:
OCL’14. pp. 3-12 (2014), http://ceur-ws.org/Vol-1285/paper01.pdf

Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49(5), 109-113 (2006)
Doi, T., Yoshioka, N., Tahara, Y., Honiden, S.: Bridging the gap between AUML
and implementation using IOM/T. In: ProMAS’04. pp. 147-162 (2004)

Erickson, J., Siau, K.: Can uml be simplified? practitioner use of uml in separate
domains. In: EMMSAD’07. p. 8998 (2007)

EventHelix: Eventstudio system designer 6. https://www.eventhelix.com/
EventStudio (2016)

Feng, H.: DCharts, a formalism for modeling and simulation based design of re-
active software systems. Master’s thesis, School of Computer Science, McGill Uni-
versity, Montreal, Canada (2004)

Gheorghies, O.: Metauml - github. https://github.com/ogheorghies/MetaUML
(2015), accessed 14. August 2015

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., Vélkel, S.: Text-based mod-
eling. CoRR abs/1409.6623 (2014)

Harris, T.: Create uml diagrams online in seconds, no special tools needed. http:
//yuml.me (2015), accessed 14. August 2015

He, Y.: Comparison of the modeling languages alloy and UML. In: SERP’06. pp.
671-677 (2006)

Information technology — z formal specification notation — syntax, type system and
semantics. Standard, International Organization for Standardization (2002)
Jackson, D.: Alloy: a lightweight object modelling notation. ACM TOSEM 11(2),
256-290 (2002)

Jouault, F., Delatour, J.: Towards fixing sketchy UML models by leveraging tex-
tual notations: Application to real-time embedded systems. In: OCL’14. pp. 73-82
(2014)

Kern, H.: Study of interoperability between meta-modeling tools. In: FedCSIS’14.
pp. 1629-1637 (Sept 2014)

Khaled, L.: A comparison between uml tools. In: ICECS’09. pp. 111-114 (Dec
2009)

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering (version 2.3). EBSE technical report, EBSE-2007-01,
Keele University (2007)

https://modeling-languages.com/uml-tools
https://modeling-languages.com/uml-tools
http://abstratt.github.io/textuml/readme.html
http://ceur-ws.org/Vol-1285/paper01.pdf
https://www.eventhelix.com/EventStudio
https://www.eventhelix.com/EventStudio
https://github.com/ogheorghies/MetaUML
http://yuml.me
http://yuml.me

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

Lethbridge, T.: Umple: An open-source tool for easy-to-use modeling, analysis, and
code generation. In: MoDELS’14 (2014)

Luque, L., Brandao, L.O., Tori, R., Brandao, A.A.F.: Are you seeing this? what is
available and how can we include blind students in virtual uml learning activities.
In: SBIE’14 (2014)

Luque, L., Veriscimo, E., Pereira, G., Filgueiras, L.: Can we work together? on the
inclusion of blind people in uml model-based tasks. In: Inclusive Designing, pp.
223-233. Springer (2014)

Luque, L., Brandao, L., Tori, R., Brandao, A.: On the inclusion of blind people in
uml e-learning activities. RBIE’15 23(02), 18 (2015)

Mazanec, M., Macek, O.: On general-purpose textual modeling languages. In:
Dateso’12. pp. 1-12 (2012)

OMG: Action language for foundational uml (alf). http://www.omg.org/spec/
ALF/1.0.1/PDF (2013)

OMG: Unified Modeling Language (UML) — Version 2.5. http://www.omg.org/
spec/UML/2.5/PDF (March 2015)

OMG: XML Metadata Interchange (XMI) — Version 2.5.1. http://www.omg.org/
spec/XMI/2.5.1/PDF (June 2015)

Open Source Initiative: Licenses by name. http://opensource.org/licenses/
alphabetical (2015), accessed 04. August 2015

Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagram
constructs? A document and tool analysis study covering activity and use case
diagrams. In: MODELSWARD’14. pp. 66-83 (2014)

Roques, A.: Plantuml : Open-source tool that uses simple textual descriptions to
draw uml diagrams. http://plantuml.com/ (2015), accessed 14. August 2015
Safdar, S.A., Igbal, M.Z., Khan, M.U.: Empirical evaluation of uml modeling toolsa
controlled experiment. In: Modelling Foundations and Applications, LNCS, vol.
9153, pp. 33-44. Springer (2015)

Seifermann, S., Groenda, H.: Survey on textual notations for the unified modeling
language. In: MODELSWARD’16. pp. 28-39. SciTePress (2016)

Spinellis, D.: On the declarative specification of models. IEEE Software 20(2),
94-96 (2003)

Vieritz, H., Schilberg, D., Jeschke, S.: Access to uml diagrams with the hutn.
In: Automation, Communication and Cybernetics in Science and Engineering
2013/2014, pp. 751-755. Springer (2014)

Walton, D.: ckwnc - uml sequence diagram editor. http://www.ckwnc.com (2013)
Washizaki, H., Akimoto, M., Hasebe, A., Kubo, A., Fukazawa, Y.: Tcd: A text-
based uml class diagram notation and its model converters. In: Advances in Soft-
ware Engineering, CCIS, vol. 117, pp. 296-302. Springer (2010)

Wikipedia: List of unified modeling language tools. https://en.wikipedia.org/
wiki/List_of_Unified_Modeling_Language_tools (2015), accessed 04. August
2015

Winikoff, M.: Towards making agent UML practical: A textual notation and a tool.
In: NASA / DoD Conference on Evolvable Hardware. pp. 401-412 (2005)
Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: EASE’14. pp. 38:1-38:10. ACM (2014)

Zayan, D.O.: Model evolution: Comparative study between clafer and textual
uml. http://gsd.uwaterloo.ca/sites/default/files/Model)20Evolution;
%20Clafer)20versus%20Textual%20UML. pdf (April 2012), project Report

http://www.omg.org/spec/ALF/1.0.1/PDF
http://www.omg.org/spec/ALF/1.0.1/PDF
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://opensource.org/licenses/alphabetical
http://opensource.org/licenses/alphabetical
http://plantuml.com/
http://www.ckwnc.com
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;%20Clafer%20versus%20Textual%20UML.pdf
http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;%20Clafer%20versus%20Textual%20UML.pdf

	Survey on the Applicability of Textual Notations for the Unified Modeling Language

