
Data-Driven Software Architecture
for Analyzing Confidentiality

Stephan Seifermann, Robert Heinrich, and Ralf Reussner
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{stephan.seifermann, robert.heinrich, ralf.reussner}@kit.edu

Abstract—Preservation of confidentiality has become a crucial
quality property of software systems that software vendors have
to consider in each development phase. Especially, neglecting
confidentiality constraints in the software architecture leads to
severe issues in later phases that often are hard to correct. In
contrast to the implementation phase, there is no support for
systematically considering confidentiality in architectural design
phases by means of data processing descriptions. To fill this
gap, we introduce data flows in an architectural description
language to enable simple definition of confidentiality constraints.
Afterwards, we transform the software architecture specification
to a logic program to find violated confidentiality constraints. In
a case study-based evaluation, we apply the analysis to sixteen
scenarios to show the accuracy of the approach.

Keywords-data flow, confidentiality, logic programming

I. INTRODUCTION

Quality properties of software systems have significant im-
pact on user acceptance. Besides traditional quality properties,
such as performance and reliability, preservation of confi-
dentiality becomes important to users and software vendors.
Confidentiality ensures that “information is not made available
or disclosed to unauthorized individuals, entities, or processes”
[1]. In contrast to other quality properties, confidentiality
issues do not only degrade user satisfaction but can have
legal consequences. For instance, LinkedIn has been sued for
failing to protect peoples’ data and agreed on a $1.25 million
settlement [2]. The Cambridge Analytica scandal [3] is another
example of losing business value [4] by failing to protect data.

Software vendors must consider confidentiality in every
development phase to ensure compliance. This is beneficial
because the earlier vendors detect issues, the more cost effi-
cient they can fix them. Architectural design is an early phase
that helps cutting down costs for fixing issues significantly
according to Boehm and Basili [5]. Software architects need
means for expressing and analyzing confidentiality to ensure
compliance. Because of the complexity of modern systems,
detecting confidentiality issues manually is not feasible.

There is a wide range of approaches for analyzing con-
fidentiality but most of them only target the implementa-
tion phase. The implementation is, however, not sufficient
to introduce confidentiality in a cost-efficient way. There are
approaches described in Section IV that cover the early design
stage of developing a software architecture but none of them
describes system behavior in a data-driven way. However,

data-driven behavior descriptions are beneficial because stake-
holders express confidentiality requirements in terms of data
flow diagrams during stakeholder discussions. Using the same
modeling paradigm helps avoiding inconsistencies. In addition,
people usually talk about confidentiality in terms of data rather
than in terms of processes.

In this paper, we coin the term Data-Driven Software
Architecture (DDSA) that describes data and data processing
on architectural level. The two contributions of our paper are
a model to represent DDSA and an analysis of its compliance
with confidentiality requirements. The metamodel for a DDSA
introduces data and predefined data processing operators as
first class entities. A chain of data processing operations that
exchange data describes the system behavior to be analyzed
for confidentiality issues. We realized the metamodel as an
extension of the established Architectural Description Lan-
guage (ADL) Palladio Component Model (PCM) [6]. Like
Palladio, our approach targets business information systems.
The confidentiality analysis detects access right mismatches by
comparing access rights assigned to data with roles assigned
to processing operations on this data. The analysis considers
that data processing can change access rights, e.g. by a
processing step declassifying data by an aggregation operation
that removes confidential details. We realized the analysis as
queries to a Prolog program that a transformation chain derives
from the DDSA.

In a case study-based evaluation, we applied our approach
to sixteen scenarios. The scenarios belong to four generally
applicable equivalence classes for role-based access right
analyses. Fourteen scenarios contain confidentiality violations,
two scenarios do not. The scenarios stem from two case studies
that cover access right violations and have already been used
to evaluate the iFlow approach [7].

The remainder of this paper is structured as follows: Sec-
tion II introduces our running example. In Section III, we
explain Palladio and Prolog as foundations. We discuss the
state of the art in Section IV. Section V presents an overview
of our approach and the envisioned development process. The
modeling concept for a DDSA is given in Section VI. Sec-
tion VII covers the preparation of the confidentiality analysis.
The analysis described in Section VIII detects confidentiality
issues caused by access right mismatches. Section IX covers
the evaluation of the confidentiality analysis. Section X con-
cludes the paper.

Airline ServerAirline ServerMobileMobile TA ServerTA Server

TravelPlannerTravelPlanner TravelAgencyTravelAgency AirlineAirline

Credit-

CardCenter

Credit-

CardCenter

Figure 1. Flight booking system including payments.

II. RUNNING EXAMPLE

In this section, we introduce a running example to illustrate
the modeling and analysis approach described afterwards.
The running example stems from the secure information flow
analysis iFlow [7]. Figure 1 illustrates a simplified version
of a flight booking system in a combined UML composite
structure and deployment diagram. We define three roles: User,
TravelAgency and Airline. Every resource hosting component
instances has one role assigned. The component instances
TravelPlanner and CreditCardCenter have the role User. The
component instance TravelAgency has the role TravelAgency.
The component instance Airline has the role Airline.

Figure 2 visualizes the interaction between users and the
system, as well as between the system assemblies during the
booking of a flight. Users trigger all actions. First, they request
flight offers from the travel planner app by giving the request
information. The travel planner delegates the call to the travel
agency, which in turn delegates it to the airline. The result
is a list of flight offers, which the components pass back to
the users. The users select a flight and decide to book. They
retrieve the credit card information from the credit card center
app. Afterwards, they declassify the credit card data via a call
to the credit card center, i.e. they release the credit card data
for the airline. Eventually, the users call the travel planner to
book the given flight offer with the given credit card data.
The travel planner forwards the request to the airline. The
airline processes the request and pays a commission fee to the
travel agency, which sends a confirmation. The airline confirms
the booking to the travel planner app. The users receive the
confirmation from the travel planner.

The confidentiality constraint to enforce is that the credit
card data must only be available to the User role. If the credit
card data shall be accessible to another role, users have to
confirm this explicitly. In the example, this confirmation is
given by the call to the releaseCCDForAirline operation.

III. FOUNDATIONS

Our approach relies on two foundations: a) the Palladio
Component Model (PCM) serving as our ADL to describe
software systems and b) logic programming using Prolog
serving as our analysis technology.

The PCM [6] describes software architectures using five
partial models. The repository model describes data types,
components and the interfaces they provide and require. The
component description contains abstractions of the compo-
nent’s behavior, which are called Service Effect Specification
(SEFF). When using PCM, a Resource Demanding Service

Effect Specification (RD-SEFF) describes basic control struc-
tures, resource demands and external calls. We see the resource
demands and external calls of RD-SEFFs as abstractions of
data processing operations that we have to specify in more
detail. A system model describes how instances of the repos-
itory components are wired and which services the resulting
system provides. A resource environment model describes the
available resources including their characteristics. An alloca-
tion model describes the deployment of component instances
to resources defined in the resource environment model. Usage
models describe how users interact with the system. This
includes a sequence of calls to system operations as well as the
amount of users executing this sequence. We reuse the partial
models of PCM and extend them by data processing. The
following overview section describes the interaction between
PCM and the data processing extension.

Logic programming [8, pp. 67] splits an algorithm into
logic and control. Control defines the problem-solving strat-
egy. Logic defines the knowledge to solve the problem. A
solver component automatically determines and applies the
problem solving strategy. A programmer merely specifies the
knowledge. In Prolog, a programmer expresses logic by a
set of clauses, which can be facts or rules. A fact starts
with a predicate optionally followed by arguments. Rules
define conditional facts, i.e. facts that only hold for a given
condition. Queries describe the problem to solve. We use the
form predicate/arity when referring to a predicate with arity
arguments as used by the SWI Prolog manual [9]. We use
logic programming to evaluate confidentiality constraints for
our architecture description.

IV. STATE OF THE ART

There is a wide range of approaches addressing confiden-
tiality. We focus on approaches that use structured system
descriptions to carry out automated analyses as described in
the survey of Nguyen et al. [10]. We favor automated analyses
because they provide strong user guidance and usually require
less experience to achieve satisfying results. Therefore, we
even do not consider broadly applicable approaches like Threat
Modeling [11] that do not provide strong user guidance.

Many design time approaches exploit control flows to reason
about confidentiality. Almorsy et al. [12] present an approach
for enriching architecture models with security to determine
security metrics and analyze scenarios. Security is the umbrella
term for various security goals including confidentiality. The
approach aims for a generic framework and leaves it up
to the users to specify concrete analyses, which leads to
weak user guidance. UMLSec [13] defines a UML profile for
specifying security properties of systems that can be verified
by the CARiSMA [14] tool. However, UMLSec only considers
confidentiality on an interface level, which leaves specifying
the processing effect of a system service on confidentiality up
to the user. Gerking and Schubert [15] describe how security
policies defined on an interface level can be preserved during
component decomposition but do not provide metamodels
or analyses. Heyman et al. [16] describe architectures using

getFlightOffers(requestData)getFlightOffers(requestData) getFlightOffers(requestData)getFlightOffers(requestData)
flightOffersflightOffersflightOffersflightOffers

getFlightOffers(requestData)getFlightOffers(requestData)
flightOffersflightOffers

getCCD()getCCD()
ccdccd

releaseCCDForAirline(ccd)releaseCCDForAirline(ccd)
ccdccd

bookFlight(flightOffer,ccd)bookFlight(flightOffer,ccd) bookFlight(flightOffer,ccd)bookFlight(flightOffer,ccd)
payCommission()payCommission()

confirmationconfirmation
confirmationconfirmationconfirmationconfirmation

: User : TravelPlanner : TravelAgency: CreditCardCenter : Airline

Figure 2. Interaction of system parts during flight booking.

the Alloy language with focus on applying and verifying
security patterns. While Alloy is capable of expressing detailed
behavior descriptions, the mapping provided by Heyman et al.
focuses on security patterns only. In contrast to our work,
all control flow oriented approaches do not consider data
processing to reason about confidentiality.

There are also design time approaches exploiting data flows
to reason about confidentiality. Berger et al. [17] describe
an extension of conventional data flow diagrams to allow
automated threat analyses. They do not focus on confidentiality
in particular but on supporting threat modeling in general. Our
approach shares an extended data description and a flexible an-
notation mechanism with the approach of Berger et al. Object
Flows in SOA [18] compare confidentiality measures provided
by activity diagram nodes with required confidentiality by
object flows. The approach is comparable to a taint analysis.
However, it is not capable of expressing access control. iFlow
[7] defines a UML profile and the MODELFLOW language
to describe systems, their behavior and security requirements.
The information flow analysis considers security domains that
can be mapped to access control. Modelers either have to
explicitly model the transition of information between security
domains or use an implementation-like description of the
action. Reasoning about such transitions on the granularity
of methods can, however, be challenging for users. The same
holds true for implementation-like descriptions during design
time. In contrast to our work, none of the data flow considering
approaches provides means for describing system behavior as
a concatenation of simple data processing operations that have
an effect on confidentiality properties of the processed data.

In the implementation phase, approaches including informa-
tion flow analysis [19], code verification [20] or taint analysis
[21] are available. These approaches, however, require source
code to reason about confidentiality. Therefore, they cannot
avoid costly design errors.

During runtime, enforcement of policies such as described
by MDSE@R [22] becomes important. Although runtime is
not in the scope of this work, we can exploit our iObserve
approach [23] in order to update design time models by
observations during runtime to make use of the analysis
proposed in this paper based on architectural runtime models.

V. OVERVIEW OF DATA-DRIVEN ARCHITECTURE

We define our data-driven software development process as
an extension to the Component-based Software Engineering

Load Predefined

Processing Effects

Load Predefined

Processing Effects

[else]

Conventional Arch.

Processing Effects

Logic Program

Define Conventional

SW Architecture

Define Conventional

SW Architecture

Create Operation ModelCreate Operation Model

Data-Driven Architecture

Create Prolog ProgramCreate Prolog Program

Operation Model

Define Analysis GoalsDefine Analysis Goals

Analyze ConfidentialityAnalyze Confidentiality

Goals [requirements met]

Define Data ProcessingDefine Data Processing

Figure 3. Development process of data-driven architectures.

(CBSE) process. The CBSE process is well-suited for develop-
ing software systems based on reusable components. Analysis
approaches such as Palladio [6] can analyze the architecture of
those systems. However, the process is not sufficient for build-
ing data-driven architectures and analyzing their compliance
with confidentiality constraints because it misses information
about data, data processing and confidentiality properties. Our
development process illustrated in Figure 3 bridges this gap. In
this and all following figures, grey elements illustrate elements
introduced as part of our contributions while white elements
are already existing elements. This section provides a rough
overview of our approach. For comprehensive descriptions,
please refer to the following sections.

The starting point of our approach is always a conventional
software architecture model that is made of components and
control flow oriented behavior descriptions that do not consider
data and its processing explicitly. To analyze compliance with
data-driven confidentiality constraints, a software architect has
to add data flow oriented behavior descriptions, i.e. connected
data processing operations and processed data. The result is
a DDSA model. Once this DDSA model has been created,
architects can easily modify it to reflect evolutionary changes
and analyze their impact on confidentiality.

Two automated steps prepare the confidentiality analysis:
First, a model transformation transforms the DDSA model and
a set of processing effects into a simplified analysis model
called operation model. By processing effects, we understand
the effect a data processing operation has on the processed
data. These processing effects are a property of the specific
data processing operations. For instance, the processing effect
of an aggregation operation might be defined as granting

additional access rights to yielded data because it removes
confidential details. The processing effect specification can be
seen as a function that transforms characteristics of input data
to characteristics of output data. These processing effects are
predefined for a set of operations but are also extensible by
software architects via model elements. The operation model
only contains operations including their processing effects,
as well as chains of operations that describe how a system
handles requests of users. We favor the operation model over
the DDSA model for automated analyses because it decouples
the analysis from the ADL used to model the system, i.e. the
modeling language and the analysis can be used independently.
In the second preparation step, another model transformation
creates a logic program based on the operation model. We
assume that formulating analysis goals declaratively is simpler
than specifying it in a procedural manner because the latter
requires the logic and the control flow while the former only
requires the logic [8, p. 67].

Before the analysis, software architects define analysis goals
in terms of the logic program or select predefined goals. The
goals use characteristics of data that the analysis derives. In
this paper, the goal is to match access right characteristics of
data and role characteristics of data processing operations.

In the last step, a logic programming environment tests the
goals against the logic program to find confidentiality issues.
The environment infers characteristics of processed data by
applying processing effects specified for each processing op-
eration to the yielded data based on the characteristics of the
input data. The results allow the architect to rate compliance
with confidentiality constraints and identify problematic sys-
tem parts. If the architecture does not meet the requirements,
architects start a new iteration to fix reported issues.

VI. CONFIDENTIALITY-AWARE MODELING OF DATA
FLOWS

To reason about confidentiality issues implied by data flows,
the analysis needs a description of data and its processing. Our
first contribution is the DDSA metamodel that provides this
information for the analysis. We derived the metamodel from
the concepts of conventional data flow graphs as described by
Yourdon and Constantine [24, pp. 43–46]: A data flow graph
consists of data sources, data sinks, processing operations and
data transmissions. Data transmissions are annotated edges
between sources, sinks or processing operations. Processing
operations transform consumed data and emit new data. These
graphs describe the required and provided data for every
operation. A chain of data transmissions is a data flow.
In addition, the confidentiality analysis requires information
about the characteristics of processed data in order to derive
confidentiality properties. The following paragraphs describe
how the metamodel covers the elements of a data flow graph.

a) Characteristics: Characteristics describe properties of
data or resources by named finite sets of values. We use
characteristics to express access rights and assigned roles.
Automated analyses require strongly typed finite sets instead
of weakly typed strings, which could only serve documentation

*
*

values

CharacteristicType Characteristic

EnumCharacteristicType EnumCharacteristic

Enumeration Literal

Figure 4. Metamodel excerpt of characteristic specification.

*
typetypeannotatedComponent

Component DataType

StoreStoreContainer

CreditCardCenter
type = CCDetails

s1 : Store

Figure 5. Metamodel excerpt of component stores including example.

purposes. Figure 4 illustrates the partial metamodel consisting
of a CharacteristicType and a Characteristic. The latter de-
scribes a concrete characteristic holding values while the for-
mer defines the corresponding type. In our running example,
we define characteristic types named AccessRights and Roles
that refer to an enumeration. An Enumeration holds possible
values, i.e. Literal elements, that multiple characteristic types
can share. In our running example, we create an enumeration
named Roles holding a literal for every available role.

b) Sources and Sinks: Sources are the starting point of
a data flow. Sinks terminate a data flow. Users or stores often
play the role of sources or sinks. For instance, a user that
submits credentials to a system is the source of a data flow.
If the system persists the credentials, the corresponding data
store is the sink of the data flow. We define the Store concept
in the DDSA metamodel as an element that persists data of
a certain type. StoreContainer elements aggregate stores and
attach them to a component. Figure 5 illustrates the partial
metamodel of stores in the upper part and gives an excerpt
from our running example describing the store of credit card
information in the lower part. We do not want a store to be
globally accessible because this would violate the requirement
that components only communicate through defined interfaces.
A global store would introduce a dependency to the context,
which limits reusability. Default characteristics are applied to
data elements after loading them from the corresponding store.
We reuse PCM usage models to represent users.

c) Data: Data elements define typed information to be
exchanged between data processing operators. Exchanged data
holds characteristics such as access rights. Software architects
can either attach characteristics explicitly to data or can let
the analysis infer them. In our running example, the analysis
infers the characteristics of the request data by just copying
it from the previous data element every time the element is
transmitted. The following section covers the description of all
rules for characteristic inference in detail. The analysis later
compares the access rights of the data element with the roles
assigned to the data processing operations.

d) Processing Operations: A concatenation of data pro-
cessing operations describe the data processing in the system.
A data processing operation in the DDSA metamodel requires
data and provides data like defined in data flow graphs. As
explained previously, we describe the transformation of data
known from data flow graphs by means of processing effects in
order to automatically derive characteristics of provided data in
the analysis. The result of applying processing effects are the
characteristics that an operation attaches to the provided data
elements. The following sections cover all rules for specifying
these effects in detail. In our running example, we specify a
declassification operation by processing effects that explicitly
grant permission: This operation takes credit card data and
adds the airline role to the access rights characteristics of the
provided data.

We created five categories of data processing operations
shown in Table I based on the basic elements in data flow
graphs, relational algebra and explicit characteristic definition.
We assume this to cover most data processing of information
systems. This list is, however, not meant to be complete.
Instead, software architects can extend the set of operations
in a domain specific way or can specify the effects of data
processing on characteristics explicitly with a fall-back oper-
ator described below. The operations describe data processing
inside components but not between components. The sys-
tem description of conventional architectures already provides
wiring information of component instances. Source operations
provide data but do not require data. Sink operations require
data but do not provide data. Transmission operations transfer
data between components and represent the data transmission
concept of data flow graphs. The PerformDataTransmission
operation can act as sink and source of data, while the
ReturnData operation only acts as sink. Relational operators
transform data using relational algebra. The SelectData op-
eration requires a data element and provides a data element
but can optionally take n parameters. Characteristic opera-
tions explicitly modify data characteristics as modeled by
the component developer or software architect. In contrast
to the operations mentioned before, such operations allow to
model complex data processing. As described later, we assign
default processing effects to the operations of the source, sink,
transmission and relational categories shown in Table I. The
effect often just copies the characteristics from the input data
to the output data of the operation.

Figure 6 illustrates the data processing specification of the
getFlightOffers service of the Airline component from our
running example. New data processing operations in the gray
box annotate the conventional non data-driven action. This
relation between control flow and data flow supports consis-
tency between both behavior descriptions. The first operation
loads all flight offers from a given store. The second one
selects a matching flight offer from the loaded data by using
request data defined in the interface. The last action returns
the selected data via return data defined in the interface. The
analysis preparation determines the order of operations by
resolving data dependencies.

Table I
DATA PROCESSING OPERATIONS EXTENSION OF RD-SEFFS

Category Operation In Out

Source CreateData 0 1
LoadData 0 1
LoadAllData 0 1

Sink StoreData 1 0
DeleteData 1 0
UserReadData 1 0
SystemDiscardData 1 0

Transmission PerformDataTransmission n m
ReturnData 1 0

Relational JoinData n 1
UnionData n 1
ProjectData 1 1
SelectData 1(+n) 1

Characteristics EffectSpecifyingTransformData 1 1

InternalAction

getFlightOffers

InternalAction

getFlightOffers

LoadAllData

Selection

ReturnData

FlightOfferStore

FlightOffer[]

FlightOffer[]

FlightOffer

FlightOffer

RequestData

Figure 6. Example of data processing behavior specification.

e) Data Transmissions: Data transmissions exchange
data between components. These operations only communicate
via interfaces to preserve reusability of components. Signa-
tures of interfaces, however, often miss data specifications. To
bridge this gap, we define an OperationSignatureRefinement
that holds data referring to parameters or signatures. Result-
BasedData describes result data while ParameterBasedData
describes parameter data. Figure 7 illustrates that signature
refinement. Transmission operations refer to this data.

VII. PREPARATION OF CONFIDENTIALITY ANALYSIS

The preparation steps described in this section bridge the
gap between the DDSA described before and the confiden-
tiality analysis based on a logic program. First, we transform
the architecture into a condensed operation model. This op-
eration model decouples the ADL from the analysis, which
makes them usable independently. Second, we transform the
operation model into a logic program. Both transformations
are fully automated model transformations transparent to the
software architect.

*

**

type returnType

refinedSignature
OperationSignatureRefinement

ParameterBasedData ResultBasedData

Parameter DataType OperationalSignature

Figure 7. Metamodel excerpt of signature refinements.

A. Transformation to Operation Model

The operation model focuses on representing data process-
ing and its effects. This intermediate model decouples the
ADL and the analysis technique. A simplified version of the
metamodel is given in Figure 8. It represents meta classes
important for the analysis as described in Section VI.

The root node is the System class that transitively contains
all other elements. SystemUsage elements are the starting point
of a call sequence. A call sequence consists of operations
and calls. An OperationCall always targets an Operation. An
Operation can contain operation calls, as well as parameters,
return variables, and state variables. The list of operation
calls is ordered. If an operation is called, all calls specified
in the called operation will happen before the original call
returns. An operation holds Variable elements that represent
parameters, return values and state values. An operation call
specifies the characteristics of parameters and state variables
via VariableAssignment elements. In the same way, an oper-
ation specifies the characteristics of return variables via such
assignments. Assignments use logic formulas and references to
variables of parameters, state variables, and return variables of
issued calls to determine the value to assign. A set of boolean
variables represents a characteristic. In our running example,
we specified roles as the value set for the characteristics
AccessRights and Roles. The operation model represents these
characteristics by three boolean variables User, TravelAgency,
and Airline. A data element accessible by the user and the
travel agency would be represented by setting their variables
to true and the airline variable to false. In addition, operations
have PropertyDefinition elements that consist of characteris-
tics. In our running example, an operation originally hosted in
the credit card center component would have a property called
Roles with the variable User set to true.

The mapping from the architecture model to the operation
model reduces the complexity of the model to be analyzed
while maintaining relevant information for the confidentiality
analysis. The described mapping is fully automated by a
Xtend-based model transformation that is available in a data
set [25]. For the sake of brevity, we do not describe the
complete mapping but describe an exemplary execution for
Figure 6. In addition, we describe the mapping for Variable-
Assignment elements that specify the effect of data processing.
To avoid name clashes, we add the prefix om:: to elements of
the operation model in the description whenever necessary.

Figure 6 illustrates a SEFF of a component. We create
one om::Operation for the SEFF that holds one state vari-
able for the input data RequestData and one return vari-
able for the output data ReturnData. In the next step, we
create one om::Operation for every data processing oper-
ation in the SEFF. Every om::Operation holds a return
variable typed with the data it yields. For instance, the
om::Operation element LoadAllData holds a return vari-
able typed by FlightOffer[]. Afterwards, we create one
om::OperationCall element for every data dependency that an
om::Operation has. For instance, the Selection operation has a

p
ar
a
m
A
ss
ig
n
m
n
ts

st
a
te
D
ef
in
it
io
n
sfrom

*
SystemSystem OperationCallOperationCall

SystemUsageSystemUsage OperationOperation

CallerCaller

VariableVariable VariableAssignmentVariableAssignment

**

*

to

stateVarsparams returnVars

PropertyDefinitionPropertyDefinition

*

properties
returnDefs

var

Figure 8. Simplified meta-model of operation model.

dependency to flight offers of the LoadAllData operation. To
satisfy the dependency, we create an om::OperationCall to the
om::Operation representing the LoadAllData operation. No
operation satisfies the dependency to request data. Therefore,
we do not create an om::OperationCall. Now, we create
om::VariableAssignment elements to connect the data gathered
by operation calls to the yielded data for every om::Operation:
The om::Operation representing LoadAllData sets the boolean
variables of the roles user, travel agency and airline to true
because of the default access rights of the FlightOfferStore.
The om::Operation elements representing Selection and Re-
turnData create om::VariableAssignment elements that refer to
the return variables of the called operations, i.e. they specify
to copy the boolean variables of the called operation. Finally,
we create an om::OperationCall from the om::Operation rep-
resenting the SEFF to the om::Operation representing Return-
Data. The corresponding om::VariableAssignment elements
again just refer to the return variable of the yielded data of
the called om::Operation.

The general logic for creating om::VariableAssignment ele-
ments is as follows: For om::Operation elements representing
PerformDataTransmissionOperation, SEFF or usage scenario
elements, the assignments delegate received characteristics.
For all remaining data processing operation types, we apply an
extensible set of assignment generators to describe processing
effects depending on the operation and the characteristic type.

The default assignment generators use the following logic:
CreateData, LoadData and LoadAllData set all characteristic
values to false, which equals to having no characteristic
activated. Afterwards, initial characteristics based on store
characteristics or default characteristics for data creation are
applied. Sink data operations have no assignments. Return-
Data copies the characteristics from its inputs to the return
data. ProjectData and SelectData copy the characteristics
from its input to the output without considering parameter
data. The EffectSpecifyingTransformData operation applies the
characteristics that have been specified by the architect. As
soon as the effect of a data processing operation depends
on the concrete data type being processed, architects can
use EffectSpecifyingTransformData to cover that effect in the
analysis. For all remaining operators, no default assignments
apply.

Besides the default assignment generators, domain-specific
generators are available. Our confidentiality specific generator

applies the following rule in addition to the defaults: JoinData
and UnionData take multiple data inputs and produce one
output. The resulting access right characteristic contains the
intersection of the access right characteristics of all inputs.

B. Transformation to Logic Program

The operation model contains all information relevant for
our confidentiality analysis in a condensed way. We see two
benefits of using logic programming to implement the actual
analysis: First, we assume that writing confidentiality queries
in a declarative way using Prolog to be easier than specifying
a full procedure to analyze the model. Providing software
architects with predefined goals for common analyses reduces
the effort even more. Second, we can use constraint logic
programming to find solutions or optimize our architecture.

For the sake of brevity, we omit the description of the
transformation of the operation model to a logic program. The
transformation is straight forward because no further simpli-
fications or analyses during the transformation are necessary.
It is fully automated by a model to text transformation using
the Xtend language. We describe parts required to formulate
the confidentiality queries in the following section and provide
the transformation code in a data set [25].

VIII. CONFIDENTIALITY ANALYSIS USING LOGIC
PROGRAMMING

The confidentiality analysis is our second contribution. The
previous modeling and preparation steps produce a logic
program representing data processing and its effect on con-
fidentiality. The analysis queries the logic program to detect
confidentiality issues in the represented architecture.

As already defined, confidentiality ensures that data is not
accessible to unauthorized subjects. We translate this definition
to a constraint that says that the intersection of the access rights
of a data object and the roles of a processing operation must
not be empty if the operation receives this data object.

To formulate the constraint in Prolog, we need some helper
rules: Listing 1 defines a rule to determine all access rights
R of an operation OP. The findall/3 predicate is built in and
collects all solutions for the goal given as the second argument
by varying the binding of a variable X. The goal uses the
fact operationProperty generated by the Prolog transformation
mentioned before. The existence of a fact operationProp-
erty(OP, P, V) means that for an operation OP the value V
of the property P is true. In our use case, the property is the
roles property and the values are the available roles.

Listing 1
RULE FOR DETERMINING ALL ACCESS RIGHTS OF AN OPERATION.

1 accessRights(OP, R) :-
2 findall(X, operationProperty(OP, ’Roles’, X),

R).

Listing 2 shows rules to find mismatches between a given
set of roles and access rights available for a return value. The
first rule in line 1 is true if the list of roles is empty because this
implies no access rights will match. The second rule in lines

2–4 takes the first entry Role of the set of roles given as first
argument and compares the role with the access rights assigned
to the return value RETVAL in presence of call stack S. The
clause in line 3 is true if Prolog cannot prove that the return
value has the value Role for the access right characteristic set
to true for a given call stack S. The clause in line 4 uses
recursion to check the remaining roles in the list tail R. The
clauses in line 3 and 4 have to be true both in order to yield true
for the whole rule. Describing how the predicate returnValue/4
is defined to determine the characteristics of variables is not
possible because of space limitations. However, we provide
the full Prolog code in a data set [25].

Listing 2
RULE MATCHING ROLES WITH ACCESS RIGHTS OF RETURN VALUE.

1 noRoleAuthorizedRetVal([], _, _).
2 noRoleAuthorizedRetVal([Role|R], S, RETVAL) :-
3 \+ returnValue(S, RETVAL, ’AccessRights’,

Role),
4 noRoleAuthorizedRetVal(R, S, RETVAL).

We define our query for finding unauthorized access to
return values in Listing 3. All clauses in lines 1–6 must be
true for a valid solution to our query. In line 1, we define the
structure of the call stack S to have access to the violating
operations and calls in the results. In line 2, we bind the
variables of the call stack in a way to ensure that an operation
call CALL from the operation OP to the operation CALLEE
exists. In line 3, we bind the variable RT to the data type of
the return value RETVAL of the called operation CALLEE.
In line 4, we ensure that the data type RT has an access
rights attribute, which equals to having the access rights
characteristic. In line 5, we use a helper predicate to collect
all access rights R of the calling operation OP. In line 6, we
use the previously defined helper predicate to determine if non
of the roles R of the calling operation is authorized to access
the return value RETVAL in presence of the call stack S.

Listing 3
QUERY FOR FINDING UNAUTHORIZED ACCESS TO RETURN VALUES.

1 ?- S=[CALLEE, CALL, OP|_],
2 operationCall(OP, CALLEE, CALL),
3 operationReturnValueType(CALLEE, RETVAL, RT),
4 dataTypeAttribute(RT, ’AccessRights’),
5 accessRights(OP, R),
6 noRoleAuthorizedRetVal(R, S, RETVAL).

To find all access violations, we have to consider state vari-
ables as well, which means that we added queries analogous
to Listing 2 and Listing 3 that test state variables instead of
return variables. We do not have to test parameters because the
transformation from the DDSA model to the operation model
relies on state and return variables only.

IX. EVALUATION

This section describes the case study-based evaluation of
our approach. First, we give an overview on our goals and
metrics. Afterwards, we present our evaluation design and
discuss results. Finally, we discuss threats to validity, as well
as assumptions and limitations.

A. Evaluation Goal and Metrics

The goal of the study is to evaluate the accuracy of the data
flow based confidentiality analysis. Following the guidelines of
Basili and Weiss [26], we decompose our goal into a question
and corresponding metrics to answer the question. Our ques-
tion is whether the confidentiality analysis accurately identifies
confidentiality issues in a given data processing scenario. We
use two metrics suggested by Metz [27] to rate accuracy: The
true positive fraction TPF =

tp
P metric M1 calculates the

ratio of correctly identified scenarios having confidentiality
issues tp and the scenarios P actually having confidentiality
issues. The true negative fraction TNF = tn

N metric M2
calculates the ratio of scenarios that were identified as not
having a confidentiality issue tn and the scenarios without
confidentiality issues N . The benefit of using these two metrics
is that we can rate how good the analysis performs regarding
scenarios with issues and without issues separately. We do
not calculate the false positives fraction FPF = 1 − TNF
and false negatives fraction FNF = 1 − TPF because we
cannot get additional insights in the accuracy by using them.

B. Evaluation Design

We derive scenarios from existing case studies. Case studies
are often used for evaluating confidentiality analyses such as
iFlow [7] and UMLSec [14] for instance. The derived scenar-
ios cover all equivalence classes of applicable confidentiality
issues that we describe later. Using equivalence classes is nec-
essary because there is an unlimited amount of possible sce-
narios that can lead to the same type of reported confidentiality
issue. We model every scenario using the DDSA metamodel,
execute the analysis preparation and execute the queries for
the resulting logic program. We classify a result as positive
if at least one query results in a solution found by the logic
programming environment. We classify a result as negative if
no query results in a solution. A scenario can only be classified
positive or negative. In the last step, we calculate metric M1
for all equivalence classes that contain confidentiality issues
and metric M2 for all equivalence classes that do not contain
confidentiality issues. The following paragraphs describe the
equivalence classes and the scenarios in more detail.

The confidentiality analysis detects an issue if a data opera-
tion having a set of roles Rop accesses data with access rights
Rdata such that Rop∩Rdata = {}. This analysis specification
is not specific for our approach but general applicable. An
equivalence class is a set of scenarios that shares the same
cause of a confidentiality issue. There are three possible causes
of issues: 1) immediate mismatches caused by empty access
rights or roles, as well as access right mismatches on data
creation, 2) mismatches after data transfer, and 3) access
rights changing data processing. This leads to four equivalence
classes including the situations without confidentiality issues.
These classes are applicable to all types of confidentiality
analyses that compare access rights of data and operations.

In order to derive scenarios belonging to the equivalence
classes, we picked the case studies DistanceTracker and Con-
tactSMSApp know from the evaluation of the iFlow approach

[28] as a foundation. These case studies are suitable because
they are defined on a design level and they basically compare
access rights and assigned roles in their analysis part. The
distance tracker case study consists of an app that tracks the
user, aggregates coordinates and sends this information to
a tracking service, which shall not receive raw coordinates
but only the distance. We refer to this case study as the
distance tracker case. The combination of contact and SMS
app consists of an app to manage contacts and an app to send
SMS messages that shall not receive the name of a contact
but only its number. We refer to this case study as the SMS
case. We modeled both case studies using the DDSA modeling
language. To derive a scenario, we inject a confidentiality
issue matching the equivalence class into one base model.
We designed the scenarios to cover all cases that lead to
confidentiality issues. Humans can easily detect such issues
in small systems but not in systems with medium or high
complexity, for which the approach is meant to be used. The
following paragraph describes all scenarios in short. For a
detailed description, please refer to our evaluation data set
[25]. One scenario always contains exactly one confidentiality
issue, which means that we do not have to distinguish original
confidentiality issues from follow-up issues in order to identify
an issue. We favor introducing issues by removing elements
because this requires less changes than adding new elements.

In the No Issues class, we use the unchanged data processing
of the distance tracker case as scenario S1 and the unchanged
data processing of the SMS case as scenario S2.

We defined eight scenarios in the Immediate class: S3
removes the roles assigned to the user in the SMS case. S4
removes the roles assigned to the contact component in the
SMS case. S5 removes the default access rights of created
contact data in the SMS case. S6 removes the user access
rights of created contact data in the SMS case. S7 extends
S5 by adding the contact role to the access rights during data
creation explicitly in the SMS case. S8 removes the default
user access right from the user identifier store in the distance
tracker case. S9 removes the default contact access right from
the contacts store in the SMS case. S10 removes all default
access rights from the user identifier store in the distance
tracker case. S11 removes all default access rights from the
contacts store in the SMS case.

We defined two scenarios in the Transfer class: S12 removes
the default user access right of created confirmation data in the
distance tracker case. S13 removes the default contacts access
right of created contact data in the SMS case.

We defined three scenarios in the Characteristics class: S14
removes the tracking service role from the declassification
effect in the distance tracker case. S15 removes the SMS role
from the declassification effect in the SMS case. S16 extends
S5 by returning a union of loaded and one newly created
contact data item.

C. Evaluation Results and Discussion

The results of modeling the scenarios and analyzing them
for confidentiality issues are given in Table II. Issues Detected

Table II
EVALUATION RESULTS STRUCTURED BY EQUIVALENCE CLASSES

Class Issues Detected No Issues
Detected

TPF TNF

No Issue – S1, S2 – 1.0
Immediate S3, S4, S5, S6, S7,

S8, S9, S10, S11
– 1.0 –

Transfer S12, S13 – 1.0 –
Characteristics S14, S15, S16 – 1.0 –

means that the analysis detected a confidentiality issue in
the mentioned scenarios. No Issues Detected means that the
analysis did not detect any issues.

In the No Issue equivalence class, the correct analysis result
is no identified issue. The analysis correctly reported this for
both scenarios. We can only calculate the TNF because there
are no true positives in this equivalence class. The value of 1.0
indicates the best possible results for scenarios without issues,
i.e. the analysis rated both scenarios in this class correctly.

The remaining equivalence classes only contain scenarios
with confidentiality issues. Therefore, we cannot calculate
TNF . In all equivalence classes, the analysis achieved a TPF
of 1.0. This means that the analysis correctly identified all
scenarios as having a confidentiality issue.

The analysis shows adequate results for both TPF and
TNF . Thus, the quality of the results is good for cases with
and without issues. The values are high because we created
scenarios that have exactly one confidentiality issue, which
simplifies decisions to true or false for every scenario.

D. Threats to Validity

We structure the threats to validity according to the guide-
lines for case study research of Runeson and Höst [29] into
four categories as described in the following.

Internal validity ensures that causal relations are valid, i.e.
the factor that is expected to have an influence is the only
influencing factor. In our study, we evaluate the accuracy of
the confidentiality analysis. We expect the concept and the
realization of the analysis to be the influence factors. Addi-
tional influencing factors might be the selection of scenarios
and the creation of models. We mitigated the model creation
bias by using case studies defined by the iFlow approach
instead of creating our own case studies. We mitigated the
biased selection of scenarios by not deriving them from of
equivalence classes tailored to our approach. Instead, we
used equivalence classes based on a general definition of
role comparing confidentiality analyses as described in the
evaluation design. Thus, we expect the selection to be sound.

External validity ensures that the findings can be generalized
and the results are valuable for others than the researcher
that conducted the study. According to Runeson and Höst
[29], case study based research honors deep understanding
of a phenomenon more than representativeness. Instead, they
see the benefit in providing insights for cases with similar
characteristics. We believe that the results of our evaluation
hold for cases that allow inferring confidentiality properties

on a type level using data processing steps that change
characteristics, i.e. cases that do not require inspecting the
interplay between two concrete data instances.

Construct validity ensures that the metrics taken are ap-
propriate for answering the research questions. The chosen
metrics TPF and TNF are appropriate to rate accuracy
in our study design because our analysis yields a binary
result that the analysis derives in an objective way. If rating
confidentiality was more fuzzy, we had to use other metrics
as discussed by Metz [27]. For instance, we did not inject
multiple confidentiality issues in one scenario, which would
require the analysis to filter follow-up issues. We omitted this
in evaluation because this is a known limitation of the analysis
for now that we will consider in future work. Another threat
is that only one metric is applicable for every equivalence
class. However, this does not affect the validity of the results
because not calculating an inapplicable metric does not hide
inaccuracy of the analysis.

Reliability means that the results shall not depend on the
researchers conducting the evaluation. The model creation
heavily depends on the conducting researcher because success-
ful modeling requires experience with the modeling language
to be used. We avoid this dependency by providing the used
models in a data set instead of requiring their creation for
conducting the study. In general, we ensured reproducibility by
providing the models for all scenarios, the code for the prepa-
ration steps, the queries to be used with the logic program,
and the classification criteria for the results. Statistical metrics
exclude subjective interpretation of the results. Conducting the
study requires no creativity but sequential execution of steps
that we described in detail. Therefore, we do not expect the
results to depend on the conducting researcher but to the easily
reproducible.

E. Assumptions and Limitations

The fundamental assumption of our approach is that soft-
ware architects can describe system behavior using data flows.
Even if this is not common yet, we assume this to be possible
because data flow diagrams have been used in structured
design [24] for years. In our evaluation, we demonstrated that
data flows can describe systems in a way that we can identify
confidentiality issues. At least in PCM, behavior descriptions
are designed to be replaced by other types of descriptions
than control flow. Most of the newly introduced metamodel
elements are about the behavior of components and users.
Therefore, we consider the learning effort for describing an
architecture using our modeling approach to be low.

The most restricting limitation of our approach is that it
only supports type based confidentiality analyses. This means
that we do not consider individual data instances and their
concrete values but infer confidentiality properties from classes
of data. For instance, the request data exchanged between a
user and the airline in our running example is one class of
data because it always has the same characteristics even if
the concrete values might change. The downside is that we
do not support confidentiality that requires specific properties

of multi-tenant systems. One example of such an unsupported
system is the Bank case study of the iFlow approach [28].
In this system, the iFlow approach ensures that no customer
can access the account information of another customer. In
contrast, our approach can only ensure that only customers
can access account information. For such kinds of systems,
control flows have to be taken into account or more complex
data processing effect descriptions are required.

Another limitation is that we did not implement measures
to handle follow-up issues yet. This means that an issue
propagates itself along the data flow until the characteristics
change in way that fix the issue or a sink is reached. This is
an important part of our future work.

X. CONCLUSIONS

In this paper, we proposed our approach for Data-Driven
Software Architecture (DDSA) to ensure confidentiality prop-
erties in the software design phase. We introduced a meta-
model for expressing data and data processing as first class
entity in software architectures. The metamodel extends the
commonly used ADL PCM. The core idea of the metamodel
is to introduce data processing operations that are connected
via exchanged data elements. Each operation has an effect on
the characteristics of exchanged data. The presented confiden-
tiality analysis uses the access rights characteristic of data and
compares it with the roles assigned to an operation. A confi-
dentiality violation appears if the intersection of access rights
and roles is empty. The analysis is realized as queries to a logic
program. A preparation step generates the logic program based
on the ADL artifact. The evaluation examines the accuracy of
the confidentiality analysis by applying it to sixteen scenarios.
The analysis correctly detected all confidentiality issues while
not reporting any false positives.

The benefit of our approach is that software architects can
conduct confidentiality analyses in the design phase by means
of data processing. We expect this to be more straight forward
to specify than control flow oriented descriptions and to be
possible in an earlier stage because the required information
is already available from the requirements engineering phase.
In addition, the model serves as documentation that can be
used for communication with other stakeholders.

In future work, we aim for filtering follow-up issues in the
reported analysis results. We plan to do this as part of improv-
ing the usability of our approach by providing a mapping from
the Prolog results back to architectural elements. We want to
expand the evaluation of our approach by expressiveness of
the metamodel and scalability.

ACKNOWLEDGMENTS

The German Federal Ministry of Education and Research
funded this work under grant 01IS17106A (Trust 4.0).

REFERENCES

[1] ISO, “ISO/IEC 27000:2018(E)”, Standard, 2018.
[2] J. Fontana, LinkedIn will pay $1.25 million to settle suit over password

breach, 2015. [Online]. Available: https://zd.net/2rnvggE (visited on
12/05/2018).

[3] J. Isaak and M. J. Hanna, “User Data Privacy: Facebook, Cambridge
Analytica, and Privacy Protection”, Computer, vol. 51, no. 8, pp. 56–
59, 2018.

[4] H. Weisbaum, Trust in Facebook has dropped by 66 percent since
the Cambridge Analytica scandal, 2018. [Online]. Available: https :
/ / www . nbcnews . com / business / consumer / trust - facebook - has -
dropped- 51- percent- cambridge- analytica- scandal- n867011 (visited
on 11/21/2018).

[5] B. Boehm and V. R. Basili, “Software Defect Reduction Top 10 List”,
Computer, vol. 34, no. 1, pp. 135–137, 2001.

[6] R. H. Reussner et al., Modeling and Simulating Software Architectures
– The Palladio Approach. MIT Press, 2016.

[7] K. Katkalov, K. Stenzel, M. Borek, and W. Reif, “Model-Driven
Development of Information Flow-Secure Systems with IFlow”, in
International Conference on Social Computing, 2013, pp. 51–56.

[8] W. Ertel and N. Black, Introduction to artificial intelligence. Springer,
2011.

[9] SWI Prolog, Reference Manual, 2018. [Online]. Available: http://www.
swi-prolog.org/pldoc/doc for?object=manual (visited on 12/08/2018).

[10] P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, “An extensive sys-
tematic review on the Model-Driven Development of secure systems”,
Information and Software Technology, vol. 68, pp. 62–81, 2015.

[11] F. Swiderski and W. Snyder, Threat Modeling. Microsoft Press, 2004.
[12] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software

architecture security risk analysis using formalized signatures”, in
International Conference on Software Engineering, 2013, pp. 662–671.

[13] J. Jürjens, Secure Systems Development with UML. Springer-Verlag,
2005.

[14] A. S. Ahmadian, D. Strüber, V. Riediger, and J. Jürjens, “Model-Based
Privacy Analysis in Industrial Ecosystems”, in Modelling Foundations
and Applications, vol. 10376, 2017, pp. 215–231.

[15] C. Gerking and D. Schubert, “Towards Preserving Information Flow
Security on Architectural Composition of Cyber-Physical Systems”, in
Software Architecture, vol. 11048, 2018, pp. 147–155.

[16] T. Heyman, R. Scandariato, and W. Joosen, “Reusable Formal Models
for Secure Software Architectures”, in WICSA/ECSA, 2012, pp. 41–50.

[17] B. J. Berger, K. Sohr, and R. Koschke, “Automatically Extracting
Threats from Extended Data Flow Diagrams”, in Engineering Secure
Software and Systems, vol. 9639, 2016, pp. 56–71.

[18] B. Hoisl, S. Sobernig, and M. Strembeck, “Modeling and enforcing
secure object flows in process-driven SOAs: An integrated model-
driven approach”, SoSyM, vol. 13, no. 2, pp. 513–548, 2014.

[19] G. Snelting et al., “Checking probabilistic noninterference using
JOANA”, it-Information Technology, vol. 56, no. 6, pp. 280–287, 2014.

[20] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, Eds., Deductive Software Verification – The KeY Book.
Springer International Publishing, 2016.

[21] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek, “Practical,
Formal Synthesis and Automatic Enforcement of Security Policies for
Android”, in International Conference on Dependable Systems and
Networks, 2016, pp. 514–525.

[22] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Mdse@ r: Model-driven
security engineering at runtime”, in Cyberspace Safety and Security,
2012, pp. 279–295.

[23] R. Heinrich, “Architectural Run-time Models for Performance and
Privacy Analysis in Dynamic Cloud Applications”, SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 4, pp. 13–22, 2016.

[24] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design, 1st. Prentice-
Hall, Inc., 1979.

[25] S. Seifermann, R. Heinrich, and R. Reussner, Evaluation Data Set
Data-Driven Software Architecture ICSA 2019, 2019. [Online]. Avail-
able: https://doi.org/10.5281/zenodo.2574146.

[26] V. R. Basili and D. M. Weiss, “A Methodology for Collecting Valid
Software Engineering Data”, IEEE Transactions on Software Engineer-
ing, vol. SE-10, no. 6, pp. 728–738, 1984.

[27] C. E. Metz, “Basic principles of ROC analysis”, Seminars in Nuclear
Medicine, vol. 8, no. 4, pp. 283–298, 1978.

[28] K. Katkalov, “Ein modellgetriebener Ansatz zur Entwicklung infor-
mationsflusssicherer Systeme”, PhD Thesis, University of Augsburg,
2017.

[29] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering”, Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, 2009.

