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Abstract

As the size and complexity of enterprise applications increase, it
becomes more and more challenging to develop software systems
exhibiting a satisfactory performance behaviour. Software Per-
formance Engineering (SPE) aims for addressing this problem
by applying engineering principles during software development.
Software Performance Antipatterns are an established SPE con-
cept describing recurrent design and development flaws leading
to low software performance. Detecting Software Performance
Antipatterns in present software artifacts can serve as a feedback
mechanism for software architects and developers.

Existing approaches for detecting Software Performance An-
tipatterns are either model-based or monitoring-based concepts.
While model-based approaches can be used in early development
phases, they are not suited for capturing performance flaws made
during implementation. Monitoring-based approaches overcome
this problem by searching for antipatterns in software systems
during runtime. However, the antipatterns which can be found
by monitoring-based approaches depend on the actual workload
submitted to the system under test.

In this thesis, we introduce a performance antipattern de-
tection approach which is based on systematic measurement
experiments. Through systematic measurement experiments we
are able to conduct goal-oriented search for Software Performance
Antipatterns and their root causes in an effective way. For this
purpose, we combine the concept of dynamic instrumentation
with an adaptive approach of executing measurement experi-
ments. Based on a hierarchy of performance problems we define
a detection process which is guided by a decision tree. Using
a decision tree increases the efficiency of the search process as
unnecessary measurement steps can be avoided. For selected
Software Performance Antipatterns we introduce and compare
different detection techniques selecting the best ones for the
overall approach.

We evaluated our detection approach on an implementation
of the TPC-W Benchmark. In this evaluation scenario, we
discovered a performance antipattern leading to a scalability
problem. Moreover, we were able to identify the root cause
responsible for the detected problem. These results show the
applicability of the detection approach introduced in this thesis.
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Zusammenfassung

Da die Größe und Komplexität von Geschäftsanwendungen ste-
tig steigt, wird es zunehmend schwieriger Software-Systeme
zu entwickeln, die ein zufriedenstellendes Performance-Verhalten
aufweisen. Ingenieurmäßige Software-Entwicklung geht dieses
Problem an, indem ingenieurmäßige Prinzipien während der
Software-Entwicklung eingesetzt werden. Software-Performance-
Anti-Patterns stellen ein etabliertes Konzept in der ingenieurs-
mäßigen Software-Entwicklung dar und beschreiben wiederkehren-
de Entwurfs- und Entwicklungsfehler, die zu schlechter Software-
Performance führen. Die Erkennung von Software-Performance-
Anti-Patterns in bestehenden Software-Artefakten kann Entwick-
lern und Software-Architekten als ein Feedback-Mechanismus die-
nen.
Bestehende Ansätze zur Erkennung von Software-Performance-
Anti-Patterns sind entweder Modell-basiert oder Monitoring-
basiert. Zwar können Modell-basierte Ansätze in einer frühen Pha-
se der Software-Entwicklung eingesetzt werden, jedoch sind die-
se Ansätze nicht geeignet, um Fehler zu erkennen, die während
der Implementierung entstehen. Monitoring-basierte Ansätze lösen
dieses Problem durch eine messbasierte Suche nach Anti-Patterns
während dem Betrieb der Zielanwendung. Allerdings hängt die
Anzahl an Anti-Patterns, die durch Monitoring-basierte Ansätze
erkannt werden können, stark von der tatsächliches Last ab, die
am Zielsystem anliegt.
In dieser Arbeit stellen wir einen Ansatz zur Erkennung von
Software-Performance-Anti-Patterns vor, der auf systematischen
Messexperimenten beruht. Durch systematische Messexperimen-
te sind wir in der Lage eine zielorientierte Suche nach Software-
Performance-Anti-Patterns und deren Ursachen auf eine effektive
Weise durchzuführen. Hierfür kombinieren wir das Konzept der
dynamischen Intrumentierung mit dem Ansatz einer adaptiven
Ausführung von Messexperimenten. Wir definieren einen Detek-
tionsprozess, der basierend auf einer Hierarchie von Performance-
Problemen einen Entscheidungsbaum zur Steuerung des Ablaufs
verwendet. Die Verwendung eines Entscheidungsbaums erhöht die
Effizienz des Detektionsprozesses, da unnötige Messungen ver-
mieden werden können. Wir stellen für einige der betrachte-
ten Software-Performance-Anti-Patterns Erkennungsverfahren vor
und vergleichen diese, um die besten Verfahren für den Gesamt-
ansatz zu selektieren.
Wir haben unseren Ansatz an einer Implementierung des TPC-W
Benchmarks evaluiert. In diesem Evaluationszenario haben wir ein
Software-Performance-Anti-Pattern und dessen tatsächliche Ursa-
che erkannt welche zu einem Skalierbarkeitsproblem der Anwen-
dung führt. Die Evaluierung zeigt die praktische Anwendbarkeit
des vorgestellten Erkennungsansatzes.
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1. Introduction

1.1. Software Performance Engineering

Software performance is an important aspect of software systems influencing the success
of software vendors as well as of their customers. Bad software performance causes higher
costs, as it results in higher consumption of employees’ working time, lower production
rates and power consumption inefficiencies. In addition, bad software performance might
lead to high service response times, bad scalability and impair the system’s reliability.
This deteriorates customer relationships as customer satisfaction decreases. For software
vendors, software performance is a decisive competitive factor. In any case, ensuring
satisfactory software performance is an important task.

For this purpose, the field of Software Performance Engineering (SPE) has been estab-
lished. In contrast to the “Fix It Later” approach, where performance is dealt with only
when performance problems occur, SPE aims for evaluating and managing software per-
formance during the entire software lifecycle. As in general, late problem discovery and
solution is quite expensive, an important goal of SPE is to detect and fix performance prob-
lems as early as possible. Therefore, it is important to gather performance requirements
and design the software architecture with respect to these requirements in early phases.
During development and test phases, the developer has to be provided with performance
feedback, so that performance problems can be discovered early. Finally, during operation
and maintenance phases it is important to keep performance at a satisfactory and stable
level.

We distinguish two conceptually different approaches for software performance evaluation:
model-based and measurement-based approaches. The former use an abstracted repre-
sentation of the real system (a model) to evaluate the performance characteristics of the
real system. Performance models can be solved either by mathematical analysis or by
simulation. While analytically solving a model is cheaper, simulations provide more ac-
curate results as less assumptions have to be met. Model-based performance evaluation
is relatively cheap as for this purpose the real system does not have to be implemented
or realized. However, the accuracy of model-based performance evaluation depends on
the detail level of the model. Often, it is difficult to build detailed, representative mod-
els which results in inaccurate performance predictions. Measurement-based performance
evaluation approaches promise more accurate results as they capture the real system’s
behaviour. However, measurement-based approaches assume implemented, running sys-
tems or fragments to be measured. Thus, while model-based performance analysis can be
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2 1. Introduction

applied in early development phases, measurement-based approaches can be used at least
when some implementations are present.

Despite the great progress of SPE in research, to this day, SPE has been relatively ne-
glected in development. This is due to limiting factors like available budgets, negotiated
development time horizons and personnel restrictions. Furthermore, software developers
focus on realizing additional features rather than evaluating the performance of existing
services. Despite the high importance of performance, conducting performance evalua-
tion manually is a time-consuming and expensive task yielding no directly visible result
compared to implementing new features [Sma06]. In addition, performance evaluation pre-
sumes expertise knowledge, which is another obstacle for software developers to perform
SPE. Thus, SPE is still a challenging research area. In particular, it is crucial to make
SPE easily applicable for software developers as well as reduce costs, knowledge and effort
required to conduct performance evaluation.

1.2. Performance Antipatterns as an SPE Concept

As a reaction to the software crisis [NR69] in the mid-sixties, the software engineering (SE)
discipline has been founded. The aim of SE is to apply engineering approaches to software
development in order to produce software in more structured, effective and efficient manner
resulting in high quality software systems.

For instance, the concept of Design Patterns [AIS+77, Gam95] is an important engineering
approach software engineers have learned from construction engineering. In SE, design
patterns describe common, well-approved solutions to recurring software design problems.
Thus, design patterns describe best practices for structuring software. The concept of
Antipatterns is closely related to design patterns. However, antipatterns describe recurring
problem solutions which should be avoided as they have a negative impact on the software’s
quality attributes. Thus, instead of characterizing best practices, antipatterns describe
recurring mistakes. While design patterns are wide-spread, well-known and often used
in the area of SE, antipatterns are less known as they can not be applied as simple as
design patterns. In contrast to design patterns, which are used consciously, in most cases
mistakes leading to antipatterns are made unconsciously. Compared to design patterns, the
antipattern concept is a reactive rather than a proactive approach. Thus, one way to take
advantage of the antipattern concept is to detect antipatterns in developed architectures
or software fragments in order to provide feedback to the software architect, developer
respectively.

While different kinds of design antipatterns affect different software quality attributes, in
this thesis, we focus on design antipatterns which impair the performance of the software
under development (software performance antipatterns (SPA) [SW00]). In particular, we
design a detection approach for SPAs which serves as a performance feedback mechanism
informing the software architects and developers about performance flaws caused by bad
design or implementation. In recent work, approaches have been proposed for detecting
SPAs in architectural models based on UML [CME10] or the Palladio Component Model
(PCM) [TK11]. While these approaches are suitable for detecting high level architecture
antipatterns at design time, many performance mistakes unconsciously made during the
implementation phase cannot be captured. Existing measurement-based approaches (e.g.
[PM08]) for performance antipattern detection apply monitoring techniques during system
operation in order to gather system behaviour information. Based on this information rules
are defined which are used for the detection of antipatterns. As these approaches depend on
monitoring during operation, the set of SPAs which can be detected depend on the actual
workload. Furthermore, excessive monitoring causes high measurement overhead. In order

2
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to overcome these problems, in this thesis, we introduce an SPA detection approach based
on systematic measurement experiments.

1.3. Idea

As mentioned before, monitoring-based approaches for performance problem detection
entail some disadvantages. Firstly, these approaches depend on the actual workload sub-
mitted to the system under test during operation. Thus, the search for performance
problems is randomized in some manner. Secondly, for meaningful measurement results
excessive monitoring is required which causes high monitoring overhead. However, high
monitoring overhead impairs measurement accuracy. On the other hand, selective moni-
toring reduces the amount of available information which is required for analysis. Finally,
monitoring-based approaches are mostly applicable only during operation. However, de-
tecting performance problems lately during the software development process causes high
costs for solving these problems.
In this thesis, we introduce and combine some concepts to overcome these problems. In-
stead of randomly searching for performance problems, we apply systematic measurement
experiments allowing us to control which workload is submitted to the system under test.
As we perform target-oriented experiments, the probability to find a specific performance
problem is higher than the one of an approach which relies on a random workload. Further-
more, for each experiment we can specifically determine which data should be collected.
In this way, we reduce the monitoring overhead during measurements without impairing
the quality of information captured through measurements. Coupling the systematic mea-
surement concept with dynamic instrumentation [MCC+95] allows us to find performance
problems not only effectively but also efficiently. In particular, a search process guided by
a decision tree enables the avoidance of unnecessary measurements which increases the ef-
ficiency significantly. Finally, our approach is intended to be used during the development
phase rather than operation. In this way, costs can be avoided for solving performance
problems lately.

1.4. Overview

In this section, we introduce the structure of this thesis:

• Chapter 2:
In Chapter 2, we introduce some foundations required for the understanding of the
concepts describes in this thesis. In particular, we describe the concept of antipat-
terns and give an overview of existing software performance antipatterns (cf. Chap-
ter 2.1). In Chapter 2.2, we introduce techniques and tools for instrumenting code
in order to gather measurement data. Furthermore, we provide fundamentals on
mathematical concepts in Chapter 2.3. In Chapter 2.4, we introduce approaches for
performance evaluation. Finally, we explain the concept of the Software Performance
Cockpit in Chapter 2.5.

• Chapter 3:
In Chapter 3, we give an overview on related work and describe the contribution of
this thesis.

• Chapter 4:
In Chapter 4, we introduce the antipattern detection approach. We explain the main
idea in Chapter 4.1. Furthermore, we describe the adaptive measurement approach in
Chapter 4.2, the architecture of the detection concept in Chapter 4.3 and important
assumptions in Chapter 4.4.

3



4 1. Introduction

• Chapter 5:
As code instrumentation forms the basis of the detection approach, in Chapter 5,
we discuss different instrumentation techniques comparing the full instrumentation
technique (5.1) with dynamic instrumentation (5.2).

• Chapter 6:
In Chapter 6, we examine different detection techniques for individual software per-
formance antipatterns. In particular, we investigate the Varying Response Time
problem in Chapter 6.2, the Ramp antipattern in Chapter 6.3.1.1, the Dormant Ref-
erences antipattern in Chapter 6.4 and the One Lane Bridge antipattern in Chapter
6.5.

• Chapter 7:
We evaluate our approach in Chapter 7 on the TPC-W Benchmark. We introduce
the TPC-W Benchmark in Chapter 7.1 and describe the experiment setup in Chapter
7.2. Finally, we present the detection results in Chapter 7.3.

• Chapter 8:
In Chapter 8, we conclude this thesis summarizing and discussing the proposed
concepts and define issues for future work.
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2. Fundamentals

2.1. Software Performance Antipatterns

2.1.1. The Nature of Software Performance Antipatterns

As the term Software Performance Antipattern (SPA) is a key-element in this thesis, in
this section, we introduce the concept of software performance antipatterns and describe
some performance antipatterns found in literature.

Design Patterns [GHJ+02] are a well known concept in the area of software engineering
(SE). Software engineers use design patterns for structuring software and creating soft-
ware architectures for modularity, maintainability, efficiency and other extra-functional
attributes. Design patterns are widely spread because they provide good and well-tried
solutions to recurrent design problems. Design patterns originated from civil engineering
[AIS+77] where design patterns describe common solutions to recurring problems when
designing buildings. Based on the model of civil engineering, software engineers use design
patterns for solving recurring problems. Using design patterns in software engineering was
an important step towards making software development an engineering discipline.
All design patterns are described by a name, problem description and a solution. Thus,
design patterns are not only common solutions to recurring problems, but form a language
which can be used to describe a complex software architecture in a more abstract and
simple way. In Figure 2.1 the Decorator Pattern is depicted as an example for a design
pattern. The Decorator Pattern addresses the problem of dynamically modifying the be-
haviour of existing objects and provides a dynamic alternative to inheritance. The general
solution to this problem is depicted in Figure 2.1 where a ConcreteDecorator modifies the
behaviour a ConcreteComponent by referencing it and decorating the behaviour() method
call.
While design patterns represent best practices for structuring software, Design Antipat-

terns describe common problems which should be avoided as they have a negative effect on
certain extra-functional attributes of the software. Similar to design patterns, antipatterns
are characterized by a name, a problem description and a solution. Here, the problem de-
scription refers to a recurring, bad approach to manage, structure and develop software.
An antipattern’s solution suggests better alternatives to the problematic approach or sug-
gests steps to reduce the negative impact of the problematic approach. According to
Brown [Bro98], antipatterns can be classified into three groups: Development Antipat-
terns, Architecture Antipatterns and Software Project Management Antipatterns. A frag-
mental antipattern hierarchy is depicted in Figure 2.2. While architectural antipatterns

5
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-component

1

+behaviour()

AbstractComponent

+behaviour()

ConcreteComponent

+behaviour()

AbstractDecorator

+behaviour()

ConcreteDecorator
behaviour(){
...
component.behaviour();
...
}

Figure 2.1.: Decorator Pattern, [GHJ+02]

impair extra-functional issues like maintainability, modularity, etc., project management
antipatterns have negative effects on issues like productivity during a software develop-
ment process, complexity or project costs. Development antipatterns affect negatively
some QoS attributes of the software. Thus, we further distinguish between Performance
Antipatterns, having a negative effect on performance, and antipatterns affecting other QoS
attributes. In this thesis we consider only performance antipatterns. These can be either
technology specific (EJB, .NET, . . . ) or technology independent. At the bottom level, we
classify antipatterns by their cause. Thus, we distinguish between performance antipat-
terns caused by bad design (Performance Design Antipatterns), improper deployment of
the software system (Performance Deployment Antipatterns) or inefficient implementation
(Performance Implementation Antipatterns).

Antipatterns

Development 
Antipatterns

Architecture 
Antipatterns

Software Project 
Management 
Antipatterns

Performance 
Antipatterns

Antipatterns 
affecting other 
QoS attributes

Performance 
Deployment 
Antipatterns

Performance 
Implementation 

Antipatterns

EJB 
Performance 
Antipatterns

Technology Independent 
Performance 
Antipatterns

.NET 
Performance 
Antipatterns

Security 
Antipatterns

Performance 
Design 

Antipatterns

Figure 2.2.: Antipattern hierarchy (following and extending [PM08])
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2.1. Software Performance Antipatterns 7

2.1.2. Performance Antipattern Categorization Template

In Section 2.1.3, we describe a compilation of software performance antipatterns (SPA)
found in literature (cf. Table 2.1). These SPAs differ from each other not only in their
negative impact on performance but also in metrics and information characterizing them.
Thus, for a systematic approach to antipattern detection we have to extract common
behaviour and characteristics of individual SPAs. For this purpose, we develop a catego-
rization template which we apply on each antipattern in Section 2.1.3. For each antipattern
we provide a description of its main characteristics and evaluate each antipattern in re-
gard to the feasibility of detecting them by systematic measurement experiments. Then,
we categorize each SPA we evaluated as feasible using the three categorization variables
described in the following.

2.1.2.1. Observable Behaviour

As SPAs negatively affect the performance of the considered software system, they all
exhibit a certain dynamic behaviour leading to the negative effect. Thus first, we group
the SPAs by their observable behaviour. For this purpose, we distinguish four groups of
behaviour: calling behaviour, response time progression, threading behaviour and memory
consumption behaviour.

• Calling Behaviour
Calling behaviour means that the considered software system or software component
exhibits an inefficient interaction behaviour. In particular, this might be excessive
method calling, database accessing or messaging behaviour. While in practice exces-
sive method calling is less critical, inefficient remote communication, messaging or
database accessing may have a considerable impact on the performance.

• Response Time Progression A scalable and good performing software system
should have little variation in response times as greatly varying response times in-
dicate instability and unreliability leading to unsatisfied customers. Thus, we speak
of bad response time progression if the response times vary greatly.

• Threading Behaviour A bad threading behaviour addresses the problem of inef-
ficiently or ineffectively utilizing concurrent processing. That includes unnecessary
synchronization points, unbalanced distribution of resources to threads and thresh-
ing. Thus, bad threading behaviour is the primary reason for limited scalability of
software systems leading to bad performance while increasing the workload.

• Memory Consumption Behaviour Antipatterns which lead to a high memory
consumption impair the software performance. High memory consumption leads to
excessive memory swapping or slows down algorithms which work on data structures.
In both cases the performance and the scalability of the target software system
decrease.

2.1.2.2. Scope of Observation

Besides their difference in behaviour, SPAs differ in the scope where individual antipatterns
can be observed. Although some SPAs exhibit the same class of observable behaviour they
might be observed in different scopes. For instance, antipatterns exhibiting an excessive
Calling Behaviour can be observed in the scope of messaging or in the scope of accessing
a database. For the categorization of SPAs we use the following five scopes:

• messaging: We assign the messaging scope to an SPA if the observable behaviour
can be recognized just by observing the usage of a messaging service.

7



8 2. Fundamentals

• database access: This scope is assigned to database related SPAs.

• service execution: SPAs which can be recognized by observing the execution be-
haviour of top level system services are assigned the service execution scope.

• concurrency: The concurrency scope describes antipatterns whose observable be-
haviour is caused during concurrent execution of several execution threads.

• memory consumption: Finally, SPAs exhibiting a peculiar memory consumption
behaviour are assigned the memory consumption scope.

2.1.2.3. Indicators

The third categorization variable (Indicators) addresses the problem of recognizing cir-
cumstances in observations which indicate certain SPAs. We distinguish between high
level indicators abstracting from individual antipatterns and specific indicators pointing
to the existence of single SPAs. High level indicators are not sufficient to decide whether
a certain SPA exists or not, but serve as simple “direction signs” for further detection
processing. Low level indicators are used to differentiate between single SPAs in an SPA
category and between different root causes of an SPA. We formulate indicators as formal
terms describing circumstances which can be observed by measuring the execution of the
software system under test.

2.1.3. Description and Categorization of
Software Performance Antipatterns

In this section we apply the categorization template on each SPA we found in literature.
Table 2.1 gives an overview of all considered SPAs. The left part comprises all SPAs we
evaluated as feasible for detecting them through systematic measurement experiments.

Feasible SPAs

Antipattern Name Source

The Blob [SW00]

Empty Semi Trucks [SW03a]

The Stifle [DAKW03]

The Ramp [SW03b]

The Traffic Jam [SW02b]

The One Lane Bridge [SW00]

More is Less [SW03b]

Unbalanced Processing [SW03b]

Dormant References [Ray07]

Session as a Data Store [sap]

Infeasible SPAs

Antipattern Name Source

Sisyphus Database Re-
trieval

[DGS02]

Circuitous Treasure Hunt [SW00]

The Tower of Babel [SW03a]

Unnecessary Processing [SW03b]

Excessive Dynamic Alloca-
tion

[SW00]

Spin Wait [BPSH05]

Table 2.1.: Overview on software performance antipatterns

2.1.3.1. The Blob Antipattern

Description

The Blob [SW00] (also known as the “God Class”) describes a problem in structuring
software. The Blob is a class or component which is responsible for the entire processing
using other classes or components only for retrieving required information. As informa-
tion is separated from the processing unit, the Blob causes high messaging overhead while
retrieving required information during processing. However, excessive messaging results

8



2.1. Software Performance Antipatterns 9

in bad performance, in particular if messaging is conducted in a distributed environment.
Another form of the Blob is a class or component which contains the entire information
other classes or components need for processing. The negative effect on performance is
the same as with the first case, only that in this case other classes (or components) access
the Blob in order to retrieve information.
In both cases, the root cause for bad performance is the separation of data and the be-
haviour related to this data. Thus, the solution of the Blob antipattern is to keep processing
units and related information together. Instead of separating data from processing units,
structuring should be carried out by separating semantic units. This solution increases
not only the maintainability of the software, but improves the performance by reducing
the messaging overhead, as well.

Evaluation

• Observable Behaviour: The Blob antipattern leads to inefficient messaging pro-
ducing too many calls which impair the performance of the software system. Thus,
the Blob exhibits a striking Calling Behaviour.

• Scope of Observation: The scope for observing the Blob is the messaging scope.
In this context messaging comprises all kinds of interaction between software com-
ponents, in particular remote communication.

• Indicators: A software system exhibiting the characteristics of the Blob antipattern
inevitably generates a high messaging overhead. Thus, if the proportion of the overall
residence time the system spends with messaging (pmsg) exceeds a certain threshold
Tmsg, then high response times might be caused by the Blob antipattern. A possible
high level indicator is:

Tmsg < pmsg =
R′msg
R′

(2.1)

Here, R′ is the overall residence time while R′msg is the time the system performs
messaging. The absolute value of Tmsg has to be derived empirically.
If the high level indicator shows a high messaging overhead, a specific indicator is
required which differentiates the Blob antipattern from other SPAs causing high mes-
saging overhead. According to the description of the Blob, we can suspect the Blob
antipattern if we identify a component which sends much more requests (#msgOUT )
as it receives (#msgIN ) or vice versa. This indicates that the considered compo-
nent has a close dynamical dependency to other components. In particular, this
applies to situations where the considered component interacts with many different
components. Thus, a possible specific indicator is the following:

#msgIN << #msgOUT ∨#msgIN >> #msgOUT (2.2)

2.1.3.2. The Empty Semi Trucks Antipattern

Description

Similar to the Blob antipattern, the Empty Semi Trucks [SW03a] is a performance an-
tipattern concerning messaging behaviour. Sending a message from system A to system B
is always entailed by an overhead like meta-data or processing tasks required to send and
receive a message. As this overhead is often nearly constant for one message independent
of the actual message size, it is obvious that sending a larger payload in one message is
cheaper than splitting it into several messages. The Empty Semi Trucks antipattern ad-
dresses the problem of sending data from system A to system B in many small messages
instead of aggregating it into a few bigger messages. The negative performance effect

9



10 2. Fundamentals

entailed by the Empty Semi Trucks antipattern is a high messaging overhead resulting in
higher response times. Root causes for this antipattern can be either inefficient use of the
available bandwidth or an inefficient interface which does not allow for sending aggregated
messages. In Figure 2.3, an example for an improper interface is depicted. In that example
we want to send person data (name, age and gender) from one system to another using
a custom messaging interface. We consider two possibilities to design this messaging in-
terface. Using MessagingInterface A implies that three messages have to be sent in order
to transmit data for one person. However, using MessagingInterface B allows us to first
aggregate person data before sending it as one message. Thus, using MessagingInterface
A implies a messaging overhead which is up to three times bigger than it is the case with
MessagingInterface B.

+ sendName(String name)
+ sendAge(int age)
+ sendGender(String gen)

MessagingInterface A

+ setName(String name)
+ setAge(int age)
+ setGender(String gen)

Person

+ sendPersonInfo(Person p)

MessagingInterface B

Figure 2.3.: Empty Semi Trucks antipattern: example of an improper interface

Hence, sending aggregated messages (Batching performance pattern [SW02a]) and pro-
viding proper interfaces (Coupling performance pattern [SW02a]) solves the performance
problem entailed by the Empty Semi Truck antipattern.

Evaluation

As the effect of the Empty Semi Trucks antipattern is quite similar to the one of the Blob
antipattern, classes for the observable behaviour and the scope of observation are the same
as for the Blob. Thus, the high level indicator pointing to a high messaging overhead is
the same as for the Blob, too. However, the specific behaviour of the Empty Semi Trucks
antipattern differs from the Blob resulting in another specific indicator.

• Observable Behaviour: As it was the case with the Blob, the Empty Semi Trucks
antipattern exhibits a striking Calling Behaviour.

• Scope of Observation: The Empty Semi Trucks antipattern can be observed in
the scope of messaging.

• Indicators: The high level indicator is the same as for the Blob:

Tmsg < pmsg =
R′msg
R′

(2.3)

The Empty Semi Trucks antipattern is characterized by a high message frequency and
a small average size of sent messages. Thus, the specific indicator for this antipattern
is:

fmsg =
#msg

t
> Tfreq ∧ size(msg) < Tsize (2.4)

Whereby, fmsg is the message frequency defined by the number of messages #msg
per time unit t and Tfreq is a threshold to be defined. Tsize is a threshold for the

average message size size(msg).

10



2.1. Software Performance Antipatterns 11

2.1.3.3. The Stifle Antipattern

Description

In general, the Stifle antipattern [DAKW03] is a special case of the Empty Semi Trucks an-
tipattern applied on database accesses. Equivalent to messaging, a database access entails
processing overhead. Thus, executing a series of SQL statements is significantly cheaper if
it is performed in a batch rather than as a series of single database accesses. This perfor-
mance problem is addressed by the Stifle antipattern entailing the performance problem
of a relatively high database access overhead. High overhead caused by the database man-
agement system can be reduced if database statements and queries are aggregated at the
application layer before they are sent to the database layer in order to be executed in a
batch process.

Evaluation

As a special case of the Empty Semi Trucks antipattern, the Stifle can be treated in a
similar way.

• Observable Behaviour: Equivalent to the Empty Semi Trucks antipattern, the
Stifle exhibits a striking Calling Behaviour.

• Scope of Observation: The Stifle is a database related antipattern. Thus, the
striking behaviour can be observed within the scope of accessing a database.

• Indicators: Similar to the high level indicator of the Blob and the Empty Semi
Trucks antipattern, we define the high level indicator for the Stifle. While the Empty
Semi Trucks causes a high messaging overhead, the Stifle entails a high database
overhead. If the proportion of database residence time pdb exceeds a threshold Tdb,
the Stifle antipattern might be one possible reason for bad performance. Thus, we
define the following high level indicator for the Stifle antipattern:

Tdb < pdb =
R′db
R′

(2.5)

Whereby, R′ is the overall residence time while R′db is the time the system accesses
a database. Again, a proper value for Tdb has to be determined empirically.
A high number of database calls per service request #callsDB paired with a small
average number of result rows #rows specifically indicates the Stifle antipattern:

#callsDB > Tcall ∧#rows < Trows (2.6)

2.1.3.4. The Ramp Antipattern

Description

The Ramp [SW03b] is a rather general performance antipattern characterized by increas-
ing response times (memory consumption, etc. ) over operation time. The behaviour of
the Ramp can be generalized to the time behaviour of any resource consumption. For
example, another form of the Ramp can be observed if the memory consumption increases
while the system is used. The Ramp behaviour is depicted in Figure 2.4 where the actual
response time (or memory consumption) increases with operation time indicated by the
linear regression function. Such behaviour leads to impaired performance although the
workload was not increased significantly over time. As the Ramp performance problem is
described at a high abstraction level, there might be different causes for this behaviour.
Two possible reasons are the Sisyphus Database Retrieval Performance Antipattern (de-
scribed in Section 2.1.3.11) and the Dormant References Antipattern (described in Section
2.1.3.9). Due to the fact that the Ramp is a rather general performance problem, the
solution to this performance antipattern depends on the actual cause.

11
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Figure 2.4.: Illustration of the Ramp antipattern, following [SW03b]

Evaluation

• Observable Behaviour: The response time variant of the Ramp leads to increasing
response times. Observed over time, this results in high response time variance. In
this case, one can observe a striking Response Time Progression Behaviour. In the
case of the memory consumption variant of the Ramp, we observe a striking Memory
Consumption Behaviour as memory consumption increases over time. However, as
growing memory consumption leads to increasing response times we focus on the
Response Time Progression Behaviour.

• Scope of Observation: In both cases, the striking behaviour can be noticed by
observing the system execution at service level. Thus, the scope of observation is
the service execution scope.

• Indicators: The Response Time Progression Behaviour is specified by a high vari-
ance in response times. As the coefficient of variance is a normalized metric, we
use COV (R) as an indicator for the Response Time Progression Behaviour. Thus,
if COV (R) exceeds a threshold TCOV , the Ramp might be a possible cause for bad
performance.
Furthermore, we can assume the Ramp antipattern if the response times increase
significantly over time:

R(t+ x) > R(t) (2.7)

2.1.3.5. The Traffic Jam Antipattern

Description

Similar to the Ramp antipattern, the Traffic Jam [SW02b] antipattern describes a general
response time behaviour of a software system. The Traffic Jam behaviour is characterized
by a temporary overload situation of the software system (or a part of the software system)
leading to long queues at some (passive or active) resources. Such overload situations
often result in big variance of response times as some requests get stuck in congestion
while others do not. However, a big variance of response times is a negative performance
characteristic of a software system as the system users perceive rather high response times
than the average response time. There might be different reasons for a Traffic Jam, one
of them is the One Lane Bridge antipattern (described in Section 2.1.3.6). Another cause
for the Traffic Jam antipattern is a temporarily high workload resulting in the described
overload situation. Depending on the root cause there are different solutions to the Traffic
Jam antipattern. In the case of a temporarily high workload it is advisable to utilize load
balancer in order to distribute the workload uniformly among available resources or to
perform admission control in order to guarantee a feasible workload.

12



2.1. Software Performance Antipatterns 13

Evaluation

• Observable Behaviour: Similar to the Ramp antipattern the Traffic Jam leads
to highly varying response times exhibiting a striking Response Time Progression
Behaviour.

• Scope of Observation: The Response Time Progression Behaviour can be ob-
served at the service execution level.

• Indicators: The high level indicator is the same as for the Ramp antipattern:

COV (R) > TCOV (2.8)

In the case of the Ramp antipattern the response time variance is based on increasing
response times over time. Thus, the Ramp occurs even under a low workload. How-
ever, a Traffic Jam occurs only under high traffic volumes. In the case of the Traffic
Jam antipattern, the variance in response times depends on the workload intensity.
Thus, we can presume a Traffic Jam antipattern if the high response time variance
is paired with the following specific indicator:

COV (R) ≈WL (2.9)

Here, “≈” means that the variance increases with the workload.

2.1.3.6. The One Lane Bridge Antipattern

Description

The One Lane Bridge [SW00] typically occurs in multi-threaded software systems, where
only few threads can resume execution while most threads have to wait. Synchronization
points in the program flow or database locks are often reasons for the One Lane Bridge.
At a One Lane Bridge only few threads are active concurrently. Thus, less work can be
processed resulting in higher response times. Furthermore, as mentioned before the One
Lane Bridge can lead to a congestion resulting in the Traffic Jam antipattern. Solving
the One Lane Bridge antipattern is not always possible as in many cases synchronization
points and database locks are inevitable. However, one can try to reduce the impact of
the One Lane Bridge by reducing the time required to “overcome” the synchronization
phase. In particular, synchronizations should be avoided if they are not really necessary.
For example, it is not necessary to synchronize concurrent reading accesses to a variable.

Evaluation

• Observable Behaviour: As the One Lane Bridge occurs in multi-threaded systems,
this antipattern exhibits a striking Threading Behaviour.

• Scope of Observation: Depending on the root cause of the One Lane Bridge the
scope of observation might be either the concurrency scope (in the case of synchro-
nized methods) or the database access scope (in the case of database locks).

• Indicators: As the One Lane Bridge mostly leads to the Traffic Jam antipattern the
high level indicator is the same as for the Ramp and the Traffic Jam antipatterns:

COV (R) > TCOV (2.10)

If the difference between the response time R and the CPU time tCPU of a service
request is quite large, we can assume large waiting times. However, large waiting
times indicate the presence of the One Lane Bridge. Thus, the specific indicator for
the One Lane Bridge is the following:

R >> tCPU (2.11)

13
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2.1.3.7. The More is Less Antipattern

Description

If a software system is occupied with management tasks rather than performing actual
work, we speak of threshing. The More is Less antipattern [SW03b] occurs when too many
tasks are executed concurrently resulting in threshing due to high management overhead.
Some reasons for the More is Less antipattern are too many concurrent threads, database
connections, network connections or pooled resources. Figure 2.5 illustrates exemplary
the throughput behaviour depending on the number of concurrent threads. The More is
Less antipattern occurs when the number of concurrent threads exceeds n* causing higher
management overhead and, thus, decreasing the throughput of the system. In order to
avoid the More is Less antipattern it is important to determine n* experimentally or by
simulation. Knowing n* allows for creating thread and connection pools of proper size
so that threshing can be avoided. Smith et al. [SW03b] describe further (case specific)
solutions to this antipattern, like using a dedicated thread for background processing.

Threads

Th
ro
u
gh
p
u
t

n*

Figure 2.5.: More is Less antipattern: example throughput behaviour

Evaluation

• Observable Behaviour: Most variants of the More is Less antipattern depend
on concurrent execution of several threads. For instance, holding several database
connections is reasonable only if there are several concurrent threads using these
connections. Thus, we assume that the number of considered resources (causing the
More is Less antipattern) increases with the number of concurrent service requests.
Consequently, the behaviour we can observe in the case of a More is Less antipattern
is a striking Threading Behaviour.

• Scope of Observation: The scope of observation of the More is Less antipattern
depends on the actual root cause. If threshing is caused by too many threads the
scope is concurrency. If threshing is caused by too many database connections, the
behaviour can be observed in the scope of database accessing.

• Indicators: Independent of the actual root cause, the More is Less antipattern
results in response times R growing over linear with the number of concurrent service
requests X:

R ∝ Xa;a >> 1 (2.12)

The over linear growth is caused by progressively increasing overhead for resource
management.

2.1.3.8. Unbalanced Processing Antipattern

Description

The Unbalanced Processing antipattern [SW03b] occurs in multi-threaded systems when
scalability is impaired by unbalanced execution of concurrent tasks. There are three kinds
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of unbalanced processing. i) If scalability is impaired due to single-threaded code or
because all processors are dedicated to other tasks, one observes the Concurrent Processing
Systems antipattern. ii) In a Pipe and Filter Architecture the slowest filter determines the
throughput of the entire system. iii) Finally, one speaks of Extensive Processing if several
processes compete for a processor, whereby, a long running process employs the processor
for a long fraction of time blocking short processes.
In all three cases, there is no balanced distribution of running processes (or threads) to
available processors resulting in bad scalability which is a negative performance property.
Solutions to these balancing problems are described in [SW03b].

Evaluation

• Observable Behaviour: The Unbalanced Processing antipattern is another multi-
threading related SPA. Thus, this antipattern can be recognized by its Threading
Behaviour and its utilization of available resources.

• Scope of Observation: Consequently, the scope of observation is the concurrency
scope.

• Indicators: On the top level, the Unbalanced Processing antipattern is indicated
by an imbalance of resource utilization paired with a long queue of waiting threads:

U(CPUA) >> U(CPUB) ∧QL(T ) > TQL (2.13)

The Extensive Processing manifestation of this antipattern is specifically indicated
if a thread T ∗ exists which employs a CPU (tCPU ) much more than other threads:

∃T ∗ : ∀T : tCPU (T ∗) >> tCPU (T ) (2.14)

Here, tCPU (T ) is the CPU time of thread T . Indicators for the Concurrent Processing
Systems variant depend on the actual root cause.

2.1.3.9. The Dormant References Antipattern

Description

The Dormant References antipattern [Ray07] can be a root cause for the Ramp antipat-
tern. A dormant reference is a reference that points to an object which has been used in
the past which, however, will not be used in the future anymore. The Dormant References
antipattern is a specific memory leak which can affect the performance negatively in two
ways: Either the memory leak results in high memory consumption forcing the operat-
ing system to additional swapping or the antipattern occurs in a distending repository
impairing processing times on that repository. The latter case might lead to the Ramp
antipattern, as repository operations like searching or sorting will traverse dormant refer-
ences as well, although these are not relevant anymore. As new entries are added to the
repository, the response times for these operations increase. Thus, missing clean-up oper-
ations are the root causes for this problem. Hence, the Dormant References antipattern
can be solved by ensuring to remove all references to an object which will not be used
anymore.
Rayside et al. [Ray07] describe other memory antipatterns as well, however, we focus on
the Dormant References antipattern as it might be a reason for the Ramp antipattern.
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Evaluation

• Observable Behaviour: As the Dormant References antipattern results in increas-
ing memory consumption, this antipattern exhibits a striking Memory Consumption
Behaviour.

• Scope of Observation: In order to recognize this antipattern, data has to be
collected in the scope of memory consumption.

• Indicators: A high level indicator for high memory consumption is the memory
footprint of a service request. A memory footprint is defined by the difference be-
tween used memory space before and after a service request:

mf = M(tafter)−M(tbefore) > Tmf (2.15)

Thus, if the memory footprint exceeds a certain threshold Tmf , high memory con-
sumption can be assumed.
If the Dormant References antipattern is the root cause for the Ramp antipattern,
this can be indicated by increasing memory consumption over time:

M(t+ x) > M(t) (2.16)

2.1.3.10. Session as a Data Store Antipattern

Description

The Session as a Data Store antipattern [sap] occurs if sessions are used as a kind of data
store. Misusing sessions as data stores hurts scalability of the software system since ses-
sions become heavy weight objects consuming much memory and hindering the system to
execute many concurrent sessions efficiently. Instead of storing data directly into sessions,
data should be persisted, for example in a database.

Evaluation

• Observable Behaviour: Equivalent to the Dormant References the Session as a
Data Store antipattern results in a striking Memory Consumption Behaviour.

• Scope of Observation: Again, we have to observe the memory consumption scope.

• Indicators: If a session is misused as a data store, the memory consumption in-
creases with a growing number of concurrent service requests / sessions. Thus, we
can presume this antipattern if the memory consumption M is proportional to the
number of concurrent sessions #sessions:

M ∝ #sessions (2.17)

However, if the system runs out of memory, this leads to threshing and an over linear
growth of response times. Thus, a high level indicator for the Session as a Data Store
antipattern is the same as for the More is Less antipattern:

R ∝ Xa; a >> 1 (2.18)

2.1.3.11. The Sisyphus Database Retrieval Performance Antipattern

Description

As mentioned in Section 2.1.3.4, the Sisyphus Database Retrieval Performance antipattern
[DGS02] is a special case of the Ramp antipattern. The Sisyphus antipattern describes a
performance problem which occurs when retrieving an entire set of data from a database
although only a subset is needed. Even though the size of the requested subset is constant
over time, the response times of the requests grow as the size of the base set increases.
The solution to this antipattern is based on advanced search algorithms retrieving only
the required subset. Solutions to this antipattern are described in more detail in [DGS02].
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Evaluation

For detecting the Sisyphus antipattern the detection program would have to know whether
the entire result of a query is used or only a subset. Thus, semantics about the usage of
the query result is required. However, this knowledge is not available.

2.1.3.12. The Circuitous Treasure Hunt Antipattern

Description

The Circuitous Treasure Hunt antipattern [SW00] is an extension of the Stifle antipattern.
While the Stifle antipattern addresses the problem of executing a series of SQL statements
as single database accesses, the Circuitous Treasure Hunt antipattern additionally empha-
sizes the semantic dependency between these individual SQL statements. More precise,
the Circuitous Treasure Hunt antipattern points out the problem of structuring a database
in a way that a block of information can only be retrieved by executing single requests
where one request depends on the result of the previous request. The negative perfor-
mance impact of this antipattern is the same as it is the case with the Stifle antipattern.
In order to solve the Circuitous Treasure Hunt antipattern the database structure has to
be refactored (cf. [SW00]).

Evaluation

Although the Circuitous Treasure Hunt antipattern is related to the Stifle antipattern,
which we think of to be detectable by a measurement-based approach, it is a difficult
task to decide whether a detected Stifle antipattern actually is a Circuitous Treasure
Hunt. The only difference between the Stifle and the Circuitous Treasure Hunt are the
dependencies between single database queries (cf. Section 2.1.3.12). Detecting these de-
pendencies requires either semantic knowledge about the queries content or the ability to
trace information flow. Both issues are beyond the scope of this thesis.

2.1.3.13. The Tower of Babel Antipattern

Description

The Tower of Babel antipattern [SW03a] concerns transformation processes of data rep-
resentations. If two communicating systems use different representations for the same
information, it is necessary to convert one representation to another before data is inter-
changed. The same problem may also occur if two systems have the same data repre-
sentations but the exchange format defers from this representation. Format conversions
are expensive tasks, in particular if data is exchanged often and in significant amounts.
Thus, recurrent transformation steps may impair the system’s performance significantly.
Eliminating unnecessary transformation steps and using the Fast Path pattern [SW03a]
are proper solutions to this antipattern.

Evaluation

In order to detect this antipattern the detection program would have to recognize auto-
matically code fragments where data is transformed to another representation. As there is
no standard code for data transformation, there is an endless number of possible transfor-
mation implementations sharing no common characteristics. Thus, recognizing such code
fragments is not a trivial task and requires semantics about corresponding code fragments,
which is beyond the scope of this thesis.
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2.1.3.14. Unnecessary Processing Antipattern

Description

As the name suggests, the Unnecessary Processing antipattern [SW03b] addresses the
problem of executing program code which is of no use for the actual work or is not needed
at the current processing point. For example, creating a database connection is unnecessary
processing if it is not clear yet, whether the database will be used at all. The database
connection could be created if it is sure that the connection will be of any use. Obviously,
unnecessary processing extends the response times unnecessarily. Solving the Unnecessary
Processing antipattern is case specific and requires code refactorings or restructurings in
the most cases.

Evaluation

The problem to detect Unnecessary Processing is the same as with the Tower of Babel
antipattern. It is not possible to decide automatically whether a code fragment is necessary
or not, as it again requires knowledge about the semantics of the corresponding code
fragment.

2.1.3.15. Excessive Dynamic Allocation Antipattern

Description

The Excessive Dynamic Allocation [SW00] is a quite low level performance antipattern
concerning dynamic allocation of objects. Dynamic allocation is often used to keep a
system flexible as objects are “alive” only for the time window they are really needed.
However, allocating and cleaning up memory space might be expensive if it is done ex-
cessively. Recycling objects and use resource pools [SW00] can be some solutions to this
antipattern.

Evaluation

Under the assumption that a programming language allows only to create objects but
not to destroy them, high memory consumption of a function (memory footprint) seems
to be an indicator for Excessive Dynamic Allocation as it indicates that many (or few
big) objects have been created. However, the memory consumption of a function is not a
reliable indicator for this antipattern. As already mentioned, there is no guarantee that
many objects have been created, it could have been only a few big object, too. Furthermore,
with systems like Java or .Net, there is no guarantee that dynamically created objects have
not been removed from memory by the garbage collector. Thus, the function’s memory
footprint is not sufficient for detecting the Excessive Dynamic Allocation antipattern. We
do not see adequate alternatives to detect this pattern and for that reason we will not
consider this antipattern in the following.

2.1.3.16. Spin Wait Antipattern

Description

The concern of the Spin Wait antipattern [BPSH05] is a multi-threading system where
threads perform active waiting for a condition instead of going to sleep until they are
notified about a state update. Active waiting implies bad performance as threads consume
resources (CPU) although they do not perform any useful work. As mentioned before, it is
more efficient if threads are deactivated (sleeping) while they wait for a condition. Threads
can be notified and requested to resume as soon as the corresponding condition is fulfilled.
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Evaluation

As the Spin Wait antipattern refers to actively waiting threads, for detecting this antipat-
tern it is crucial to distinguish actively waiting threads from working threads. However,
in general, this distinction is not possible. One could argue that active waiting is im-
plemented as an empty loop, however, this is not always the case. For example, active
waiting could also be implemented in a way that certain conditions are calculated in the
loop-body. In such a case, again, knowledge about the code’s semantics is needed in order
to decide whether a loop is an implementation of active waiting. Furthermore, there is
no significant difference in resource utilization between active and active waiting threads.
Hence, these metrics cannot be used for Spin Wait detection, too.

2.1.4. Software Performance Antipatterns at a Glance

In this section, we described sixteen SPAs we found in literature. Ten of them we evaluated
as feasible to detect by measurement-based approaches. We applied the categorization
template to these ten SPAs and summarized the categorization results in Figure 2.6. So
far, we considered each SPA individually. However, some antipatterns show dependencies
among each other while others have several manifestations and different possible root
causes. In order to illustrate these dependencies we depicted the hierarchy of performance
problems in Figure 2.7.
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The left column embraces the high level indicators which are the most abstract performance
problems. The causes for these problems are the single SPAs depicted in the middle
column. SPAs are indicated by more specific indicators visualized as white speech bubbles
in Figure 2.7. The arrows in Figure 2.7 illustrate a “possible cause” relationship. Finally,
the right column embraces possible root causes for the individual SPAs.

2.2. Instrumentation

In this work, we develop a concept for detecting performance antipatterns based on system-
atical measurements. In order to make decisions on the existence of certain antipatterns,
high level measurement data are insufficient. Therefore, we instrument the code of the soft-
ware in order to gather more detailed and meaningful measurement data. In the following,
we give an overview on some concepts, technologies and tools we will use for instrumenting
code.

2.2.1. Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a concept introduced by Kiczales et al. [KLM+97]
for structuring software. While traditional structuring concepts like methods, classes, mod-
ules or components are proper for structuring basic functionality, they are not suitable for
capturing issues concerning several modularization entities (crosscutting concerns). For
instance, with traditional approaches enriching an application with logging information
requires to modify each module, class or method. AOP provides means for encapsulating
crosscutting concerns as aspects for the sake of modularity, and join these aspects with the
functionality entities during execution of the application. Thus, the programmer is able to
specify crosscutting concerns as one entity (aspect) instead of spreading this information
among a large set of functionality entities. In this way, AOP increases the maintainability
and clarity of application code when crosscutting concerns are required.
Several implementations of the AOP concept have been developed for different program-
ming languages, including AspectJ [HH04], the AOP framework for Java. In general
AOP comprises two components: a language for defining aspects and the so called As-
pect Weaver responsible for joining aspects with executable code. The functionality of
the Aspect Weaver is based on three important AOP concepts: join points, pointcuts and
advices. Join points define points in the code where aspects can be woven in. In most AOP
implementations method calls and field accesses are valid join points. Pointcuts are used
by the Aspect Weaver for culling certain join points. Therefore, join points encountered by
the Aspect Weaver are matched against pointcut definitions. For example, if the developer
defines the following pointcut

Listing 2.1: Example for a pointcut

pointcut myPointcut ( ) : ca l l ( void MyClass . do( int ) )

the Aspect Weaver picks out all method calls in the execution flow with the specified
signature. For defining pointcuts, one can use wildcards - for instance, the following
pointcut matches to all public methods returning an integer value:

Listing 2.2: Example for wildcards in a pointcut definition

pointcut anotherPointcut ( ) : ca l l ( public int ∗ . ∗ ( . . ) )

Finally, the developer has to specify the behaviour of an aspect defining an advice. Ad-
vices extend the method concept, as they not only allow to describe a behaviour using
a (high level) programming level (Java in the case of AspectJ), but also provide means
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for defining when to execute the behaviour. There are three advice types differing in the
execution time of the advice behaviour: before advice, after advice and around advice. As
the names suggest, advices can be executed before, after or around a pointcut. Thus the
advice in Listing 2.3 forces the Aspect Weaver to print the message “Calling a method!”
before a method with the given signature is executed.

Listing 2.3: Example for an advice

before ( ) : myPointcut ( ) ){
System . out . p r i n t l n ( ”Ca l l i ng a method ! ” ) ;

}

AspectJ provides two ways of using the Aspect Weaver. Aspects can be woven into the
code either at compilation time or at runtime. The first approach avoids overhead of
weaving at runtime, but is less flexible as the target code has to be recompiled before
using AOP. In AspectJ, dynamic weaving is realised by an agent which injects aspects into
the bytecode when classes are loaded at runtime. This alternative is more flexible, but
entails a higher runtime overhead for aspect weaving.
As code instrumentation is a crosscutting concern, in this work, we will use AOP and tools
based on AOP (e.g. Kieker 2.2.4) for instrumenting code.

2.2.2. Structural Reflection and HotSwap

Standard AOP techniques like AspectJ are statical concepts, as code weaving is performed
during class loading and loaded classes cannot be modified dynamically. The concepts
Structural Reflection [Chi00] and HotSwap [CST03] allow to extend the AOP concept by
the ability to dynamically changing behaviour of classes. In the following we describe
these concepts and explain how they can be used to realize dynamic class modifications
[CST03].
For introspecting data structures the Java language provides the reflection mechanism
which allows to access class members, read class definitions or invoke certain class methods.
However, the Java Reflection API does not allow modifying the behaviour or structure
of classes. Techniques like AOP realize behavioural reflection, which allows to modify
behaviour of certain operations through method call interception, but do not provide means
to alter the class definition. In [Chi00] Chiba et. al introduce a framework called Javassist
which supports structural reflection. This allows to modify data structure definitions,
such as adding class members to a class definition. Therefore, Javassist extends the Java
Reflection API and provides an implementation of structural reflection which does not
depend on modifying existing runtime systems or compilers. Rather, Javassist realizes
structural reflection by altering the bytecode of compiled Java classes before they are
loaded into a Java Virtual Machine (JVM).
In a standard Java application Javassist can be used in two ways. The first alternative is
to use a custom class loader for loading classes. Java allows for defining user class loader
which extend the class ClassLoader. In order to apply structural reflection one could
define and use a class loader similar to the example in Listing 2.4. Before a class X is
actually loaded to the JVM by the methods resolveClass() and defineClass(), the defined
class loader CustomLoader modifies the bytecode using Javassist. Note that all classes
referenced from the class X are loaded by the same class loader on demand. The second
possibility to use Javassist is to use it without a user class loader, but to overwrite the
actual class file after the bytecode has been modified. Then, the standard class loader can
be used for loading the stored class file.

For modifying class definitions Javassist provides meta-classes (CtClass, CtMethod, etc.)
for each real class, method, etc., which represent the bytecode of the target class. The
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Listing 2.4: Example for a custom class loader, (following [Chi00])

class CustomLoader extends ClassLoader {
public Class l oadClas s ( S t r ing name){

byte [ ] bytecode = r e a d C l a s s F i l e (name ) ;
// modify c l a s s d e f i n i t i o n
. . .
return r e s o l v e C l a s s ( d e f i n e C l a s s ( bytecode ) ) ;

}

private byte [ ] r e a d C l a s s F i l e ( S t r ing name){
// read by tecode from c l a s s f i l e

}
}

meta-class provides methods for modifying the target class’ definition by adding class
members or altering method bodies. However, Javassist does not allow to remove class
members as that would change the class type and violate the type safety principle of Java.
For the sake of convenience, the modification methods provided by Javassist abstract from
the actual bytecode, allowing the user to modify class definitions on a high abstraction
level.
To sum up, Javassist enables users to conveniently modify class definitions before they are
loaded into the JVM. However, an important restriction of Javassist is that classes cannot
be modified anymore, as soon as they are loaded into the JVM. In order to overcome
this limitation, in another work [CST03] Chiba et. al combine a concept called HotSwap
with Javassist. Generally, Java does not allow a class to be loaded twice by the same
class loader. Thus, the single way to use a dynamically modified class is to create a new
custom class loader for loading the modified class. In Java classes are identified by the
class identifier plus the class loader which loaded the class. Hence, the same class might
exist several times in a Java program, if it is loaded by different class loaders. In Java
Development Kit (JDK) 1.4 the HotSwap mechanism has been introduced, which is an
extension of the Java Platform Debugger Architecture (JPDA) [jpd]. In debug mode, the
HotSwap mechanism allows to dynamically reload classes as long as no schema changes on
class definitions have been made. While method body modifications are allowed, adding
or removing class members are not. Thus, as long as only method bodies are modified,
using HotSwap allows us to dynamically change and reload classes without having to use
a custom class loader.
In the context of this thesis, we will use Javassist and HotSwap for dynamically change
instrumentation of classes (Chapter 5.2.2).

2.2.3. SIGAR API

The System Information Gatherer (SIGAR) is an API for retrieving general system infor-
mation independent of the underlying operating system. SIGAR is provided by Hyperic
[hyp], a subdivision of vmware [vmw]. SIGAR is used for retrieving general monitoring
data such as memory consumption, cpu utilization, network information, etc. As every
operating system provides this information, the main task of SIGAR is to provide a com-
mon, platform independent interface for accessing this information. Besides the platform
independence, SIGAR provides interfaces for several programming languages like Java,
C# or Perl.
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Listing 2.5: Excerpt from OperationExecutionAspectFull aspect, (cf. [EHJ11])

aspect Operat ionExecut ionAspectFul l {
pointcut a l l O p e r a t i o n s ( ) : execution (∗ ∗ . ∗ ( . . ) ) ;

around ( ) : a l l O p e r a t i o n s ( ){
// measure , use Kieker framework
. . .
proceed ( ) ;
. . .

}
}

2.2.4. Kieker

Kieker ([EHJ11], [kie]) is a framework for monitoring and analysing the runtime behaviour
of complex software applications. In particular, Kieker is suitable for monitoring dis-
tributed software systems. Furthermore, the Kieker framework is quite flexible by pro-
viding several extension points for adapting the framework for custom use. The Kieker
architecture comprises two main components: the monitoring component and the analysis
component (cf. Figure 2.8). While the monitoring component is responsible for gathering

Monitoring

Monitoring 
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Monitoring 
Controller

Monitoring 
Log Writer

Analysis

Monitoring 
Record Consumer

Analysis Controller
Monitoring 
Log Reader

Monitoring 

Record

Figure 2.8.: Kieker architecture, following [kie]

monitoring data, the analysis component uses this data to perform different analyses. The
monitoring component consists of three sub-components. Different types of monitoring
probes are used to capture data at different points in the target system. For instance,
probes might be SIGAR based providing general system information or they might use
AOP for providing tracing information and reveal the internal behaviour. In fact, the mon-
itoring probe component provides extension points allowing the user to implement custom
monitoring probes. Kieker provides two types of monitoring probes which use AOP: Op-
erationExecutionAspectFull and OperationExecutionAspectAnnotation. While the former
intercepts every method call, the latter instruments only methods which are annotated
with a certain annotation. The realization of the OperationExecutionAspectFull is illus-
trated in Listing 2.5. The around advice using the allOperations pointcut intercepts every
method execution in order to monitor the executed methods. In contrast, the annotate-
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Listing 2.6: Excerpt from OperationExecutionAspectAnnotation aspect, (cf. [EHJ11])

aspect OperationExecutionAspectAnnotation {
pointcut annotatedOperat ions ( ) :

execution ( @OperationExecutionMonitoringProbe ∗ ∗ . ∗ ( . . ) ) ;

around ( ) : annotatedOperat ions ( ){
// measure , use Kieker framework
. . .
proceed ( ) ;
. . .

}
}

dOperations pointcut of the OperationExecutionAspectAnnotation aspect is restricted to
methods which are annotated with @OperationExecutionMonitoringProbe (cf. Listing 2.6).
Monitoring probes are coordinated by the monitoring controller which collects measured
data from probes and passes it to the monitoring log writer. Again, there might be different
log writer implementations for persisting monitoring data. For example, Kieker provides
database writer, file system writer, in memory writer and java messaging (JMS) writer.
Monitoring data is persisted by the writers as monitoring records which are created by the
monitoring probes. The monitoring record concept is another extension point where the
user can customize the usage of Kieker. In particular, one can define new records which,
for example, are created by custom monitoring probes. Monitoring records are structured
hierarchically, thus, each monitoring record must be derived from the most top record
“AbstractMonitoringRecord” containing a logging timestamp.
The analysis component is structured symmetrically to the monitoring component. Thus,
for each type of the monitoring log writer Kieker provides a monitoring log reader in order
to read persisted monitoring records. The analysis controller implements a pipe and filter
framework retrieving data from the readers and passing it from one analysis strategy to the
next. Analysis strategies are implemented as plug-ins allowing the user to provide custom
analysis strategies. Kieker provides analysis plug-ins for reconstructing the software archi-
tecture of the monitored system, performing trace analysis and visualizing the monitored
and processed data, for instance in form of call graphs or dependency graphs. Call graphs
and dependency graphs capture the calling behaviour between individual components of
the monitored system and can be used to detect certain patterns. That is particularly
interesting for the performance antipattern detection in this thesis.

2.3. Mathematical Foundations

In this section, we provide mathematical foundations required for the understanding of the
concepts in this thesis. In the following, we focus only on certain mathematical aspects
abstaining from profound explanations. Our descriptions are based on [HEK05], thus, for
more comprehensive explanations we refer to [HEK05].

2.3.1. Central Tendency

In statistics there are different terms describing a central tendency of a sample (x1, x2, . . . , xn).
In the following, we explain the arithmetical mean (also called average) and the median.
For a set of values x1, x2, . . . , xn the arithmetical mean x̄ is defined as:

x̄ =
1

n

n∑
i=1

xi (2.19)
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While the arithmetical mean is susceptible to outliers another central value, the median,
is more stable. The median is a special case of a quantil. For a sorted set of values
x1, x2, . . . , xn, the α-quantil x̃α is a value for which α · 100% of values are smaller or equal
x̃α:

x̃α =

{
xdn·αe , n · α /∈ Z
1
2(xn·α + xn·α+1) , n · α ∈ Z

x1 ≤ x2 ≤ . . . ≤ xn (2.20)

The median x̃ is a 0.5− quantil:

x̃ =

{
xdn

2
e , n odd

1
2(xn

2
+ xn

2
+1) , n even

;x1 ≤ x2 ≤ . . . ≤ xn (2.21)

2.3.2. Measures of Dispersion

For the evaluation of samples, the dispersion is an important aspect. In evaluating statistics
there are different measures for describing dispersion. In the following we describe only
the variance, the standard deviation and the coefficient of variance. Further measures are
described in [HEK05].

One of the most used measures for describing dispersion is the variance. The variance s2

of a sample X = (x1, . . . , xn) is defined as follows:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (2.22)

The square root s of the variance is called standard deviation. An important property of
the standard deviation is the fact that it has the same dimension as the arithmetical mean
x̄ of the sample. The standard deviation is defined as follows:

s =
√
s2 =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (2.23)

The coefficient of variance (COV) is a dimensionless measure, describing the dispersion
of a sample. If x̄ is the mean and s2 is the variance of the sample X = (x1, . . . , xn), the
coefficient of variance for sample X is defined as follows:

COV =

√
s2

x̄
=

√
1

n−1

n∑
i=1

(xi − x̄)2

1
n

n∑
i=1

xi

(2.24)

2.3.3. Comparing two Samples

Often, it is necessary to compare two independent samples. For this purpose, statistical
tests can be used. In this section, we describe the nature of confidence intervals and the
t-test which is a statistical test for comparing the mean values of two independent samples.
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2.3.3.1. Confidence Interval

If X1, . . . , Xn is a sample from a normal distributed random variable X ∈ N(µ, σ2), the
arithmetical mean x̄ is a point estimate for the expected value µ. A confidence interval
(CI) [c1, c2] is an interval estimate for µ:

P (c1 ≤ µ ≤ c2) = 1− α (2.25)

The probability 1 − α that µ lies within the confidence interval is called confidence level.
α is called significance level. If X1, . . . , Xn are identically, normally distributed (Xi ∈
N(µ, σ2)), the mean

X̄ =
1

n

n∑
i=1

Xi (2.26)

is normally distributed, too:

X̄ ∈ N(µ,
σ2

n
) (2.27)

The transformation Z = X̄−µ
σ2

n

∈ N(0, 1) follows a standard normal distribution. For a

random variable Z following a standard normal distribution and a significance level α the
critical value v1−α

2
is known, such that:

P (−v1−α
2
≤ Z ≤ v1−α

2
) = 1− α (2.28)

Substituting Z and solving the equation for µ yields the following:

P (c1 = X̄ − v1−α
2
·
√
σ2

n
≤ µ ≤ X̄ + v1−α

2
·
√
σ2

n
= c2) = 1− α (2.29)

If n ≥ 30, we can estimate σ2 with the empirical variance s2. Thus, we get the confidence
interval [c1, c2] with:

c1 = X̄ − v1−α
2
·
√
s2

n
c2 = X̄ + v1−α

2
·
√
s2

n
(2.30)

If n < 30, σ2 cannot be estimated accurately with s2. However, if ∀i : Xi ∈ N(µ, σ2) then
the transformation

T =
X̄ − µ
s2

n

∈ N(0, 1) (2.31)

is student-t distributed with n− 1 degrees of freedom. In this case, the confidence interval
[c1, c2] is:

c1 = X̄ − t1−α
2
,n−1 ·

√
s2

n
c2 = X̄ + t1−α

2
,n−1 ·

√
s2

n
(2.32)

Whereby, t1−α
2
,n−1 is the critical value of the t-distribution for significance level α and

n− 1 degrees of freedom.

2.3.3.2. T-Test

The t-test utilizes the confidence interval in order to compare two independently normally
distributed samples X = (x1, . . . , xn) and Y = (y1, . . . , ym). In particular, the t-test
checks whether X and Y originate from the same population. If two samples originate
from the same population their expected values µX and µY are equal. The t-test checks
the following null hypothesis H0:

H0 : µX − µY = 0 (2.33)
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The alternative hypothesis is:

H1 : µX − µY 6= 0 (2.34)

Assuming that X and Y are normally distributed, the means X̄, Ȳ and the difference
D̄ = X̄ − Ȳ are normally distributed as well:

X̄ ∈ N(µX ,
σ2
X

n
) Ȳ ∈ N(µY ,

σ2
Y

m
) D̄ ∈ N(µD, σ

2
D) µD = µX − µY (2.35)

For a confidence level α the confidence interval [c1, c2] for D̄ can be calculated. If 0 /∈ [c1, c2]
then µX −µY 6= 0 with a probability of p = (1−α) ·100%. In this case the null hypothesis
H0 can be rejected and the alternative hypothesis H1 applies with a probability p.

2.3.4. Linear Regression

For a two-dimensional sample S = ((x1, y1), . . . , (xn, yn)), it is often desirable to find a
functional dependency between the two dimensions. Regression techniques provide means
for deriving this functional dependency. For our purposes in this thesis, we use linear
regression which provides a function f(x) = y describing a linear dependency between x
and y. Because of measurement errors, the single points of sample S are not located on a
straight. Thus, for each point (xi, yi) we assume the following dependency:

yi = f(xi) + ei (2.36)

Here, f is the regression line and ei the measurement error for the point (xi, yi). We want
to find a regression line y = f(x) = a + bx which minimizes the errors ei = yi − f(xi)
over all sample points (xi, yi). For this purpose, one can use the least squares method.
Thus, our goal is to find values for a and b such that the sum of squared errors SSE is
minimized:

SSE(a, b) =

n∑
i=1

e2
i =

n∑
i=1

(yi − a− bxi)2 !→ min (2.37)

In order to find values a and b minimizing SSE(a, b), we have to determine the partial
derivatives for SSE(a, b) and equate them to zero:

∂SSE(a, b)

∂a
= −2

n∑
i=1

(yi − a− bxi)
!

= 0

∂SSE(a, b)

∂b
= −2

n∑
i=1

(yi − a− bxi) · xi
!

= 0

(2.38)

These two terms define a system of equations. The values for a and b can be determined
by solving this system of equations.

2.4. Foundations on Performance Evaluation

In this section, we introduce some foundations on software performance evaluation which
are important to understand the concepts described in this thesis. In general, there are
two different approaches for performance evaluation: model-based and measurement-based
approaches. In the following, we describe some aspects of both approaches. The descrip-
tions in this section are based on [Lil00]. For further reading and deeper understanding
we recommend [Lil00].
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2.4.1. Performance Modeling

The advantage of model-based approaches is that it can be applied in early development
phases when no runnable artifacts are available. However, performance models have to
be created which are used for evaluation. A wide spread approach for modeling software
performance is based on the Queueing Theory, which is fragmentary described in the
following.

Queueing Networks

An established way to model performance aspects of software systems is to use queuing
networks. For this purpose, resources (processors, disks, network connections, etc.) are
modeled as queues. A queue consists of a waiting line and one or more servers. Servers
are intended to process requests. Each server can process only one system request at a
time. Other requests acquiring the same server have to wait in the waiting line of the
corresponding queue. Servers and queues can form a complex network whose connectors
describe the transition probabilities from one server to another. Figure 2.9 depicts an
exemplary queueing network for an environment comprising a load balancer, a set of
application servers and a database.
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Application 
Server 1

Application 
Server 2

Application 
Server 3
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p6
Database

Waiting 
Line
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Figure 2.9.: Example for a queueing network

In the following, we list some important definitions concerning the description of queuing
networks:

• The arrival rate λ is the number of requests which arrive per unit of time at the
system or a single queue.

• The throughput X is the number of requests which are completed per unit of time.

• The service time S is the average time a server needs to service a request.

• The response time R is the service time plus the time the corresponding requests is
waiting in the queue.

• A system is in steady state if considered over a long period of time the following
applies: X ≈ λ. For a system which is not in a steady state, the arrival rate is
higher than the throughput. In this case, the system is overloaded and the queue
length grows infinitely.

• An active resource has a finite speed and processes requests. CPUs, hard disks,
network connections, etc. are active resources.

• A passive resource does not perform any work itself, however it is required for the
execution of a request. Typical passive resources are software threads, connection
pools, software locks, etc.
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Workload

Queuing networks can be solved either analytically or by simulation. Both approaches
require a specification of the workload for the examined system. A workload can comprise
one or more workload classes. A workload class represents a certain group of system
requests. Each workload class is specified by a workload type, a workload intensity and for
each queue in the system a service demand. There are two possible types of workload: open
workload and closed workload. The workload intensity of an open workload is specified
by the arrival rate λ. Open workloads can bring the system to an unsteady state if the
arrival rate is too high. If the arrival rate is permanently higher than the throughput of
the queueing network, the queue length grows steadily bringing the system in an unsteady
state. Thus, with an open workload the number of concurrent requests in the system
is not limited. A closed workload is specified by a fixed population size. The workload
intensity is determined by a number of concurrent users and a think time. The think time
describes for each user how long the user waits after completion of a request before he
places a new request. Systems under a closed workload are inherently in a steady-state as
the system population is limited. Thus, with a closed workload the arrival rate λ equals
the throughput X.

Little’s Law

Operational Analysis is a disciple which describes the relationships between certain metrics
of a system in operation. Operational Analysis comprises some laws which describe these
relationships. Little’s Law is one of the most important laws. This law describes the
relationship between throughput X, system population N and the response time R of
any system which is in a steady state. This law can be applied without knowing the
internals of a system. If for any system in a steady state the mean throughput is X and
the mean response time of requests is R, then the following applies for the mean number
of concurrent requests in the system:

N = R ·X (2.39)

2.4.2. Measurement-Based Performance Evaluation

As model-based performance evaluation is based on abstractions, in general, model-based
performance evaluation approaches are less accurate than measurement-based approaches.
Measurement experiments are the core of measurement-based performance evaluation ap-
proaches. Data captured during measurements is used to derive performance metrics which
serve for evaluation of the performance behaviour of the examined software systems. Per-
formance metrics depend on input parameters which describe the system state and usage
behaviour of the system under test during measurements. Let P = (P1, . . . , Pn) be the set
of input parameters describing the configuration of the system and the usage behaviour.
An experiment is defined by a configuration vector V i = (V i

1 , . . . , V
i
n) of values for P and

a set Q = (Q1, . . . , Qk) of parameters for which observations are taken. In order to in-
crease the accuracy of measurements, experiments should be repeated several times. An
experiment series is a set of m experiments with different configurations V 1, . . . , V m for
P capturing data for the same observation parameters Q1, . . . , Qk. Thus, the result of
an experiment series is a discrete relation r(P ) describing the dependency between input
values for P and observation values for Q. Often, regression techniques are used to derive
a functional dependency (called Performance Curve [WHW12]) between P and Q. Mea-
surement results can be used for many different purposes like bottleneck analysis, capacity
planing, performance problem detection and others.

30



2.5. Software Performance Cockpit 31

2.5. Software Performance Cockpit

Similar to the Kieker framework (cf. Section 2.2.4), the Software Performance Cockpit
(SoPeCo) [WHHH10] is an approach and tool for software performance evaluation. Unlike
the Kieker framework which is used for monitoring software systems during operation,
SoPeCo is intended for conducting systematic measurement experiments in order to cap-
ture the performance behaviour of a software system using goal-oriented measurements.
In particular, SoPeCo can be used for evaluating the performance of distributed systems.
Originally, SoPeCo was designed for measuring the performance of target systems in order
to infer mathematical models (Performance Curves [HWSK10], [WHW12]) of the system’s
performance behaviour. However, currently, extensions for SoPeCo are being developed,
e.g., that execute and analyse JUnit performance regressions [Heg12] or antipattern detec-
tion in the context of this thesis. As the SoPeCo architecture allows for deploying the main
measurement control part on a dedicated Measurement Control Node (cf. Figure 2.10),
the SoPeCo influences the performance of the target system only to a little degree. In
Figure 2.10, the architecture of the Software Performance Cockpit is depicted. In general,
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Figure 2.10.: Architecture of the Software Performance Cockpit

the SoPeCo system can be distributed among one Measurement Control Node and several
system under test (SUT) nodes. While the main part of the SoPeCo framework can be
deployed on a dedicated node, one needs to deploy lightweight satellites on SUT nodes in
order to capture measurement data on these nodes. The MainController is responsible for
coordinating the overall process. Furthermore, the MainController sets up the measure-
ment environment by interpreting the measurement configuration model provided by the
performance analyst. The measurement configuration model allows the performance ana-
lyst to specify the resource environment, define experiments and experiment series, select
strategies for exploring the parameter space as well as analysis and export strategies.
In the first step, the MainController utilizes the ExperimentSeriesController for coordinat-
ing the execution of all experiment series. The ExperimentSeriesController configures the
measurement environment, prepares all measurement components for experiment execu-

31



32 2. Fundamentals

tion and finally uses the ExplorationController for exploring the specified parameter space
triggering single experiments. As the SUT might be distributed among several nodes, each
node contains a SatelliteController instance responsible for gathering measurement data
on the according node. The ExperimentSeriesController utilizes the ExperimentController
for conducing single experiments. Therefore, the ExperimentController coordinates the
interaction between individual satellites and correlates measurement data provided by the
satellites after experiment execution. Finally, measurement data is passed to the Persis-
tence component responsible for storing data and making it available for further process-
ing. Considering the SUT nodes (cf. Figure 2.10), one can see that a SatelliteController
uses SoftwareAdapters for accessing the actual SUT. As SoftwareAdapters are software
components responsible for invoking the SUT and gathering certain performance metrics,
they have to be provided by the performance analyst (or domain expert). In general, one
can define several SoftwareAdapters per SatelliteController, each responsible for collecting
metrics concerning different performance aspects. For example, consider the SUT Node B
in Figure 2.10. There, the SatelliteController comprises two SoftwareAdapters gathering
different measurement data. While the left SoftwareAdapter instruments the target ap-
plication (SUT) measuring metrics like response time, the right SoftwareAdapter accesses
the operating system (OS) in order to retrieve general metrics like resource utilization.
Besides the measurement execution, another important step in the SoPeCo overall process
is the analysis phase. The Analysis component serves for inferring Performance Curves
from measurement data. Therefore, SoPeCo provides a set of different analysis strategies,
for instance Linear Regression, MARS [CW00], Kriging [OW90] or Genetic Programming
[FH12]. Based on measurement data retrieved from the Persistence Layer, the Analysis
component calculates a curve. For exporting measurement data or inferred curves, the
MainController utilizes the ExportController which allows for generating CSV or image
files. Furthermore, the performance analyst can use the Visualisation component for in-
teractive analysis of measured data.
In the scope of this thesis, we will extend the Software Performance Cockpit concept by
the ability to detect performance antipatterns in target software systems.
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3. Related Work And Contribution

In this chapter, we give an overview of recent work on performance engineering, design
patterns and antipatterns, as well as antipattern detection techniques. In the second part,
we describe the contribution of this thesis and differentiate our concepts from related work.

3.1. Related Work

Koziolek [Koz10] provides a survey on software performance evaluation for component-
based software systems. His survey comprises both model-based as well as measurement-
based performance evaluation approaches. Some research have been made in modeling
software systems based on observation of measurement data ([HWSK10], [WVCB01],
[PVRS95], [SKK+01] and [XH96]).
While software patterns have been investigated for many years ([GHJV93], [YB98], [AZ05],
[Mes96], [PS97], [RCS08], [BHS07]) research in the field of antipatterns is relatively young.
Software antipatterns have been defined for different contexts. Hallal et al. [HAT+04]
define antipatterns concerning Java-based multi-thread systems. Information security an-
tipatterns are introduced in [Kis02]. Dudney et al. [DAKW03] describe technology specific
antipatterns related to J2EE systems.
Smith and Williams ([SW00], [SW02b], [SW03b] and [SW03a]) define and describe a set of
performance antipatterns which are independent of any technology. In their articles, the
authors describe 10 antipatterns in detail, explain the symptoms and propose solutions
for each antipattern. Much of later research articles in the context of technology indepen-
dent performance antipatterns are based on the work of Smith and Williams. Smaalders
[Sma06] describes some recurring performance problems (antipatterns) experienced at Sun
Microsystems during the refactoring process of the Solaris operation system.
Patterns and antipatterns definitions themselves are of little use as long as they are not
used for designing and analysing software architectures. While design patterns can be
used relatively straight forward during the software design process, antipatterns serve as
a feedback concept indicating flaws in present design models or implementations. Thus,
antipattern detection is crucial for practical use of antipatterns. However, detecting pat-
terns in existing software fragments might be of high use, too, especially in the context
of re-engineering and refactoring legacy systems. Heuzeroth et al. [HHHL03] apply static
and dynamic code analysis in order to detect patterns in legacy code. For statical analysis,
an attributed abstract syntax tree (AST) is generated. Heuzeroth et al. define patterns
as relations over the AST and compare the AST with a list of relations in order to iden-
tify a set of pattern candidates. In the second step, the candidates are monitored during
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execution checking for dynamic pattern rule violations. Candidates, which do not violate
pattern rules represent detected patterns. In a similar way, Antoniol et al. [AFC98] apply
statical analysis to ASTs in order to detect patterns in object oriented software.
While many patterns can be detected by statical structure analysis, discovering perfor-
mance antipatterns is mostly based on detecting symptoms characterizing certain an-
tipatterns. Cortellessa et al. [CMR10] introduce a process for identifying antipatterns
which actually negatively affect the performance of the considered system. Therefore,
detected antipatterns are compared with violated requirements in order to select ’guilty’
antipatterns. As only ’guilty’ antipatterns are detected, this process reduces the effort for
refactoring the design. In another work, Cortellessa et al. [CME10] introduce a concept
for UML-based detection of technology independent performance antipatterns. For this
purpose, the UML software design model is annotated with performance properties using
the UML MARTE profile. The next step is a transformation of the annotated UML model
to a performance model in form of a Queueing Network (QN). The QN is then solved us-
ing standard analysis methods like Mean Value Analysis (MVA) in order to derive service
quality (QoS) attributes like response time, utilization and throughput. Cortellessa et al.
formalize antipatterns as a set of OCL rules encoding antipattern symptoms as formal
OCL conditions. The computed QoS attributes are checked against the OCL conditions
in order to detect antipatterns. Xu [Xu09] uses Layered Queuing Networks (LQN) as per-
formance models in order to differentiate between design flaws and configuration (resource
allocation) flaws during antipattern detection. However, according to Cortellessa et al.
[CME10], using LQNs as performance models restricts the amount of possible refactoring
solutions during the transformation of performance attributes back to the design model.
While the concept of Cortellessa et al. is based on UML models, Trubiani and Koziolek
[TK11] describe a method for detecting technology independent performance antipatterns
in software system models specified using the Palladio modelling language. Trubiani and
Koziolek define a set of rules characterizing different antipatterns. Similar to the concepts
of Cortellessa et al. and Xu, the Palladio software design model is checked statically against
the defined rules for antipattern detection. The Palladio modelling language provides mod-
eling elements for performance properties, allowing the user to consider the system design
from a performance perspective.
The antipattern detection concepts of Cortellessa et al., Xu and Trubiani et al. are (partly)
based on software design models. Parsons et al. [PM08] introduce a measurement-based
antipattern detection concept. However, their concept is restricted to component based
Java Enterprise Edition (JEE) software systems. Parsons et al. introduce the Performance
Antipattern Detection (PAD) tool comprising three components. The Monitoring com-
ponent is responsible for capturing and gathering run-time data, such as run-time paths,
resource info and component meta-data. This data is then used by the Advanced Data
Analysis component to reconstruct a run-time design model. Using a set of antipattern
rules the Rule Engine component analyses the run-time design model in order to detect
JEE specific performance antipatterns. Compared to the concept proposed in this thesis,
the approach of Parsons et al. is based on monitoring of systems in operation rather than
systematic measurement experiments.
In the mid-nineties Miller et al. [MCC+95] introduced a tool named Paradyn. Instead of
detecting performance antipatterns, Paradyn searches fully automated for general perfor-
mance problems. In particular, Paradyn focuses on evaluating parallel and distributed,
long-running software. In order to realize fully automated problem detection, Miller et al.
apply two essential concepts. The first is a dynamic instrumentation concept allowing to
modify the instrumentation during execution time. Secondly, for guidance of the Paradyn
process Miller et al. define a hierarchical model called W 3 Search Model. The W 3 Search
Model comprises three dimensions: why, where and when. The why dimension addresses
the problem of detecting the existence of a performance problem. The where dimension
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is used to locate the resource where the performance problem occurs. Finally, the when
dimension is used to constrict the time interval of the problem’s occurrence. Both, the
why and the where dimensions exhibit a hierarchical structure. Searching along the why
dimension is done by traversing a hypothesis hierarchy. Whereby, the most top hypothe-
sis represents the most general reason for the considered performance problem, becoming
more specific when digging deeper into the hierarchy. For each hypothesis Miller et al.
define tests used to evaluate measurement data against the hypotheses. The where dimen-
sion is structured in a similar hierarchical way. Miller et al. organize resources (system
nodes, synchronization objects, disks, CPUs, etc.) in a hierarchical structure. Isolating
performance considerations to certain groups of resources allows to find the actual re-
source where the problem occurs. When traversing these dimension Paradyn adapts the
instrumentation of the target system in order to collect only data required for the current
performance considerations. As Miller et al. use dynamic instrumentation, the Paradyn
tool provides an elegant concept for automating the search for performance problems.
However, the Paradyn tool is based on monitoring rather than executing systematic mea-
surement experiments. Therefore, the Paradyn tool is limited by the assumption that the
target system is running long enough to observe all relevant performance cases.

3.2. Contribution

In this section, we explain the contribution of this thesis and differentiate it from the re-
lated work described in the previous section.
In this thesis, we introduce a measurement-based detection approach for software per-
formance antipatterns. Based on the idea of systematic measurement experiments, we
develop an adaptive measurement approach which reduces the monitoring overhead and
increases the efficiency of the detection process. For some selected antipatterns we inves-
tigate different experiment execution and data analysis techniques in order to find best
suited concepts to detect the considered antipatterns. Finally, we evaluate the described
approach on an official benchmark scenario showing the effectiveness of the described ap-
proach.
While in [HHHL03] and [AFC98] common design patterns are extracted form existing
systems, we detect performance related antipatterns. When performance antipatterns are
detected through statical code or model analysis ([CME10] and [TK11]) there is no guar-
antee that the detected antipatterns actually impair the performance. Therefore, concepts
are needed to rank detected antipatterns and find “guilty” antipatterns as proposed in
[CMR10]. Moreover, it is difficult to discover performance antipatterns through statical
analysis as performance is a dynamic property of a software system. As our approach is
based on measurements, the performance antipatterns detected by our approach inher-
ently impair the performance of the examined software system. Thus, the probability to
find false positives (“non-guilty” performance antipatterns) is quite low. Although [PM08]
and [MCC+95] are measurement-based approaches, they utilize monitoring for gathering
measurement data. Thus, the amount of detected antipatterns depends on the actual
workload. As we apply systematic measurement experiments, we are able to control the
search process and the workload submitted to the examined software system during mea-
surements. In this way, antipatterns can be detected more effectively. While it is difficult
to derive refactoring solutions when detecting performance antipatterns based on perfor-
mance models ([Xu09]), through systematic measurement experiments it is possible to
search for the actual root causes of detected performance problems.
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In this chapter, we describe our systematic, measurement-based approach for automatically
detecting software performance antipatterns during development. For general understand-
ing, in Section 4.1, we first present the general idea and motivation for automatically
detecting performance antipatterns during the development phase. In particular, we illus-
trate the benefits for the software development process and software quality. In Section
4.2, we consider different measurement approaches. Extending and applying the Dynamic
Instrumentation approach from [MCC+95], we develop and describe the Adaptive Mea-
surement approach. Moreover, we derive an overall process model from the adaptive
measurement approach. In Section 4.3, we integrate this process with the Antipattern De-
tection Architecture, a software architecture based on the SoPeCo framework (cf. Section
2.5). Finally, in Section 4.4, we meet some assumptions which serve as little simplifications
for the realization of the proposed detection concept.

4.1. Big Picture On The Antipattern Detection Approach

In the following, we present the idea behind our antipattern detection approach. In contrast
to many other approaches working on system and performance models, with our approach
we focus on detecting performance antipatterns in existing software systems. This in-
cludes, in particular, software systems under development. In this way, our approach aims
to support developers and architects to build high quality software with regard to software
performance. In particular, the main goal of our antipattern detection approach is to pro-
vide valuable performance feedback to developers and architects indicating performance
problems introduced during development or designing. As refactoring and restructuring
software can become expensive and time-consuming tasks if they are dealt with lately, it
is important to provide feedback as early as possible. Thus, instead of monitoring a fully
developed software system during operation, our approach is based on systematic mea-
surement experiments which are conducted periodically during development. If developers
and architects are informed about performance problems and their causes during an early
development phase, they are able to fix that problems with little effort and low costs.
Due to its complexity and effort, performance evaluation is omitted in many development
projects. The automation of performance evaluation tasks and, in particular, antipattern
detection can overcome this problem. Following this idea, the SoPeCo framework (cf. Sec-
tion 2.5) provides means for performing systematic experiments on (distributed) software
systems and enables the automated execution of measurements. Based on SoPeCo, we
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develop analyses of measurement data, which automatically decide whether certain an-
tipatterns are present in the system under test.
In Figure 4.1, we depicted the antipattern detection process integrated with the software
development task. The result of each development iteration is a partly completed software
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Figure 4.1.: Antipattern detection integrated with development

system which can be evaluated with regard to performance. For this purpose, the devel-
oper has to provide measurement specifications. In particular, these are an environment
specification describing the distribution of the software system under test (SUT), an usage
specification describing the typical workload for the SUT, and finally, additional context
information required for analysis. Then, these specifications are used to perform antipat-
tern detection. While the tasks Development and providing Measurement Specifications
are conducted by the developer himself, the antipattern detection is a fully automated
task which can be executed for example during a nightly build. Performance antipattern
detection includes gathering data about performance and dynamic behaviour of the SUT
while it is executed, and analyzing this data in order to detect possible performance an-
tipatterns. The result of the performance antipattern detection task serves as performance
feedback to the developer. For a valuable feedback two things are important. Firstly, the
performance antipattern detection should provide hints on which performance antipatterns
occur. Secondly, the performance feedback can provide additional value by indicating the
root causes for each antipattern. Thus, the antipattern detection task is logically divided
into two main sub-tasks: detecting the occurrence of certain antipatterns and finding the
root causes for these antipatterns. Providing this information to the developer, the au-
tomatic antipattern detection task decreases the required effort for the developer to find
performance lacks.
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4.2. The Adaptive Measurement Approach

As suggested in the previous section, detecting SPAs and their root causes includes mea-
suring and analyzing measurement data. While analysis approaches have to be designed
individually for each antipattern, defining the measurement approach is a rather generic
task. In general, two different measurement approaches are possible.
We call the first alternative general monitoring, which is a quite general measurement
approach. Applying general monitoring means gathering all data of interest while the
system is set under a random or statistically specified workload. A statistically specified
workload should simulate the real usage behaviour of the target system. Applying this
measurement approach for software performance antipattern (SPA) detection implicates
that all data required for detecting all SPAs has to be gathered during one measurement
run. The simplicity of gathering data is an advantage of this approach as no filtering or
preprocessing is required. Furthermore, the general monitoring approach implies a quite
simple overall process. As all required data is gathered during one measurement run, this
measurement approach allows to divide the antipattern detection task into two separated
sub-tasks: measure and analyze. The resulting overall process is depicted in Figure 4.2.
It is a sequential process consisting of three parts. Firstly, the system under test is fully
instrumented in order to gather all required data. The second part comprises execution
and monitoring of the system under test. Finally, the measured data is analyzed in order
to detect performance antipatterns. However, gathering all required data for all SPAs
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Figure 4.2.: Overall process applying general monitoring approach

results in a huge amount of unfiltered data. This circumstance complicates the analyses of
measured data. Besides the huge amount of data, a high measurement overhead distorting
the measurement results (cf. Section 5.1) is the second disadvantage of this approach.
High overhead is caused by excessive data gathering implicated by the general monitoring
approach. While the former problem affects only the performance of the analysis phase,
the second disadvantage of this measurement approach affects the accuracy of the analysis
results. Due to these disadvantages this measurement approach is not applicable for SPA
detection.
The second alternative, the adaptive measurement approach, is based on systematic mea-
surements. In order to overcome the problems of the first approach we execute target-
oriented measurements for each aspect we want to examine. With target-oriented mea-
surement experiments we are able to specify for each aspect to be examined the input
and workload parameters for the system under test and define which observation data
we are interested in. Thus, we gain more control and systematics over the measurement
experiments. Due to selective, target-oriented data gathering, this approach allows us to
reduce the amount of data and the overhead for gathering this data (cf. Chapter 5.2).
Iteratively performing target-oriented measurements for each SPA we want to examine
is a simple way to apply this target-oriented measurement approach to SPA detection.
However, such an application of target-oriented measurements is rather time-consuming
as advanced experiments and analyses have to be performed for each antipattern. Instead,
we utilize common characteristics and dependencies of SPAs (cf. Chapter 2.1) for applying
target-oriented measurements in an adaptive and systematic way. For this purpose, we
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use a hierarchical approach similar to the approach presented in [MCC+95]. Instead of
executing experiments on a high detail level for each known antipattern, we start with
executing generic, high-level experiments. The results of the high-level experiments are
analyzed and used to decide how to continue. Generally speaking, we use a decision tree
as procedure model for antipattern detection. In Figure 4.3, a simple example for a deci-
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Figure 4.3.: Example for a decision tree

sion tree is depicted. At the most top level, we measure general performance metrics we
use to derive the first decision. For instance, if we discover that service response times
vary greatly but the database overhead is quite low, we do not examine database related
antipatterns. Rather, we analyze more precisely antipatterns based on greatly varying
response times. For this purpose, we execute more detailed experiments. For instance, we
could measure the response times under systematical variation of the workload in order to
detect over linear growth of response times. Applying this hierarchical approach, we can
avoid the effort for examining antipatterns which can be excluded at a high abstraction
level. For instance, there is no need to analyze database related performance antipatterns,
if no database overhead could be detected with a high-level experiment. The hierarchy
depicted in Figure 2.7 (Chapter 2.1.4) is a potential decision tree for SPA detection.
The overall process resulting from the adaptive measurement approach (depicted in Fig-
ure 4.4) is more complex than the sequential process (cf. Figure 4.2). As input we need
a decision tree guiding the overall process. Based on the decision tree and the analysis
results from previous examined aspects the next aspect to be examined is selected. The
selection is performed similarly to the example in Figure 4.3. As long as further aspects
can be selected, the next aspect is examined individually. For this purpose, the SUT is
instrumented specifically for the considered aspect in order to enable selective, target-
oriented data gathering. In contrast, the instrumentation task of Figure 4.2 instruments
the SUT completely rather than selectively. Then, a series of measurement experiments
with different workload parameters is executed. The workload is varied until the input
parameter space is fully explored. Finally, measurement data is passed to the analysis
for evaluation of the considered performance aspect. Applying the adaptive measurement
approach allows us not only to reduce the measurement overhead for higher accuracy of
detection results (cf. Section 5.2), but increases the efficiency of the SPA detection process.
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4.3. Antipattern Detection Architecture and Process

Up to now, we considered antipattern detection from the measurement and procedural
point of view. In this section, we introduce the general antipattern detection architecture
and integrate it with the detection process described in the previous section (cf. Figure
4.4).
As mentioned in Section 4.1, we extend the SoPeCo (cf. Chapter 2.5) framework in or-
der to realize the measurement-based antipattern detection approach. Consequently, the
architecture for SPA detection (cf. Figure 4.5) exhibits some similarities to the SoPeCo
architecture described in Section 2.5. In particular, we separate the experiment execution
and analysis components from the system under test by defining a dedicated Measure-
ment Control Node for experiment coordination and analysis tasks. The overall process
for antipattern detection is coordinated by the APD MainController which gets two ar-
tifacts as input. The first artifact is a Performance Problem Model serving, inter alia, as
a decision tree (cf. Section 4.2) for the coordination of the overall process. As the SUT
might be distributed among several system nodes, the second artifact is an Environment
Specification describing the resource environment of the SUT. The main task of the APD
MainController is to traverse the performance problem model and to decide for each con-
sidered performance problem whether it has to be examined or not. With this component
we realize the coordination of the adaptive approach described in Section 4.2. Thus, a per-
formance problem is examined only when its hierarchical predecessors could be detected
(cf. Figure 4.3). Besides the decision tree, the Performance Problem Model defines for
each performance problem a specific Detection Component. A Detection Component is
responsible for investigating one specific performance problem, performance antipattern
respectively. For this purpose, a Detection Component comprises at minimum four sub-
components. The Detection Controller is triggered by the APD MainController and is
responsible for coordinating the antipattern specific detection and root cause analysis pro-
cesses. The Instrumentation component encapsulates antipattern specific knowledge about
instrumenting the SUT for capturing required measurement data. Thus, the Instrumen-
tation component is used to inject antipattern specific measurement probes into the SUT
(cf. Section 5). As different SPAs require different workload variations to be detected
by analyzing measurement data, each Detection Component contains a Load Variation
sub-component. A Load Variation component creates an experiment series configuration
and passes it to SoPeCo for experiment execution. In order to reduce disturbing influences
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Figure 4.5.: General antipattern detection architecture

on the load driver, the LoadDriver component can be deployed on a separate node. The
Detection Controller utilizes the SoPeCo for experiment execution and data gathering. In
particular, SoPeCo triggers the LoadDriver to generate a workload varying it systemati-
cally according to the passed experiment series configuration. The workload generated by
the LoadDriver accesses the SUT through an UsageAdapter component which simulates a
typical usage profile for the SUT. During experiment execution, Software Adapters collect
measurement data. When experiments are finished, the SoPeCo gathers measurements
from all SatelliteControllers and persists it. For detection and root cause analysis, the De-
tection Component contains an Analysis component. The Analysis component retrieves
measurement data from SoPeCo, evaluates the data and decides whether an antipattern
has been detected, a root cause found respectively.
This architecture abstracts from antipattern specific aspects and, thus, provides extension
points for antipatterns defined in the future. In order to enrich antipattern detection by a
new performance antipattern, one has to provide two artifacts. Firstly, the Performance
Problem Model has to be extended. Secondly, an additional Detection Component for
that new antipattern has to be provided according to the architectural template. In or-
der to illustrate the interaction between these components, we refined the process from
previous section (cf. Figure 4.4) and integrated it with the described architecture. The
result is depicted in Figure 4.6 and Figure 4.7. Based on the performance problem model,
the APD MainController guides the overall antipattern detection process. In particular,
the APD MainController selects the next performance problem in the hierarchy to be ex-
amined. Then, the APD MainController delegates the detection task to the antipattern
specific Detection Component. Firstly, the Detection Component uses the Instrumentation
sub-component to inject probes into the SUT. The second step of the detection task is the
creation of an experiment series configuration which is used by the experiment components
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for experiment execution. The experiment execution sub-process is depicted in Figure 4.7.
The SoPeCo starts an experiment series according to the passed experiment series con-
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Figure 4.7.: Experiment Execution Sub-Process

figuration. During experiment execution, the LoadDriver generates a workload while the
Satellites take measurements. When the experiment series is finished, the SoPeCo gathers
measurement data from all Satellites and persists the data. After experiment execution
the Detection Component triggers the analysis of measurement data. If the considered an-
tipattern or performance problem could be detected by the analysis task, then the process
starts the root cause analysis phase, otherwise, the process returns to the selection of the
next problem to be examined. The sub-process of the root cause analysis phase is similar
to the one of antipattern detection. However, instrumentation and load variation have to
be adapted. The root cause analysis sub-process is repeated until a root cause could be
found or another limiting factor, like analysis time restrictions, has been reached. When
root cause analysis is finished, the process proceeds with problem selection. This process
is repeated until the APD MainController cannot find further performance problems to be
examined.
To sum up, we have two aspects, which contribute to a systematic and efficient search
for antipatterns. Firstly, the overall process is guided by the APD MainController which
decides for each antipattern whether it is reasonable to investigate the SUT with re-
gards to presence of the considered antipattern. As this decision is based on previous
measurements, the performance problem hierarchy can be utilized to avoid unnecessary
investigations. Secondly, experiments and analyses to find the root cause of an antipat-
tern are executed only when the according antipattern could be detected. Thus, with this
two aspects, we increase the efficiency of the antipattern detection approach by avoiding
unnecessary experiments.
In this section, we introduced the general architecture of our antipattern detection ap-
proach and described the antipattern detection process. In order to be able to detect
specific antipatterns, we have to provide antipattern specific Detection Components. In
Chapter 6, we investigate each antipattern individually and develop for each antipattern a
detection and root cause analysis approach which suits best for the considered antipattern.
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4.4. General Assumptions

In this section, we introduce some important assumptions on which we base our work and
which apply for all antipattern considerations. We meet these assumptions in order to
reduce the scope of this thesis. However, these assumptions should not limit the applica-
bility of the described detection concept. Moreover, abandoning these assumptions is an
issue for future work.

4.4.1. Monitoring Overhead

In Section 4.2, we introduced a measurement approach which minimizes the monitoring
overhead during experiment execution. Nevertheless, measurements are always paired with
a monitoring overhead. However, the overhead is quite low when applying the adaptive
measurement approach. Thus, we assume that the overhead does not affect measurement
data analysis decisively. In the following, we will neglect the monitoring overhead.

4.4.2. Knowledge About Usage

As our antipattern detection is based on systematic measurement experiments, we need
information about the usage profile of the target system. In our work, we assume that
this information is available to the developer or a domain expert. In particular, we assume
that the developer is able to specify a typical usage profile in form of a script or a usage
model. We use that usage profile for generating load on the target system.

4.4.3. No Disturbing Sources

For experiment execution we presume, that the SUT is executed in an isolated environment.
In particular, we expect that no disturbing sources exist, like other running applications
or services which might influence the performance of the SUT. With this assumption we
assure that effects observed in measurement data are caused by the SUT, not by the
environment.

4.4.4. Fixed Environment

Recent technologies like Cloud Computing [MG11] allow to keep software performance on
a high level by adopting the amount of physical or virtual resources to the workload and
system state. The ability to adopt the environment to the current workload situation is
called elasticity [MG11]. In order to analyze the performance of such systems one has to
examine not only the software state but also the state of the environment and underlying
resources. However, in this work we consider only software and abstract from the underly-
ing resources. Therefore, we have to assume that physical and logical environment is fixed
for the time of observation. The following example shows the importance of this assump-
tion. Imagine an application whose performance decreases over time in an environment
with fixed resources In a fixed environment, we are able to detect this decreasing behaviour
solely by measuring the software performance. However, if we put this application into
an elastic environment, the software performance can be kept constant through adding
resources. Thus, we are not able to detect the decreasing performance behaviour anymore,
without analyzing the state of the environment.

4.4.5. Standard Technologies

In order to detect performance antipattern through measurements, data from different
sources is required. These sources might be certain interfaces or services, like database
interfaces, messaging services, etc. For simplicity, in our work we assume that certain
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standards are used. Firstly, we analyze only programs written in Java. Secondly, we
assume, that the Java Database Connectivity (JDBC) interface [RO00] is used for accessing
databases and the Java Messaging Service (JMS) is used for messaging. Furthermore,
we assume that multi-threading systems use a thread pool for managing threads. As
implementing antipattern detection for all programming languages and possible standards
is beyond the scope of this thesis, this assumption serves as a small simplification. However,
this assumption does not limit the applicability of the approaches introduced in this thesis.
Moreover, we presume that with some adoptions the approaches described in this thesis
are applicable to other languages and standards in a similar way.

4.4.6. Byte Code Analysis

Some antipatterns can be detected purely by analysing measurement data which has been
captured at system boundaries considering the system under test as a black-box. How-
ever, for the most antipatterns such measurement data is insufficient. In particular, root
cause analysis depends on the ability to capture measurement data from the internal of
a system under test. For this purpose, we use techniques like byte code analysis in order
to perform detailed instrumentation of the system under test. Therefore, we assume that
such techniques are applicable on the system under test.

4.5. Summary

In this chapter, we introduced our idea and approach for detecting software performance
antipatterns. Firstly, we described the performance feedback mechanism which is the main
motivation for detecting SPAs during development. Secondly, we considered two different
measurement approaches. Because of low measurement overhead and increased efficiency,
the adaptive measurement approach emerged to be the best alternative for SPA detection.
The adaptive measurement approach is based on a hierarchical measurement and decision
process stepwise approaching the specific antipattern responsible for a performance prob-
lem. Based on the measurement approach, we introduced the overall process for detecting
SPAs. Extending the architecture of the SoPeCo framework, we designed the architecture
for SPA detection. On top of SoPeCo, we created an antipattern detection layer com-
prising a main controller and a set of detection components. While the main controller is
responsible for coordinating the overall process the detection components are antipattern
specific detection entities utilizing SoPeCo for experiment execution. We integrated the
overall detection process with the described architecture. Finally, we introduced some
generic assumptions we use in this thesis.
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In Chapter 4.2, we described two different approaches (general monitoring and adaptive
measurements) for executing measurements. A measurement approach is tightly coupled
with a proper instrumentation technique. An instrumentation technique describes the
process and rules for placing monitoring probes into the code of the system under test.
Monitoring probes are code injections responsible for tapping performance data. In this
chapter, we consider for both measurement approaches possible instrumentation techniques
and implementations. Firstly, we introduce the full instrumentation technique which is
tightly coupled with the general monitoring approach. In particular, as mentioned in
Chapter 4.2, we demonstrate the impact on the measurement overhead caused by this
approach. Then, we consider two possible implementations for dynamic instrumentation
which is the instrumentation technique required by the adaptive measurement approach.

5.1. Full Instrumentation

As mentioned in Section 4.2 the general monitoring approach is based on excessive data
gathering as all required data has to be collected during one experiment. A proper instru-
mentation technique for this approach has to instrument the SUT completely. Thus, every
operation call has to be intercepted for measurement purpose. However, these intercep-
tions result in a high measurement overhead as every interception increases the response
time of the executed operation. Thus, the measurement overhead affects the accuracy of
measurements. We illustrate this problem on a simple example depicted in Figure 5.1. In
both figures the same aggregated call tree is depicted. Tree nodes represent methods, the
edges denote calls from one method to an other and their frequency. While in Figure 5.1(a)
only the top level method is instrumented, in Figure 5.1(b) each method is instrumented.
Leave nodes are annotated with their response times, while the response time for an inner
node is the sum of response times the called methods exhibit. Under the assumption that
instrumenting a method call entails an overhead of 15 ms, the response time of method a in
the left case is 975 ms comprising an overhead of 15 ms. However, if we instrument every
method call the overhead adds up to 1035 ms, resulting in a response time of 1995 ms.
Note, the actual response time of method a is 960 ms. This simple example illustrates the
impact of full instrumentation on the accuracy of measured data. Thus, we have reasons
to assume that full instrumentation causes an unacceptably high monitoring overhead.
In order to prove our presumption we examine this overhead effect on an actual Java
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Figure 5.1.: Example: comparing partly instrumentation with full instrumentation

program. Therefore, we created a simple Java application providing some services which
cause some internal method invocations. The Java application is described in more detail
in Chapter 6.1. At this point, it is only important to know that the number of internal
method invocations per service request increases over time. We perform two experiments,
whereby we are interested in the response times of the top-level method call observing it for
one minute. The two experiments differ from each other only in the instrumentation of the
target application. One available implementation for the full instrumentation technique
is the OperationExecutionAspectFull of the Kieker framework (cf. Section 2.2.4). With
the first case the application is fully instrumented using the OperationExecutionAspectFull
aspect while the second experiment is executed with top-level instrumentation (cf. Figure
5.1(a)). The experiment results are depicted in Figure 5.2. The response times do not
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Figure 5.2.: Full instrumentation compared to top-level instrumentation

exceed 70 ms considering the case with top-level instrumentation. However, the response
times grow to 1250 ms when applying full instrumentation. Note, in both cases the re-
sponse times increase over time, as over time the number of internal method invocations
increases. However, in the case of full instrumentation a growing number of (internal)
method invocations has a progressive effect on the monitoring overhead. With this simple
application, we have shown that the overhead of full instrumentation is not acceptable.
Consequently, full instrumentation is not applicable in real systems, as the monitoring
overhead distorts the measurements. Therefore, for SPA detection we have chosen the
adaptive measurement approach which applies the dynamic instrumentation technique.
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5.2. Dynamic Instrumentation

In Chapter 4.2, we introduced the adaptive measurement approach. In order to apply this
approach, we need a dynamic instrumentation approach as we have to adapt the instru-
mentation for each experiment to be executed. Our goal is to fully automate antipattern
detection which means that there has to be a central unit controlling the overall detection
process (cf. APDMainController in Section 4.3). Therefore, it is not desirable to restart
the software system each time the instrumentation of the SUT has to be adapted for a
new experiment. Thus, an important requirement on an implementation of the dynamic
instrumentation technique is the ability to adapt instrumentation dynamically, without
having to restart the software system.
As the Kieker framework provides advanced means for simply collecting and persist mea-
surement data we use Kieker for gathering and organizing measurement data. There are
some alternatives for implementing dynamic instrumentation using Kieker. These alter-
natives are evaluated in the following.

5.2.1. Dynamic Instrumentation with AOP and Kieker

As mentioned in Chapter 2.2.4, Kieker provides two types of AOP/AspectJ ([HH04])
probes which allow either to monitor all methods or only annotated ones. As we have
shown that full instrumentation is not applicable to antipattern detection, we discard that
type of probes. However, annotation probes are not suited as well, as in general annota-
tions are a static construct and cannot be modified dynamically without reloading classes
(cf. Section 5.2.2). Thus, annotation probes cannot be used for realizing dynamic instru-
mentation. We need to develop an own AOP probe which allows us to dynamically select
which methods should be monitored. For this purpose, we extend the OperationExecu-
tionAspectFull probe of the Kieker framework by some additional features.
Firstly, we need a possibility to define a set of methods to be monitored. Thus, we extend
the OperationExecutionAspectFull probe by a list containing method names which can be
modified at runtime. Secondly, for each called method the probe must decide whether that
method should be monitored or not. Usually, AspectJ utilizes pointcuts for culling join
points and, thus, to decide which advice should be weaved into which method (method
matching). However, this mechanism is performed during class loading. Thus, pointcuts
are a semi-dynamic concept rather than a dynamic one, as pointcuts can only be changed
by reloading classes [CST03]. In order to realize dynamic instrumentation we have to use
generic pointcuts. These generic pointcuts shift the decision of method matching to the
weaved in code, respectively advice. For this purpose, we create an aspect as depicted in
Listing 5.1. The methodsToBeMonitored list can be used to dynamically define methods to
be monitored. The pointcut genericPointcut matches with all method calls and is used by
the around advice. Thus, during class loading the code defined within the around advice
is weaved around every method execution. Every time a method is executed, the defined
advice retrieves the name of the executed method and checks whether it is contained in
the methodsToBeMonitored list. If this is the case, the executed method is monitored
otherwise the advice just proceeds with executing the method.
As weaved in aspects can not be changed dynamically without reloading classes [CST03],
we can not avoid to intercept each method call at least for matching it against the method-
sToBeMonitored list. Thus similar to full instrumentation, we have reason to presume that
dynamic instrumentation using AOP still causes a high measurement overhead. In order
to examine our presumption we repeated the experiments from Section 5.1 for dynamic
instrumentation with AOP. The results are depicted in Figure 5.3. Compared to full in-
strumentation, dynamic instrumentation using AOP causes a significantly lower overhead.
However, compared to static top-level instrumentation the overhead is still very high. With
dynamic AOP instrumentation, the response times grow to values about 400 ms, which is
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Listing 5.1: Dynamic instrumentation aspect

aspect DynmaicInstrumentationAspect {
public List<Str ing> methodsToBeMonitored ;
. . .
pointcut gene r i cPo in t cu t ( ) : execution (∗ ∗ . ∗ ( . . ) ) ;

around ( ) : g ene r i cPo in t cu t ( ){
St r ing methodName = th i s Jo inPo in t . getMethodName ( ) ;
i f ( methodsToBeMonitored . conta in s (methodName ) )

monitor ( ) ;
else

proceed ( ) ;
}

private void monitor ( ){
. . . // measure , use Kieker framework
proceed ( ) ;
. . . // measure , use Kieker framework

}
}

more than five times higher than the greatest measured response times with top-level in-
strumentation (values about 70 ms). Thus, realizing dynamic instrumentation with AOP
is not a satisfactory alternative.
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Figure 5.3.: Dynamic AOP instrumentation compared to top-level instrumentation and
full instrumentation

5.2.2. Dynamic Instrumentation using Javassist, HotSwap and Kieker

As an alternative to dynamic instrumentation with AOP, we implemented an instrumenta-
tion framework based on Javassist, HotSwap and Kieker. Our instrumentation API allows
to consciously instrument and remove instrumentation from certain methods. For the in-
sertion of probes into methods we use the Javassist framework (cf. Chapter 2.2.2) which
allows us to directly modify method bodies. The monitoring code of this instrumentation
is equal to the advice implementation of the Kieker OperationExecutionAspectFull probe
(cf. Chapter 2.2.4). In particular, we surround the target method with the same monitor-
ing code as it was the case with all Kieker AOP probes (cf. Listing 5.2). In order to modify
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Listing 5.2: Dynamic instrumentation with Javassist

public void instrumentMethod ( St r ing methodName){
. . .
CtMethod metaMethod = . . .
metaMethod . i n s e r t B e f o r e ( ”

// measure , use Kieker framework ” ) ;
metaMethod . i n s e r t A f t e r ( ”

// measure , use Kieker framework ” ) ;
}

methods, we first retrieve the Javassist meta object for the target method. Then, we sur-
round the method body with Kieker monitoring code using the Javassist insertBefore and
insertAfter methods. Compared to the AOP implementation of the dynamic instrumen-
tation technique there is no difference in the instrumentation code. However, the method
instrumentMethod() of this instrumentation framework is executed at runtime, rather than
during class loading. Using the HotSwap mechanism (cf. Chapter 2.2.2) we are able to
reload the target-class which contains the instrumented method. In this way, we decouple
the instrumentation phase from the experiment phase. In contrast, with dynamic AOP
instrumentation these phases were mixed up as during execution all methods had to be
checked against the list methodsToBeMonitored . Thus, during execution of the target
application only instrumented methods are intercepted for measurement. As we are able
to consciously instrument specific methods, not instrumented methods are not intercepted
during execution and do not have to be checked against a list.

In order to compare this instrumentation approach to the previous alternatives, we

top-level instrumentation instrumentation with Javassist, HotSwap & Kieker
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Figure 5.4.: Dynamic instrumentation with Javassist, HotSwap & Kieker compared to top-
level instrumentation

repeated the experiments from Section 5.1 applying the considered instrumentation im-
plementation with Javassist, HotSwap and Kieker. The measurement results are depicted
in Figure 5.4. The response times taken with the considered implementation are hardly
distinguishable from the response times captured using top-level instrumentation. Thus,
we can assume that instrumenting the SUT using Javasisst, HotSwap and Kieker causes
only a negligible monitoring overhead. However, the overhead is low only if the instru-
mentation framework is used in a target-oriented and selective manner according to the
adaptive measurement approach.
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6. Antipattern Detection in Detail

In this chapter, we examine the detection approach for individual antipatterns in more
detail. To place this chapter into the overall context, individual investigations of each
SPA in this chapter correspond to realizations of single Detection Components which are
described in Chapter 4.3 (cf. Figure 4.5). As the scope of investigating all introduced
antipatterns (cf. Chapter 2.1.4) is too large, in this chapter, we examine only a part
of these antipatterns. Figure 6.1 depicts a part of the performance problem hierarchy
form Chapter 2.1.4 (cf. Figure 2.2) comprising the SPAs we investigate in this chapter.
In particular this part of the hierarchy contains antipatterns derived from the Varying
Response Times indicator.
A closer look at Figure 6.1 reveals that we have removed the Traffic Jam antipattern
from this hierarchy. As explained in [SW02b], the Traffic Jam antipattern can have two
possible reasons: the One Lane Bridge antipattern or a temporarily high service demand.
As analyzing the real workload for the system under test is beyond the scope of this
thesis, we do not include the high demand cause into our considerations. Thus, for our
considerations the One Lane Bridge antipattern is the only one possible cause for the
Traffic Jam. Under these circumstances we are not able to distinguish an occurrence of a
Traffic Jam from an One Lane Bridge. Therefore, we abstain from investigating the Traffic
Jam antipattern.
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Figure 6.1.: Part of the performance problem hierarchy
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For the high level indicator and each SPA depicted in Figure 6.1, we examine different
alternatives for detecting these performance problems and finding the root causes. In order
to select the most accurate detection technique we need a measure allowing us to compare
different alternatives. For this purpose, in Section 6.1, we design a simple software system
which we use for validation of individual detection techniques. Furthermore, we provide
different implementations for the validation system which define different scenarios. Each
scenario contains one or more antipatterns exhibiting behaviours to be investigated. From
the observation point of view, the scenarios differ from each other in the antipatterns they
contain, and thus, in their performance behaviour. For each investigated SPA, we deter-
mine our expectation for which scenarios the considered antipattern must be detected.
Based on these expectations, we define a measure for comparing different detection tech-
niques. In the following we describe this measure:
Let ~s = (s1, . . . , sn) be the vector of all defined scenarios. For an antipattern a, we define
the expectation vector ~va as:

~va = (va,1, . . . , va,n), va,i =

{
1 , si contains a

0 , otherwise
(6.1)

Let ta = {ta,1, . . . , ta,m} be the set of considered detection techniques for antipattern a.

Applying a detection technique ta,k on all scenarios si yields a detection vector ~da,k:

~da,k = (da,k,1, . . . , da,k,n), da,k,i =

{
1 , ta,k detected a in si

0 , otherwise
(6.2)

Based on the expectation vector and the detection vector, for an antipattern a and a
detection technique ta,k we define the error vector ~ea,k:

~ea,k = ~da,k ⊕ ~va (⊕ : binary addition) (6.3)

The error vector ~ea,k describes for which scenarios the detection technique ta,k made wrong
decisions. A wrong decision occurs, if a detection technique detects an antipattern a in a
scenario s although s does not contain a, or vise versa.

~ea,k = (ea,k,1, . . . , ea,k,n), ea,k,i =

{
1 , ta,k made a wrong decision for si

0 , otherwise
(6.4)

Summing up all wrong decisions in ~ea,k and normalizing this sum yields the error rate ra,k
for detection technique ta,k:

ra,k =
~ea,k · ~1
n

(6.5)

We use the error rate as a measure for comparing different detection techniques regarding
individual SPAs. Considering an antipattern a, a detection technique ta,1 with error rate
ra,1 is more accurate than a detection technique ta,2 with error rate ra,2, if ra,1 < ra,2.

In the following section, we introduce the validation system and define ten scenarios used
for validation. In Section 6.2, we investigate techniques for detecting the Varying Response
Time indicator. Section 6.3 deals with detection of the Ramp antipattern and search for
its root causes. In Section 6.4, we examine the Dormant References antipattern. Finally,
we investigate the One Lane Bridge and its possible root causes in Section 6.5. For each
investigated antipatterns, our goal is to find a detection technique with a detection error
rate of zero for the considered scenarios.
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6.1. Validation System and Scenarios

In this section, we introduce a software system used for validation of single SPA detection
techniques. For this purpose, we implemented an artificial Online Banking System which
provides some services to the system user. However, instead of performing real work,
these services simulate certain behaviours executing different operations and generating
load on resources. We provide different variants of the Online Banking System consciously
injecting SPAs into the implementation. Thus, we consider different scenarios which we
use for validation of individual SPA detection techniques. For each considered SPA man-
ifestation, we define at minimum one positive scenario and one negative scenario. While
positive scenarios contain certain performance antipatterns, negative scenarios do not ex-
hibit the considered antipattern behaviour. Thus, a detection technique for a considered
SPA is valid if it detects the antipattern in all positive scenarios but does not react on
negative scenarios. In the following, we provide a short description of the validation sys-
tem and describe ten scenarios we use to validate detection techniques for individual SPA
manifestations and performance problems.

6.1.1. Online Banking System

In order to avoid disturbing sources, we exclude as much external effects as possible during
validation of the SPA detection techniques. However in Chapter 7, we conduct an advanced
evaluation on a more complex and realistic software system. Here, we keep the validation
system as simple as possible implementing only those parts required for simulating certain
SPA behaviours. Accordingly, the system depicted in Figure 6.2 is quite simple comprising
only two components. While the Transaction Manager is responsible for the processing of
financial transactions, the Account Manager provides services for administering account
data. Finally, all data is stored in an external database which we consider as a black-
box. For validation, we distribute this system among two system nodes. For this purpose,

Online Banking System

Transaction
Manager

Account
Manager

Database

Figure 6.2.: Online Banking System

we deploy the database on a dedicated database node. Assuming that the execution of
the SoPeCo has only a low overhead, we run the application part of the Online Banking
System on the same node as SoPeCo’s Measurement Control components (cf. Figure 2.10,
Figure 4.5). The user interface of the Online Banking System comprises three services.
Each service is designed for the validation of one certain SPA manifestation.

• commitTransaction: This service allows the user to commit financial transac-
tions. For this purpose, the Online Banking System utilizes the Transaction Manager
component. In order to avoid unintentional duplicate transactions, the Transaction
Manager compares each committed transaction against a set of previously commit-
ted transactions. For this purpose, the Transaction Manager accesses a set of the
most current transactions before irrevocably committing transactions. Different im-
plementations of the Transaction Manager entail different performance behaviours
which is described in Section 6.1.2. We use this service to validate detection tech-
niques for performance problems related to the Ramp antipattern.
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• viewAccountState: This service allows the user to display the financial state and
statistics of his account. viewAccountState comprises three sub-tasks performed by
the Account Manager :

– retrieveInformation: Reads data from the database.

– generatesStatistics: Generates an average CPU demand of 20 ms.

– renderGraphs: Generates an average CPU demand of 80 ms.

While the retrieveInformation sub-task requests the database to retrieve infor-
mation, the other two tasks generate CPU demands which simulate real work to be
done. In Section 6.1.2, we describe different implementations of the Account Manager
leading to different synchronization behaviours. Thus, we use this service for valida-
tion of detection techniques concerning the Synchronized Methods manifestation of
the One Lane Bridge antipattern and all its hierarchical predecessors.

• changePersonalData: This service is used to change personal user data. For this
purpose, the Account Manager accesses a database containing this data. We examine
different approaches to use a database in order to validate detection techniques for the
DB-Lock manifestation of the One Lane Bridge and all its hierarchical predecessors.

In the following, we describe different scenarios based on different implementations of these
simple services.

6.1.2. Scenarios

In this section, we describe for each manifestation of an SPA some positive and negative
scenarios. These scenarios are used not only for the validation of detection techniques
for specific SPA manifestation, but for the detection steps along the performance problem
hierarchy (cf. Figure 6.1) as well. For instance, we use scenarios related to the One Lane
Bridge antipattern in order to validate detection techniques for the Varying Response Time
problem, too. In the first step, we examine the detection techniques for each antipattern
individually and isolated. Thus, the first nine scenarios differ in the implementations of
single services provided by the Online Banking System. The last scenario combines some
performance problems in order to examine interaction effects.

• Scenario 1 - classic ramp behaviour:
As described in the previous section, the commitTransaction service retrieves a set
of previously committed transactions in order to avoid duplicates. In this scenario,
the Transaction Manager stores all current transactions in a file on the hard disk
in order to avoid high memory consumption. For each transaction committed by a
user, the Transaction Manager reads the file from disk, parses it and compares its
entries with the newly committed transaction. Once a day, the Transaction Manager
commits irrevocably all transactions from this file. Depending on the intensity of the
workload, the size of the file can grow significantly during this time window. However,
for duplicate avoidance each commit of a transaction has to be checked against all
transactions committed at the same day. This circumstances lead to increasing
response times as the size of the file increases. The response time progression of
this scenario for a request arrival rate of 10s−1is depicted in Figure A.1(a). As
this scenario represents a classic ramp behaviour, a valid detection technique for
the Ramp antipattern has to detect the presence of this antipattern in Scenario 1.
Thus, Scenario 1 is a positive scenario for the Ramp antipattern. Furthermore, this
scenario is a positive scenario for the Varying Response Time indicator as each ramp
behaviour results in highly varying response times. Regarding the One Lane Bridge
and the Dormant References antipatterns, this scenario is a negative scenario.
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• Scenario 2 - growing list:
The second scenario refers to the commitTransaction service as well. However,
instead of storing transactions in a file, in this scenario, the Transaction Manager
holds current transactions as a list in the memory to avoid overhead for accessing the
hard disk. For duplicate avoidance the Transaction Manager iterates the whole list
to find duplicates. With a growing list the time for duplicate search increases. Thus,
in this case, using a list as a repository is a simple implementation mistake leading to
a ramp behaviour of response times (cf. Figure A.1(b)). Additionally, the memory
consumption increases over time as the list is hold in memory. Consequently, this
scenario is a positive scenario for the Varying Response Times problem, the Ramp
and the Dormant References antipattern. For the One Lane Bridge antipattern this
scenario is a negative scenario.

• Scenario 3 - periodical clean-up:
This scenario is similar to Scenario 2. Again, the Transaction Manager uses a list to
keep current transactions of the commitTransaction service in memory. In contrast
to Scenario 2, the Transaction Manager in this scenario performs a periodical clean-
up of the whole repository. Semantically, this might mean that transactions are kept
in the memory not for the whole day but only for some hours. This implementation
of the Transaction Manager results in a response time behaviour as depicted in
Figure A.1(c). Under a stable workload, the response times grow between two clean-
up phases. As this increase in response times does not exceed a certain limit, on
the whole, response times do not increase over time. Thus, in contrast to the first
two scenarios, this is a negative scenario for the Ramp and the Dormant References
antipattern. Equivalently to the first two scenarios this scenario is a negative scenario
for the One Lane Bridge antipattern, too. Although this scenario does not contain a
Ramp, response times vary significantly between two clean-up phases, resulting in a
high overall variance. Therefore, this scenario is a positive scenario for the Varying
Response Time indicator.

• Scenario 4 - fixed-sized queue:
Scenario 4 refers to the commitTransaction service, too. In this scenario we use
a fixed-sized first-in-first-out queue as repository for the transactions. Considered
over time, the queue size increases until the maximum size is reached. Then, the
queue starts to drop the oldest transaction when a new transaction is committed.
As response times behave proportionally to the queue size, with this scenario we
observe a saturating behaviour as depicted in Figure A.1(d). As response times are
limited by the maximum queue size, the ramp behaviour occurs only during the
initial phase, but not on the whole. Thus, this is a negative scenario for the Ramp
and the Dormant References antipattern. Assuming that the initial phase is rather
small compared to the observation time the variation of response times caused by
the initial phase can be neglected. Thus, this scenario causes only little variation
in response times resulting in a negative scenario for the Varying Response Time
indicator. Scenario 4 is a negative scenario for the One Lane Bridge antipattern, as
well.

• Scenario 5 - hashing transactions:
This implementation of the Transaction Manager uses a hash-based repository for
holding transactions of the commitTransaction service in memory. As searching for
duplicates in a hash-based data structure can be done in O(1), duplicate avoidance
is independent of the data structure size. Using a hash-based data structure results
in a stable response time behaviour (cf. Figure A.1(e)). As response times do not
increase over time and their variance is quite low, Scenario 5 is a negative scenario
for the Ramp, the Varying Response Times problem and the One Lane Bridge an-
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tipattern. Although this is a negative scenario for the Ramp antipattern Scenario
5 contains a Dormant References antipattern as the memory consumption increases
over time. Note, this circumstances do not form a contradiction to the Adaptive
Measurement Approach (cf. Section 4.2). As the Dormant References antipattern
has two hierarchical predecessors (cf. Figure 2.2), a software system can contain a
Dormant References antipattern although it does not exhibit a Ramp behaviour.

• Scenario 6 - synchronized method:
In this scenario, we consider the viewAccountState service. As mentioned before,
this service is divided into three sub-tasks. Here, we assume that the developer of
the Account Manager implements the viewAccountState service as a synchronized
method in order to avoid concurrent access to the account storage. However, as
the whole method is synchronized, this scenario quickly leads to congestion, and
thus, highly varying response times. The response time behaviour for this scenario is
depicted in Figure A.1(f). Actually, this scenario is a typical case of the Synchronized
Methods manifestation of the One Lane Bridge antipattern. Thereby, Scenario 6 is a
positive scenario for the One Lane Bridge and the Varying Response Times problems.
Considering the Ramp and the Dormant References antipattern this scenario is a
negative scenario.

• Scenario 7 - resolved synchronization:
Scenario 7 is a solution to the problem of the viewAccountState service in Scenario
6. Considered more closely, the critical task to be synchronized is the retrieve-

Information sub-task of the viewAccountState service, as this is the point where
the account storage is accessed. As this sub-task consumes only a small part of
the viewAccountState service’s response time, much synchronization time can be
avoided by synchronizing solely the retrieveInformation sub-task. This solution
leads to a more stable behaviour, as can be seen in Figure A.1(g). As the response
time behaviour of this scenario is quite stable, this scenario is a negative scenario for
the Varying Response Time indicator and all its hierarchical successors.

• Scenario 8 - storing data as big byte arrays:
We use Scenario 8 for examining the database manifestation of the One Lane Bridge
antipattern. For this scenario we provide an implementation for the changePerson-

alData service of the Account Manager which stores the entire account repository
as one large object in the database. In order to modify a single account entry, the
Account Manager has to store the whole repository. This circumstances lead to high
locking times while all other threads wanting to access the same database table have
to wait. The response time behaviour of this scenario is depicted in Figure A.1(h)
showing greatly varying response times caused by the database lock. With Scenario
8, we observe a typical database manifestation of the One Lane Bridge antipattern.
Equivalently to Scenario 6, this scenario is a positive scenario for the One Lane
Bridge and the Varying Response Times performance problems. For the Ramp and
the Dormant References antipattern this scenario is a negative scenario.

• Scenario 9 - using proper database structures:
In Section 9, we solve the problem of the changePersonalData service in Scenario 8.
Instead of storing the entire account repository object as a whole, we create a proper
database schema for storing single account entries directly in a database table. Thus,
accessing one account entry locks the database table for a negligibly small period of
time. The response time behaviour of this scenario (cf. Figure A.1(i)) is similar to
Scenario 7 as synchronization is reduced significantly. Thus equivalently to Scenario
7, this is a negative scenario for the Varying Response Time indicator and all its
hierarchical successors.
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• Scenario 10 - SPA interaction:
In the previous nine scenarios, we isolated single performance problems. In order to
examine interaction effects among individual antipatterns, in Scenario 10, we com-
bine the behaviour of Scenario 1, Scenario 7 and Scenario 8. Thus, Scenario 10
comprises all three services of the Online Banking system containing the Ramp an-
tipattern and the database manifestation of the One Lane Bridge. The response time
behaviour for this scenario is depicted in Figure A.1(j). The detection techniques for
both antipatterns should be able to detect the corresponding antipatterns despite
additional performance effects. Scenario 10 is a positive scenario for the Varying
Response Times problem, the Ramp and the One Lane Bridge antipattern. For the
Dormant References antipattern this scenario is a negative scenario.

In this section, we introduced a simple validation system which we designed for valida-
tion of SPA detection techniques. Based on this system, we defined ten scenarios by
providing different implementations for single components of the validation system. For
each scenario, we described our expectations regarding the detection results of the detec-
tion techniques. In Figure 6.3, we summarized our expectations for each scenario. Here,
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Figure 6.3.: Detection result expectations for each considered scenario

“detect”denotes the presence of the corresponding performance problem, whereby, a“not”
symbolizes that the considered scenario does not contain the corresponding performance
problem. According to the Adaptive Measurement Approach (cf. Chapter 4.2), there is no
need to dig deeper into the performance problem hierarchy if a scenario does not contain
the considered performance problem. For instance, Scenario 4 does not exhibit a Vary-
ing Response Times behaviour. Thus, there is no need to investigate any performance
problems which are hierarchical successors of the Varying Response Times problem. In
Figure 6.3, these cases are denoted by a hyphen. The Dormant References antipattern
for Scenario 5 is an exception of this rule as the Dormant References antipattern has two
hierarchical predecessors (cf. Figure 2.2). For detailed validation of single detection tech-
niques we use all ten scenarios. Therefore, during validation we consider the cases which
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are denoted by a hyphen in Figure 6.3 as “not” detectable. In these cases we expect from
a specific detection technique that it does not detect the considered antipattern for the
corresponding scenario.

In the following, we examine each detection step in detail using these scenarios to compare
different alternatives for detecting performance problems. Whereby, a valid detection
technique for a performance problem should detect the problem in all scenarios which are
denoted by a “detect” in Figure 6.3, but must not react on scenarios denoted by a “not”
or a hyphen.

6.2. The Varying Response Times Detection

In this section, we examine detection techniques for the top element of our performance
problem hierarchy: the Varying Response Times (VRT) indicator (cf. Figure 6.1). Firstly,
we describe the experiment configuration used for detecting the VRT problem. Then, we
investigate different data analysis techniques for detecting highly varying response times.

6.2.1. Experiment Setup

6.2.1.1. Problem Specific Instrumentation

As the Varying Response Times problem is a rather general problem, we instrument the
system under test (SUT) at the top abstraction level. For this purpose, we measure the
response time for each service request at the user interface. In parallel, we sample the
CPU utilizations of each system node. Based on this data, we perform the analysis for
detecting highly varying response times.

6.2.1.2. Proper Workload for Experiments

As the name of the considered performance problem suggests, we are interested in the
variance of response times. However, before we are able to examine this issue we have
to determine under which workload the response times should be examined. In the case
of synchronization problems leading to highly varying response times, we are especially
interested in situations when the SUT becomes unstable (cf. Section 2.4) under a overload
situation. We use an open workload for the execution of experiments in order to examine
unstable situations.
For isolated examination of this problem, we use only one isolated workload class per
examined scenario. Thus, the usage behaviour is fixed for one scenario.
The workload intensity is the third property to be specified. However, we cannot choose
the workload intensity arbitrarily. Synchronization problems leading to highly varying
response times, for instance, occur only if the workload intensity is high enough to result in
concurrent processing. Thus, in order to find such performance problems, for each scenario
and SUT we have to determine sufficient workload intensity values. However, these values
differ from case to case. The software system approaches its load limit, if at minimum
one passive or active resource is highly utilized. In order to find this point, we start
the measurements with a very low workload intensity. From one experiment to the next,
we increase the workload intensity until the average CPU (, disk, memory or network)
utilization of a system node exceeds 90% or the response times increase dramatically.
Both circumstances indicate a high load situation which is the point of interest. In order
to reduce the amount of required experiments, we increase the intensity exponentially
rather than linearly by doubling the load for each new experiment. For the detection of
the Varying Response Times indicator, we evaluate the response time variance for each
workload intensity below the point of interest. In the following, we consider different
analysis techniques for detecting high variance in response times based on data retrieved
from these experiments.
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6.2.2. Detection Techniques

The most intuitive way to evaluate the variance of response times is to use the statistical
variance σ2(R) or the standard deviation sd(R) (cf. Chapter 2.3). For instance, we can
examine whether sd(R) exceeds a certain threshold. However, as σ2(R) and sd(R) are
absolute values it is difficult to find a generic threshold. Therefore, we use the coefficient
of variance (COV) (cf. Chapter 2.3) for the evaluation of the response time variance.

6.2.2.1. Fixed COV Threshold

As mentioned before, we repeat experiments increasing the workload intensity until a
high system load is reached. For each workload intensity value, we check whether the
coefficient of variance COV (R) exceeds a threshold TCOV . For the scenarios described in
Section 6.1.2, we examined this detection technique varying the value for TCOV between 0.1
and 0.9. The detection results are depicted in Table 6.1. If COV (R) is greater or equal

Scenarios ~vvrt
TCOV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Scenario 1 D D D D D D D D D D

Scenario 2 D D D D D D D D D N

Scenario 3 D D D D D D D D D D

Scenario 4 N D D D D D N N N N

Scenario 5 N D D D D N N N N N

Scenario 6 D D D D D D D D N N

Scenario 7 N D D N N N N N N N

Scenario 8 D D D D D D N N N N

Scenario 9 N D D D D D N N N N

Scenario 10 D D D D D D D D D N

detection error rate — 0.4 0.4 0.3 0.3 0.2 0.1 0.1 0.2 0.4

Table 6.1.: Detection experiments with different values for the threshold TCOV .
D: detected, N: not detected, red/italic: wrong decision

TCOV for any considered workload intensity, the Varying Response Times problem has
been detected by the considered analysis technique for the corresponding scenario. These
cases are denoted by a D in Table 6.1. Cases in which COV (R) is smaller than TCOV for all
considered workload intensities are denoted by a N meaning that high variance in response
times could not be detected in the corresponding scenario. The first column contains the
expectation vector ~vvrt for the Varying Response Time antipattern. The other columns
contain detection vectors for each examined COV threshold. Wrong detection decisions
are illustrated by an italic (and red) letter.
The thresholds with the best detection error rates are 0.6 and 0.7. However, Table 6.1
demonstrates that we are not able to find a proper threshold TCOV for which the analysis
technique would make right decisions for all considered scenarios. Thus, using a fixed
threshold for the coefficient of variance leads to inaccurate detection results for the Varying
Response Times problem.

6.2.2.2. Adapted COV Threshold

Because of measurement imprecision, COV (R) is very unstable for small response times.
Let us assume we have a measurement resolution of 15 ms. Little deviations (e.g. 15 ms)
from an average response time of 50 ms affect the value of COV (R) to a much higher
degree than for higher response times (e.g. 1000 ms). Thus, depending on a central value
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of the response times we have to adapt the threshold for COV (R). In order to handle
the instability of COV (R) we “allow” higher threshold values for small response times. In
contrast, TCOV should be small for large response time values. Realizing this idea, we
define a function fCOV (R) describing proper values of TCOV in dependence of the median
value x̃ of measured response times:

fCOV (x̃) = COVmin ∗ (m− m− 1
tmid
x̃ + 1

) m =
COVmax
COVmin

(6.6)

The function fCOV (x̃) is defined by three configuration parameters: COVmin, COVmax
and tmid. COVmin is the minimal threshold which is approached when response times are
quite large. COVmax is approached when response times are very small. tmid determines
for which response time the function fCOV (x̃) has the central value COVmid:

fCOV (tmid) = COVmid =
COVmin + COVmax

2
(6.7)

We use the value 0.1 for COVmin, 0.9 for COVmax and 500 ms for tmid. The value in
parenthesis is between 1 and 9 multiplying COVmin by 9 in the case of very small response
times. Thus, the threshold is near 0.9 if x̃ is very small. When response times increase,
fCOV (x̃) decreases rapidly, reaching a value of 0.5 for a response time of 500 ms. In
Figure 6.4, the graph of this function is depicted for response time values between 0 ms
and 5000 ms. In order to demonstrate the effectiveness of the adapted COV threshold
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Figure 6.4.: fCOV (x̃) for configuration values COVmin = 0.1, COVmax = 0.9 and tmid =
500ms

fCOV (x̃), we depicted the median x̃ and the coefficient of variance COV (R) for Scenario
8 and Scenario 9 in Figure 6.5. The top graphs show for each examined arrival rate the
median response time value. The points in the bottom graphs show the calculated COV
of measured response times. The curves show the adapted COV threshold fCOV (x̃). As
described in Section 6.1.2, Scenario 8 is a typical case of the One Lane Bridge antipattern
resulting in highly varying response times, while Scenario 9 does not contain an antipattern.
However, in both cases the calculated COV (R) values are in a similar range making it
impossible to find an adequate fixed COV threshold. The adapted threshold overcomes
this problem. In Figure 6.5(a), the threshold decreases to a value of 0.15 because of sharp
increase of the median x̃. Thus, under an arrival rate of 16s−1 the analysis technique
detects the Varying Response Times indicator. For Scenario 9, the threshold is quite high
for all arrival rates as the values for the median x̃ are very low. Consequently, in Scenario
9 varying response times could not be discovered. In both cases, the analysis provides
a correct detection decision. We applied this analysis technique with an adapted COV
threshold to all scenarios yielding an error detection rate of zero. Thus, using an adaptive
threshold for the coefficient of variances is a valid approach for detecting the Varying
Response Times problem.
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(a) Scenario 8 - storing data as big byte arrays
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Figure 6.5.: COV (R) and fCOV (x̃) depicted over the request arrival rate for Scenario 8
and Scenario 9

6.3. The Ramp Detection

In this section, we dig one step deeper into the performance problem hierarchy examining
different detection techniques for the Ramp antipattern. Furthermore, we explain the root
cause analysis approach for the Ramp antipattern.

6.3.1. Detection

The detection of the Ramp antipattern is based on the assumption that the observation
interval necessary to detect it is known. The Ramp is a time dependent antipattern which
can be detected only under a long enough observation phase. Here, we assume that the de-
veloper of the system under test has the knowledge to specify an adequate approximation
for the time interval required for observing the Ramp antipattern. For instance, this value
can be derived from typical system run times and workload intensities. The detection
techniques described in this section are based on this assumption.
Similar to the Varying Response Times problem, the Ramp is a quite abstract perfor-
mance problem. For the detection of the Ramp antipattern we instrument the system
under test (SUT) at the user interface level capturing the response time for each service
request. However, the instrumentation for the root cause analysis is more complex which
is described in Section 6.3.2.
In general there are different experiment execution and data analysis approaches which
can be applied to detect the Ramp antipattern. We introduce and evaluate three possible
approaches. The first two approaches, the Linear Regression Analysis and the T-Test
Analysis, are based on the observation of response times over operation time utilizing
a constant workload. For the Separated Time Windows Analysis approach, we utilize
another experiment execution approach which is described in Section 6.3.1.2.

6.3.1.1. Analyses on Chronologically Continuous Measurement Data

In this subsection, we describe two different analysis techniques which are based on mea-
surement data taken from continuous observation time intervals. First, we describe the
experiment execution approach. Then, we introduce the Linear Regression Analysis and
the T-Test Analysis techniques.
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Experiment Configuration

For the Linear Regression Analysis and the T-Test Analysis, we use the same experi-
ment configuration as for the Varying Response Times problem (cf. Section 6.2.1.2). For
this purpose, we observe response times of the system service over a fixed operation time
interval. We use an open workload examining the response times for a scenario under ex-
ponentially increasing workload intensities. Basically, we can reuse the measurement data
from the Varying Response Times problem for these analysis techniques avoiding addi-
tional experiments. This measurement data contains for each observed workload intensity
wj a set of response time samples. Each sample is a value pair of the operation timestamp
Ti and the corresponding response time Ri for a workload intensity wj : (Ti, Ri)j .

Linear Regression Analysis

A simple method to find an increasing tendency in response times is to use linear regression
(cf. Chapter 2.3.4). Applying linear regression on the samples (Ti, Ri)j yields for each
observed workload intensity wj a regression function R(t, j) = mj ∗ t + R0,j describing
response times in dependence of the operation time. As the factor mj is the gradient of the
curve, positive values for mj indicate an increase, and thus, the Ramp behaviour. However,
linear regression is quite sensitive. In particular, single outliers and small irregularities in
the samples (Ti, Ri)j may lead to positive gradient values although, actually, no Ramp
behaviour is present. Thus, we have to determine a threshold m∗ for the gradients mj .
Based on this threshold, the analysis technique detects the Ramp antipattern if for all
observed workload intensities wj the gradient exceeds the threshold:

∀j : mj > m∗ (6.8)

In order to derive a general threshold m∗, we analyzed the regression functions for all
scenarios. For each scenario and observed workload intensity wj , we calculate the gradient
mj . For positive scenarios regarding the Ramp antipattern (Scenario 1, 2 and 10), we are
interested in the smallest gradient:

mmin = min
j

(mj) (6.9)

In order to achieve correct detection decisions in these cases for each observed workload
intensity the gradient must exceed the threshold. Thus, the smallest gradient mmin de-
termines the upper limit m∗u for m∗. The opposite applies for the remaining scenarios.
Here, mmin determines the lower limit m∗l . As these scenarios do not contain the Ramp
antipattern at minimum one workload intensity wj must exist where the gradient mj is
smaller than the threshold m∗.

In Table 6.2, we depicted the smallest gradients mmin for each scenario. For Scenario 3 -
9, these values determine the lower bound for the threshold as these scenarios are negative
scenarios for the Ramp antipattern. Generalizing for all scenarios, max(m∗l ) is the general
lower bound for the threshold m∗. For Scenario 1, 2 and 10, min(m∗u) is the general upper
bound for m∗. In Table 6.2, these values are depicted in bold letters. Thus, we have
a general lower bound with the value 11.4 ∗ 10−4 and a general upper bound with the
value 0.91 ∗ 10−4. However, these values form a contradiction demonstrating that it is not
possible to find a general threshold m∗ such that the detection error rate of this detection
technique is zero. Therefore, the Linear Regression Analysis is not suitable for generically
detecting the Ramp antipattern.
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~vramp mmin m∗l m∗u
Scenario 1 D 9.91 ∗ 10−4 - 9.91 ∗ 10−4

Scenario 2 D 0.91 ∗ 10−4 - 0.91 ∗ 10−4

Scenario 3 N 0.56 ∗ 10−4 0.56 ∗ 10−4 -

Scenario 4 N 11.4 ∗ 10−4 11.4 ∗ 10−4 -

Scenario 5 N −0.11 ∗ 10−4 −0.11 ∗ 10−4 -

Scenario 6 N 0.051 ∗ 10−4 0.051 ∗ 10−4 -

Scenario 7 N −124.0 ∗ 10−4 −124.0 ∗ 10−4 -

Scenario 8 N −1.3 ∗ 10−4 −1.3 ∗ 10−4 -

Scenario 9 N −1.1 ∗ 10−4 −1.1 ∗ 10−4 -

Scenario 10 D 4.8 ∗ 10−4 - 4.8 ∗ 10−4

Table 6.2.: Minimal response time gradients for all scenarios determining the lower and
upper bound for the gradient threshold

T-Test Analysis

As a second analysis alternative for the Ramp detection, we introduce the T-Test Analysis
approach. For this analysis approach, we use the same measurement data as for the Linear
Regression Analysis. However, instead of analysing the gradient of a regression function,
we utilize the t-test (cf. Chapter 2.3) to find an increase tendency in response times.
The idea behind this approach is to divide for each workload intensity wj the samples
Sj = (Ti, Ri)j chronologically into two sets S1

j and S2
j :

S1
j = (T 1

i , R
1
i )j S2

j = (T 2
i , R

2
i )j S1

j ∪ S2
j = Sj T kj = {T ki }j Rkj = {Rki }j (6.10)

∀t1 ∈ T 1, t2 ∈ T 2 : t1 < t2 (6.11)

If the measurements under a workload intensity wj exhibit the Ramp behaviour, the
response time values in R2

j should be significantly larger than in R1
j . For this purpose,

we perform a t-test for each scenario and each wj . Let X1
j be the random variable for

sample R1
j and X2

j the random variable for sample R2
j . Furthermore, x̄1

j and x̄2
j are the

arithmetical means for both sets. For the t-test, we define the following null hypothesis
H0 and alternative hypothesis H1:

H0 : µ1
j = E[X1

j ] = E[X2
j ] = µ2

j (6.12)

H1 : µ1
j 6= µ2

j (6.13)

If the t-test rejects the null hypothesis the response times in R1
j differ statistically signifi-

cant from the response times in R2
j . If additionally x̄1

j is smaller than x̄2
j , then the values

in R2
j are significantly larger than in R1

j indicating an increasing response time behaviour
for the considered scenario and workload intensity wj . This detection technique detects
a Ramp antipattern if for all examined workload intensities wj can be shown that R2

j is

statistically larger than R1
j .

In order to find a proper significance level for the t-test, we examined this analysis tech-
nique for all scenarios with different confidence levels between 0.9 and 0.999. As depicted
in Table 6.3, we could not observe any difference in the detection results when varying the
confidence level. Cases where the Ramp could be detected are denoted by a D, otherwise
the N stands for a negative detection result. The column ~vramp contains the expectation
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Scenarios ~vramp
Simple T-Test (sig. level) Second Half

0.9 0.95 0.99 0.995 0.999 Analysis

Scenario 1 D D D D D D D

Scenario 2 D N N N N N N

Scenario 3 N N N N N N N

Scenario 4 N D D D D D N

Scenario 5 N N N N N N N

Scenario 6 N N N N N N N

Scenario 7 N N N N N N N

Scenario 8 N N N N N N N

Scenario 9 N N N N N N N

Scenario 10 D D D D D D N

detection error
rate

— 0.2 0.2 0.2 0.2 0.2 0.2

Table 6.3.: T-test analyses with different confidence level values, second half analysis.
D: detected, N: not detected, red/italic: wrong decision

vector for the Ramp antipattern. Italic letters stand for wrong detection decisions in de-
tection vectors. As can be seen in Table 6.3, using a simple t-test analysis results in wrong
decisions for Scenario 2 and Scenario 4. In Scenario 2 no Ramp behaviour could be found,
although it contains this antipattern, and vice versa for Scenario 4. In the case of Scenario
4, the initial phase where the fixed sized queue is not completely filled is the reason for
wrong detection. Actually, in the second half of time the response times are significantly
larger. However, response times do not grow anymore as soon as the saturation point is
reached when the queue is filled. If the saturation point is reached late during experiment
execution, we are not able to distinguish the classic Ramp behaviour of Scenario 1 from
this case in Scenario 4. Thus, we assume that the saturation point is reached in the first
half of time during experiment execution. Under this assumption we can overcome this
detection problem by analyzing the second set R2

j analogously. For this purpose, we split

R2
j again in two subsets on which we perform the t-test. The results for this extended

approach is depicted in the last column of Table 6.3. Now the decision for Scenario 4 is
correct, however, we get another wrong decision for Scenario 10. Furthermore, the wrong
decision for Scenario 2 remains. In the cases of Scenario 2 and 10, the Ramp cannot be
detected because under low load the time interval of observation is too short to observe
increasing response times. However, if the Ramp antipattern is present, we assumed an
increasing response time behaviour for all considered workload intensities. On the other
hand, under heavy load synchronization performance problems (like in Scenario 6 or Sce-
nario 8) exhibit an increasing response time behaviour, too. However, synchronization
problems are not the same as the Ramp antipattern.
All detection techniques depicted in Table 6.3 have a detection error rate of 0.2 which is
not satisfactory. This error rate is caused by an improper experiment execution approach
for the Ramp detection. It is difficult to determine a workload intensity and an observation
time window which are suitable for observing the Ramp antipattern. In particular, these
values vary greatly from system to system. At the same time, the Ramp is an antipattern
whose occurrence is independent from the current workload intensity. Thus, in order to
provide an accurate detection technique for the Ramp we have to develop an experiment
execution approach which is independent of the workload intensity and allows for finding
a proper observation time window. In the following, we introduce such an experiment
execution and analysis approach.
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6.3.1.2. Separated Time Windows Analysis

For Linear Regression Analysis and T-Test Analysis we used the same measurement data
as for the Varying Response Time problem (cf. Section 6.2) describing for each workload
intensity the response time progression over time. For the Separated Time Windows Anal-
ysis we use another experiment configuration. This experiment configuration is explained
in the next paragraph.

Experiment Execution

In contrast to synchronization problems, for the Ramp, the current workload intensity
during observation does not have to be high in order to observe the performance problem.
However, the workload intensity determines how fast response times increase. Higher load
pushes the Ramp behaviour faster than a low workload intensity. On the other hand, in
order to accurately investigate the Ramp antipattern synchronization effects have to be
excluded. Synchronization effects can impair the typical behaviour exhibited by a Ramp.
Based on this requirements, we divide an experiment into two phases: a warm-up phase
and an observation phase.
During the warm-up phase, we do not take any measurements. However, we use this phase
to push a potential Ramp antipattern. Therefore, we commit a quite high workload in-
tensity to the SUT during the warm-up phase. In particular, we use a workload intensity
which brings the SUT to its limit. In Section 6.2.1.2, we described how to find this work-
load intensity.
During the observation phase we capture a fixed number of response times for the service
requests. In this phase, synchronization effects should be avoided. For this purpose, we
use a closed workload with only one user and a short think time. This workload guaran-
tees that requests are not processed concurrently, allowing us to exclude synchronization
problems.
In order to capture the response time progression over operation time, we repeat this
experiment increasing the duration of the warm-up phase. In this way, we get n chrono-
logically separated sets Si (“Time Windows”) each containing a fixed number of measured
response times. As an example we depicted the measurement data for a scenario contain-
ing the Ramp antipattern (Scenario 1) in Figure 6.6(a) and for a scenario without the
Ramp antipattern (Scenario 3) in Figure 6.6(b). These figures illustrate the dependency
between response times and the corresponding warm-up phase durations.
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(a) Scenario 1 - classic ramp behaviour
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(b) Scenario 3 - periodical clean-up

Figure 6.6.: Measurement data for the Separated Time Windows Analysis technique

The described experiment configuration has two advantages. Firstly, we can exclude syn-
chronization problems because of the closed workload containing only one user. Secondly,
because of the heavy load during the warm-up phase, we increase the probability that a
present Ramp behaviour is captured through measurements.
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68 6. Antipattern Detection in Detail

Analysis Technique

In order to detect an increasing response time behaviour, we perform pairwise t-tests on
neighbouring sets. Two sets Si and Si+1 are neighbouring if Si+1 is the response time
series with the next greater warm-up time in regard to Si. Let Xi be the random variable
for sample Si and x̄i its arithmetical mean. For S1, . . . , Sn, we perform n − 1 t-tests Ti
using the following samples as input.

1 ≤ i < n :

{
sample 1: Si

sample 2: Si+1

(6.14)

The null hypothesis H0 and the alternative hypothesis H1 are defined as follows:

H i
0 : µi = E[Xi] = E[Xi+1] = µi+1 (6.15)

H i
1 : µi 6= µi+1 (6.16)

If a t-test Ti rejects H i
0 and x̄i < x̄i+1, then the values in Si+1 are significantly larger

than in Si. This means that a measurement series with the next higher warm-up time
contains significantly larger response times. If this is the case for all performed t-tests Ti,
we consider that response times grow significantly with the operation time.
We applied this technique on all scenarios yielding correct detection decisions in all cases.
Thus, with the Separated Time Windows approach we found the desired detection tech-
nique for the Ramp antipattern with an error rate of zero.

In this section, we investigated different experiment execution approaches and analyses
for the detection of the Ramp antipattern. While Linear Regression Analysis and T-Test
Analysis showed some weaknesses resulting in inaccurate detection results, the Separated
Time Windows Analysis made correct detection decisions for all considered scenarios. In
the following, we explain a root cause analysis approach which reuses the Separated Time
Windows Analysis approach for identifying operations causing the problem.

6.3.2. Root Cause Analysis

As depicted in Figure 6.1, we consider two possible causes for the Ramp antipattern:
the Dormant References antipattern or specific methods. As Dormant References is an
antipattern, we examine it in Section 6.4. Here, we focus on the search for guilty methods
causing the increasing response time behaviour. In the following, we explain the approach
for finding root causes for the Ramp antipattern and evaluate this approach. As the Ramp
antipattern is present only in Scenario 1, 2 and 10, we use these scenarios for validation
of the root cause analysis approach.

6.3.2.1. Realization

In order to find guilty methods, we use a call tree. A call tree is a dynamic construct
describing the calling hierarchy of single methods. In Listing 1, we fragmentary depicted
the call tree for Scenario 10. Scenario 10 combines three other scenarios (Scenario 1, 7 and
8). Therefore, in Scenario 10 all three services of the Online Banking System are invoked.
Each service request results in further internal method invocations. For instance, the
commitTransaction(...) service invokes the createTransactionObject(...) method.
A guilty method for the Ramp antipattern, is a method within the call tree which exhibits

the Ramp behaviour itself. Generally, there are several guilty methods within a call tree. In
particular, a guilty method may call other guilty methods which are the actual cause for the
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Listing 1 Partly call tree for Scenario 10

User.use()*

+-- OBSystem.viewAccountState(...)

| +-- AccountManager.retrieveInformation(...)

| +-- ...

| +-- ...

+-- OBSystem.commitTransaction(...)*

| +-- TransactionManager.createTransactionObject(...)

| +-- TransactionManager.validateTransactionData(...)

| +-- TransactionManager.addTransactionToRepository(...)*

| | +-- Repository.checkForDuplicate(...)***

| | +-- Repository.add(...)

| +-- TransactionManager.createNotification(...)

+-- OBSystem.changePersonalData(...)

+-- ...

Ramp behaviour. In our example (cf. Listing 1), guilty methods are denoted by a “*” sym-
bol. As the top level usage profile method use() exhibits a Ramp behaviour it is a guilty
method. However, this behaviour is caused by a call to the commitTransaction(...)

method, etc. A root cause method is a guilty method which does not invoke any further
guilty methods within defined system boundaries. For instance, if the Ramp is actually
caused by an external 3rd party operation E, then an operation M is a root cause method
if M calls E. Furthermore, we do not dig into the Java API. In Listing 1, we have only one
root cause method which is denoted by a “***” symbol: checkForDuplicate(...).

Our root cause analysis approach for the Ramp antipattern is based on a breadth-first
search for guilty methods on the corresponding call tree. For this purpose, we recursively
perform two main tasks: experiment execution and measurement data analysis. The
complete root cause searching approach is depicted in Listing 2. If the Ramp antipattern

Listing 2 Recursive root cause analysis approach

1: function FindRootCauseMethods(mp, M)
2: Cp ← DetermineCallChildren(mp)
3: AdaptInstrumentation(Cp)
4: D ← ExecuteExperiments
5: Gp ← SeparatedTimeWindowsAnalysis(D)
6: if Gp 6= ∅ then
7: for all mg

j ∈ Gp do
8: FindRootCauseMethods(mg

j , M)
9: end for

10: else
11: M ←M ∪ {mp}
12: end if
13: end function

has been detected, we now that the top level method mtop of the usage profile exhibits
an increasing response time behaviour. In order to find a guilty method we dig into the
parent method mp analyzing the behaviour of all directly invoked child methods mi. We
use byte code analysis to find out which methods mi are invoked by a parent method mp:

mi ∈ Cp = {m|m invoked by mp} (6.17)
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Let R be the set of all methods exhibiting a Ramp behaviour. Using this information we
are able to dynamically adapt the instrumentation (cf. Chapter 5) by removing monitoring
probes from mp and injecting probes into the child methods mi. Having instrumented the
child methods, we execute the same experiments as for the detection of the Ramp applying
the Separated Time Windows approach. As measurement data we get for each observed
child method mi chronologically separated sets of response times. On these sets we perform
for each mi the Separated Time Windows Analysis selecting guilty child methods mg

j :

mg
j ∈ Gp = {m|m ∈ Cp ∧m ∈ R} (6.18)

For all mg
j , we recursively repeat all steps until we find a root cause method mrc for which

the following applies:
Crc = {m|m invoked by mrc} (6.19)

Grc = {m|m ∈ Crc ∧m ∈ R ∧m is within system boundaries} = ∅ (6.20)

In this way, we get a set M of methods which we suppose to be responsible for the Ramp
behaviour observed at the root of the call tree.

Note, if the Ramp antipattern is caused by some external sources, random effects can
occur. For instance, methods which do not cause the Ramp behaviour would be identified
as the “guilty” ones. However, as we repeat measurement experiments several times the
probability to observe such random distortion effects is very low.

6.3.2.2. Evaluation

We applied the described root cause analysis approach on all scenarios containing the
Ramp antipattern (Scenario 1, 2 and 10, cf. Figure 6.3). In all cases we were able to find
the actual method causing the Ramp behaviour. For instance, in the case of Scenario 10
this approach recognized the checkForDuplicate(...) method (cf. Listing 1) as the root
cause. In Scenario 2, this approach discovered the checkForDuplicate(...) method as
a root cause, too. Actually in Scenario 2, the Ramp is caused by a Dormant References
antipattern. Nevertheless, the checkForDuplicate(...) method is a root cause, too,
as this method accesses the data structure which causes the Ramp. Thus, the detection
of method checkForDuplicate(...) as root cause for the Ramp in Scenario 2 is not a
wrong decision.

Listing 3 Iterative root cause analysis approach

1: function FindRootCauseMethod(mp)
2: Gp ← {mp}
3: while Gp 6= ∅ do
4: mp ← SelectMostPromisingMethod(Gp)
5: Cp ← DetermineCallChildren(mp)
6: AdaptInstrumentation(Cp)
7: D ← ExecuteExperiments
8: Gp ← SeparatedTimeWindowsAnalysis(D)
9: end while

10: return mp

11: end function

In regard to functionality this root cause searching approach works well. However, in order
to apply this approach one assumption has to be made. For this approach we assume that
repeating experiments with an equal configuration results in equal or at least similar call
trees and response time behaviours. Most applications exhibit such stable behaviour.
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However, this approach is not suited for applications containing randomized code as in
these cases the call tree structure is not stable among individual experiments.
Furthermore, there is potential for improvement regarding extra functional attributes.
In our scenarios we use a quite simple software system yielding simple call trees during
experiment execution. In realistic systems these call trees may become much larger. As
the number of required experiments depends on the call tree depth and the degree of
branching a breadth-first search is inapplicable in realistic systems. Therefore, we suggest
to reject the recursive search and the expectation to find all possible root cause methods. A
more applicable approach is to search only for the most promising root cause. This would
transform the recursive approach from Listing 2 into a iterative approach as depicted in
Listing 3. In this case, from the set of guilty child methods Gp only the most promising
method is selected for further analysis. In order to realize this selection we use the p-
values of the t-tests applied during the Separated Time Windows Analysis. A small p-value
indicates a high probability that the considered samples of a t-test originate from different
populations. Thus, the most promising method for the root cause is the method with the
smallest p-value as this indicates the greatest increase in response times.

6.3.3. Summary

In this section, we investigated different detection techniques for the Ramp antipattern.
Analysis techniques based on chronologically continuous measurement data proved to be
not suited for detecting the Ramp. However, abstracting from the workload intensity
under observation we introduced the Separated Time Windows approach which provided
correct detection results for all considered scenarios. Based on this detection technique,
we developed an approach for root cause analysis. While the recursive approach finds
all possible root causes, the iterative approach searches only for the most promising root
cause. However, because of the need for a huge amount of experiments the recursive
approach is not applicable in realistic environments.

6.4. The Dormant References Detection

In the previous section, we considered root cause analysis techniques for the Ramp an-
tipattern which are suitable for finding specific methods causing the Ramp behaviour. In
this section, we investigate another possible cause for the Ramp which is an antipattern
for itself: the Dormant References antipattern.

6.4.1. Experiment Configuration

For the detection of the Dormant References antipattern it is necessary to examine the
memory consumption of the target software system. If a software system contains a Dor-
mant References antipattern the memory consumption increases over time. Therefore, for
this antipattern we use a similar experiment configuration as for the Separated Time Win-
dows Analysis in Section 6.3.1.2. Each experiment is divided into a warm-up phase and a
measurement phase. During the warm-up phase we do not take any measurements, how-
ever, we use a high workload intensity to push a potential Dormant References antipattern.
Equivalently to the Ramp antipattern the Dormant References is an antipattern whose oc-
currence does not depend on the concurrency level. Moreover, a high concurrency level
may impair the typical Dormant References behaviour. Thus, in order to avoid synchro-
nization effects we use a closed workload with only one user for the measurement phase.
During the measurement phase we sample the memory consumption of the corresponding
process.
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6.4.2. Analyzing Memory Consumption

Accurately retrieving the memory consumption of an application is a challenge if the
application is written in a programming language based on managed memory (like Java
or C#). Automatic, non-deterministic garbage collection makes it difficult to determine
the actual memory consumptions. If we retrieve the memory consumption M of the
corresponding application process, M does not necessarily correspond to the actually used
memory size. M is the sum of actually used memory U plus the size G of garbage objects
which have not been collected by the garbage collector yet: M = U + G. However, it is
not possible to determine U or G, as garbage collection is not deterministic. In particular,
it is not possible to invoke the garbage collection explicitly. In java, for instance, we
can only suggest the system to use the next opportunity to run garbage collection. We
use this service to increase the opportunity for accurate measurements of the memory
consumption. Each time we measure the memory consumption, we suggest the system to
perform garbage collection. In general, garbage collection influences measured response
times as it is a rather time consuming task. During the measurements for the Dormant
References antipattern we are not interested in response times. Thus in this case, garbage
collection does not influence our measurement results negatively.
Executing the measurement experiments, we get for each warm-up phase duration wi a
sample Mi = (M1

i , . . . ,M
m
i ) of memory usages. Let Xi be the random variable for the

sample Mi and M̄i its mean value. In order to detect an increase in memory consumption
we execute n− 1 t-tests on the samples Mi and Mi+1 (1 ≤ i < n) with the following null
hypotheses:

H i
0 : µi = E[Xi] = E[Xi+1] = µi+1 (6.21)

If each t-test rejects the corresponding null hypothesis and M̄i < ¯Mi+1, we consider that
memory consumption increases with the duration wi of the warm-up phases. Thus, the
Dormant References antipattern is detected if the memory consumption increases over
time.
We applied this detection approach on all scenarios which yielded the results depicted in
Table 6.4. The first column contains the expectation vector ~vdr for the Dormant References
antipattern. The column “original” contains the detection vector for the ten original sce-

Scenarios ~vdr original KB MB

Scenario 1 N N N N

Scenario 2 D N N D

Scenario 3 N N N N

Scenario 4 N N N N

Scenario 5 D N N D

Scenario 6 N N N N

Scenario 7 N N N N

Scenario 8 N N N N

Scenario 9 N N N N

Scenario 10 N N N N

detection error
rate

— 0.2 0.2 0.0

Table 6.4.: Memory consumption analysis for different magnitudes of memory sizes.
D: detected, N: not detected, red/italic: wrong decision

narios as they where described in Section 6.1.2. For all scenario, the Dormant References
antipattern could not be detected. This leads to wrong decisions for Scenario 2 and 5
which both contain the Dormant References antipattern. Although, in Scenario 2 and 5
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the corresponding repositories grow over time this circumstances could not be observed
in the measurements. Figure 6.7 shows that the measured memory consumption does not
increase with the duration of warm-up phases.
The transaction objects stored by the Transaction Manager of the Online Banking system
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Figure 6.7.: Memory consumption measurements for Scenario 2 (using small transaction
objects)

(cf. Section 6.1.2) have a memory size of some bytes. As mentioned before, measuring
the memory consumption has only a low accuracy. Even if some thousands of transac-
tions are stored in the repositories of Scenario 2 or Scenario 5, the memory consumption
increases only by some kilo bytes. This small increase cannot be captured accurately by
measurements. We repeated the experiments with bigger transaction objects. Even using
transaction objects of one kilo byte size yields the same wrong detection decisions which
is depicted in column “KB” of Table 6.4. Only when using transaction objects with a size
within the range of mega bytes the increase of memory consumption could be detected
(cf. column “MB” of Table 6.4). In this case the detection error rate is zero. Figure 6.8(a)
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(a) Increasing memory consumption in Scenario 2
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(b) Constant memory consumption in Scenario 3

Figure 6.8.: Memory consumptions for Scenario 2 and 3 using big transaction objects

shows the increase of memory consumption in Scenario 2 when using big transaction ob-
jects. Using big transaction objects in Scenario 3, for instance, does not lead to increasing
memory consumption (cf. Figure 6.8(b)).

6.4.3. Evaluation

The analysis technique for the Dormant References antipattern is similar to the one of the
Ramp antipattern. The only difference is the data on which the analysis is performed.
For the Dormant References antipattern we need accurate measurements of the memory
consumption. However as mentioned before, in the scope of programming languages like
Java or C# it is difficult to measure memory consumption accurately. Therefore, we were
not able to provide a detection technique allowing us to detect small memory increases.
However, we developed a detection technique which allows for discovering larger differences
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in memory consumption.
Furthermore, we were not able to determine root causes of the Dormant References an-
tipattern. Root causes of the Dormant References antipattern are either specific data
structures or single references, which are not used anymore, but which are held in the
memory. For the detection of these root causes two steps are required. Firstly, we have to
retrieve a list of objects ranked by their memory consumption. Secondly, objects have to
be selected which are not used any more. While the first step is theoretically possible, the
second step is quite difficult, as semantics are needed to determine which objects will not
be used anymore. In practice even the first step is not realizable such that the ranking
can be provided within a satisfactory time frame. For these reasons, we were not able to
find detection techniques for the root causes of the Dormant References antipattern.
To sum up, accurate detection and root cause analysis for the Dormant References an-
tipattern remain challenges for future work.

6.5. The One Lane Bridge Detection

In this section, we evaluate different detection alternatives for the One Lane Bridge (OLB)
antipattern and examine approaches to find the root causes for this antipattern.

6.5.1. Detection

The OLB antipattern is based on the assumption that the application contains a synchro-
nization point which blocks several threads under concurrent execution. Thus, in order to
detect an OLB we must examine the portion of time each single thread is blocked during
processing of a request. In the following, we investigate different approaches to derive this
portion of time and introduce an analysis technique for detecting the OLB antipattern
based on this information.

6.5.1.1. Experiment Configuration

For the detection of the Ramp antipattern (cf. Section 6.3) we avoided concurrency during
experiment execution in order to eliminate synchronization effects. In contrast, for the ex-
amination of the OLB antipattern we are especially interested in blocking and concurrency
behaviour. If an application contains an OLB, we expect that the amount of time a user
request is stuck at a synchronization point increases with the concurrency level. In order
to investigate the dependency between concurrency level and blocking behaviour, we have
to control the concurrency level systematically. For this purpose, we use a closed workload
for the following experiments. We set the think time for the workload to zero. By this
means, we can guarantee a constant concurrency level during a single experiment. Starting
with a workload intensity (w1 = 1) of of one user, we increase the workload intensity from
one experiment to the next by a constant c: wi+1 = wi+c. Using this workload we observe
different measurement values which depend on the actual detection technique.

6.5.1.2. Direct Blocking Times Analysis

One of the most intuitive ways to examine the OLB is to capture the blocking times
of single service requests. The blocking time of a request is the amount of time the
corresponding thread is blocked by another thread. In general, a request is blocked if it
waits to acquire a passive resource which is utilized by another thread. For the Direct
Blocking Times Analysis, we capture the blocking time of each user request. For this
purpose, we instrument the top level interface with measurements probes which are able
to extract the blocking time. While varying the workload intensity wi, we analyze the
dependency between the concurrency level and the blocking times. The synchronized
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6.5. The One Lane Bridge Detection 75

methods scenario (Scenario 6) is a typical example for the One Lane Bridge antipattern.
The mean response times and blocking times for this scenario are depicted in Figure 6.9(a).
As one can see, the response times are dominated by the blocking times. In particular,
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(a) Scenario 6 - synchronized methods
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(b) Scenario 7 - resolved synchronization

Figure 6.9.: Mean response time and blocking time behaviour for Scenario 6 (positive OLB
scenario) and Scenario 7 (negative OLB scenario)

the blocking times increase with the number of concurrent users. In contrast, the blocking
times for Scenario 7 (cf. Figure 6.9(b)) do not increase significantly with the number of
concurrent users as this scenario does not contain an OLB. These two examples suggest
that blocking times increasing with the concurrency level indicate an OLB. This idea can
be used to detect this antipattern. Similar to the detection of the Ramp antipattern, we
examine whether blocking times increase significantly with the number of concurrent users.
For this purpose, we utilize the t-test:
Let w1, . . . , wn (wi+1 > wi) be the examined workload intensities (in the following called:
concurrency levels). For each concurrency level wi we observe a sample Si = B1, . . . , Bki of
blocking times Bj . For each sample Si let S̄i be the mean value and Xi the corresponding
random variable with the expected value µi. On the samples S1, . . . , Sn, we execute n− 1
t-tests with the following samples as input:

1 ≤ i < n :

{
sample 1: Si

sample 2: Si+1

(6.22)

For each t-test we define the following hypotheses:

H i
0 : µi = E[Xi] = E[Xi+1] = µi+1 (6.23)

H i
1 : µi 6= µi+1 (6.24)

As significance level for the t-tests we use α = 0.05. If all t-tests reject the null hypothesis
and S̄i < ¯Si+1, we consider that for all observed concurrency levels the blocking times for
concurrency level wi+1 are significantly greater than for a lower concurrency level wi. In
this case we assume the presence of the OLB antipattern in the examined application. If
at minimum one t-test has a non-significant result or µi ≥ µi+1, the OLB is not detected.
Applying this analysis technique on all scenarios, we yielded the results depicted in col-
umn “Blocking Times Analysis” of Table 6.5. The column “ ~volb” contains the expectation
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76 6. Antipattern Detection in Detail

vector for the OLB antipattern. According to Table 6.5, the Blocking Times Analysis has
a detection error rate of 0.2. Wrong decisions were made for Scenario 8 and 10 which both
contain the database manifestation of the One Lane Bridge antipattern. In Figure 6.10, we
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Figure 6.10.: Mean response time and blocking time behaviour of Scenario 8 which contains
the database manifestation of the OLB antipattern

depicted mean response times and mean blocking times over the concurrency level for Sce-
nario 8. Although the response times increase significantly, there is no significant growth
regarding the blocking times. Moreover, the blocking times are close to zero. Apparently,
the blocking times caused by the database lock in Scenario 8 where not captured.
The instrumentation we used for this analysis technique captures the blocking times of
all threads at the applications layer. As we deployed the database on a dedicated node,
blocking behaviour which occurs on the database node is not captured by the instrumen-
tation probes. Thus, the considered detection technique is suitable for detecting One Lane
Bridges ot the application layer, however, this technique is not sufficient to detect the
database manifestation of this antipattern.

Scenarios ~volb
Blocking Times Approx. Blocking Times Analysis

Analysis naive advanced

Scenario 1 N N D N

Scenario 2 N N D N

Scenario 3 N N D N

Scenario 4 N N D N

Scenario 5 N N N N

Scenario 6 D D D D

Scenario 7 N N D N

Scenario 8 D N D D

Scenario 9 N N D N

Scenario 10 D N D D

detection error
rate

— 0.2 0.6 0.0

Table 6.5.: Comparison of detection techniques for the OLB antipattern.
D: detected, N: not detected, red/italic: wrong decision

6.5.1.3. Approximated Blocking Times Analysis

In order to overcome the problem of the Direct Blocking Times Analysis, in this section
we use another metric for detecting an OLB. We use the same experiment configuration
as before, however, instead of capturing the blocking times, we capture the CPU time and
the response time for each service request. The CPU time of a request is the accumulated
time the corresponding thread is served by the CPU. Thus, considering an isolated request
Q (without concurrency effects) there is the following dependency between the actual
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6.5. The One Lane Bridge Detection 77

response time RQ and the CPU time TQCPU of the request:

RQ ≈ TQCPU +WQ (6.25)

Excluding concurrent execution, the waiting time WQ comprises the amount of time when
the request Q is waiting for an event or other circumstances occur preventing Q from
being serviced by the CPU. In this trivial case WQ depends only on Q which allows us
to approximate the blocking times Bj (cf. Section 6.5.1.2) with WQ. Using this approxi-
mation, we can calculate for each considered concurrency level wi the set of waiting times
Wi. Under the naive assumption that Equation 6.25 approximates the behaviour under
concurrent execution, we apply the Direct Blocking Times Analysis (cf. Section 6.5.1.2)
on the sets Wi. The detection results are depicted in the column “naive Approximated
Blocking Times Analysis” of Table 6.5. The detection error rate for this analysis technique
is 0.6. This high error rate is caused by the generous approximation of the blocking times.
Equation 6.25 applies only under very low CPU utilization. The situation is more complex
under concurrent execution with a higher CPU utilization.
Let (Q1, . . . , Qm) be the set of concurrent requests. For the first consideration let us as-
sume that we have only one CPU. As all the requests Qi share the same CPU, high CPU
utilization indicates CPU contention. Thus, we have the following dependency:

RQi ≈ T ∗ +WQi , T ∗ =
m∑
j=1

(
T
Qj
CPU (tiout)− T

Qj
CPU (tiin)

)
(6.26)

Here, RQi is the response time of request Qi and WQi the waiting time, respectively.
Instead of using the CPU time TQiCPU of the considered request Qi, in Equation 6.26, we
consider resource sharing effects by defining T ∗. T ∗ accumulates the CPU demands of all

requests which compete for the CPU during execution of Qi. T
Qj
CPU (t) is the CPU time

of request Qj at the timestamp t, while tiin and tiout enclose the execution time interval of
Qi. In particular, the following applies:

RQi = tiout − tiin (6.27)

In general, T ∗ is the CPU time consumption within the interval [tiin, t
i
out] of the application

process P containing all request threads Qj .
If there is a number of n CPUs, T ∗ contains the sum for all CPUs. Therefore, we have to
adopt the Equation 6.26 as follows:

RQi ≈ T ∗

n
+WQi (6.28)

For the realization of the Advanced Approximated Blocking Times Analysis technique, we
capture for each request Q its response time and the CPU consumption of the parent
process during the execution of Q. According to Equation 6.28, for each concurrency level
wi we calculate the sets of waiting times Wi. Again, we approximate the blocking times
with the waiting times Wi on which we apply the Blocking Times Analysis. The results
for this analysis technique are depicted in the last column of Table 6.5. As one can see,
the detection vector of the Advanced Approximated Blocking Times Analysis technique is
equal to the expectation vector for the OLB antipattern resulting in a detection error rate
of zero.
In the following, we examine different techniques for finding root causes of the One Lane
Bridge.
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78 6. Antipattern Detection in Detail

6.5.2. Root Cause Analysis

According to Figure 6.1, we investigate two possible root causes for the OLB antipattern.
In the following we introduce a root cause analysis technique for each root cause.

6.5.2.1. Synchronized Methods Root Cause

In this subsection we introduce the Synchronized Methods Root Cause Analysis (SMRCA)
which is responsible to identified synchronized methods manifestations of the OLB an-
tipattern. This manifestation of the One Lane Bridge occurs if one or more synchronized
methods at the application layer cause long queues and great blocking times. More pre-
cisely, in this case the actual root cause is not the synchronized method itself but the
object for which the method acquires a lock. In order to detect these objects, we use the
same experiment configuration as for the detection of the OLB antipattern. The idea is to
perform a similar analysis technique as in Section 6.5.1 on all synchronized methods. Thus,
instead of capturing (or approximating) the blocking times for the whole service request
we have to capture the blocking times for each object which is locked by a synchronized
method during service execution. Because of technical reasons it is difficult to capture
directly the blocking times for a synchronized method. For this purpose we would have to
find all calls to a synchronized method by performing static code analysis. However, this
task is too expensive. In contrast, capturing the service times, the queue length and the
throughput of a synchronized method entails only a low overhead. Therefore, we instru-
ment each synchronized method with a service time, throughput and a queue length probe.
Executing the experiments according to the experiment configuration described in Section
6.5.1.1 yields for each concurrency level (or workload intensity) wi a mean throughput X,
a sample of queue lengths (Q1, . . . , Qk) and a sample of service times (S1, . . . , Sl). Based
on this data we use Little’s Law (cf. Chapter 2.4) to derive for each concurrency level wi
the mean blocking time B of the considered object. For the application of Little’s Law we
consider the locked object and all synchronized methods locking this object as one system.
Let us assume we have an object which is locked only by one synchronized method m. In
this case the situation is quite simple as schematically depicted in Figure 6.11. We have

Locked Object

m
l X

R

B S

Q

Figure 6.11.: Object locked by one method.

one server representing method m and one queue with a mean queue length Q. As we
use a closed workload for measurements, considered over a longer period of time we have
a steady system state such that the mean arrival rate λ is equal to the mean throughput
X. The mean number of requests within the considered system is the queue length plus
one request which is serviced by m: N = Q + 1. The response time of one request is the
blocking time plus the service time: R = B+S. From the measurements we get the mean
throughput X, the mean queue length Q and the mean service time S. Applying Little’s
Law we calculate the mean blocking time B:

R =
N

X
||R = B + S,N = Q+ 1 (6.29)

B =
Q+ 1

X
− S (6.30)
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If an object is locked by multiple synchronized methods, the situations is more complex.
This general case is depicted in Figure 6.12. As n synchronized methods lock the object,

Locked Object

mn

ln Xn

m1
l1 X1

...
l...

R1

Rn
Sn

S1

B

Q

R

Figure 6.12.: Object locked by multiple methods.

there are n servers (m1, . . . ,mn) representing these methods. At an arbitrary point of
time only one server is allowed to serve a request which is illustrated by the rhombus
in Figure 6.12. As all methods mi lock the same object only one queue exists for the
considered object. Although each method mi has an individual arrival rate λi, all requests
have to pass the same queue with a mean queue length Q and a mean blocking time B.
Consequently, the mean response time of a method mi is the mean blocking time plus the
mean service time of mi: Ri = B + Si. In order to apply Little’s Law on this system, we
have to abstract from individual methods mi to get a model as depicted in Figure 6.11.
For this purpose, we aggregate values which depend on single methods mi:

λ =
n∑
i=1

λi ≈
n∑
i=1

Xi = X (6.31)

S =
1

n

n∑
i=1

Si (6.32)

R =
1

n

n∑
i=1

Ri (6.33)

Using these aggregated values we can apply Little’s Law to derive the mean blocking time
B:

R =
N

X
(6.34)

1

n

n∑
i=1

Ri =
Q+ 1

X
(6.35)

1

n

n∑
i=1

B + Si =
Q+ 1
n∑
i=1

Xi

(6.36)

B =
Q+ 1
n∑
i=1

Xi

− 1

n

n∑
i=1

Si (6.37)

Applying Equation 6.37 on the measurement data for each concurrency level wj yields a
set of mean blocking times Bj . Similar to the Blocking Time Analysis in Section 6.5.1, we
compare the mean blocking times pairwise. As Bj are absolute values and not samples of
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80 6. Antipattern Detection in Detail

blocking times, we cannot apply the t-test to compare Bj with Bj+1. Therefore, we perform
an absolute value comparison taking into account a small offset ε. More precisely, we
assume the considered locked object to be the root cause for the detected OLB antipattern,
if:

∀1 ≤ j < n : Bj+1 > Bj + ε (6.38)

Thus, if the blocking times at a locked object O increase with the concurrency level, O is
a possible root cause for the detected OLB.

We applied this root cause analysis step on all scenarios which contain an One lane Bridge
(Scenario 6, 8 and 10). Scenario 6 contains a synchronized methods manifestation of the
One Lane Bridge. Thus we expect the SMRCA to find a locked object which is responsible
for the OLB. Both, Scenario 8 and Scenario 10 contain an OLB, however, the root cause
in this case is a locked database table. Therefore, we expect that the SMRCA does not
find any locked objects which cause the OLB.
Actually, during the execution of Scenario 8 no synchronized methods are invoked. Thus,
SMRCA did not detect any root causes. Scenario 10 contains some synchronized methods,
however, the blocking times of these methods are so small that the corresponding locked
object does not cause an OLB under the considered workloads. Figure 6.13(b) shows
the mean blocking times for Scenario 10 which do not monotonously increase with the
concurrency level. Consequently, SMRCA does not identify the corresponding blocked
object as the root cause for the OLB in Scenario 10. In Scenario 6, the viewAccountState
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(a) Scenario 6:
synchronized methods manifestation of the OLB
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(b) Scenario 10:
database lock manifestation of the OLB

Figure 6.13.: Mean blocking times for the corresponding locked objects of Scenario 6 and
Scenario 10

service is a synchronized method (cf. Section 6.1.2) locking the corresponding Account
Manager object. Thus, the implementation of the Account Manager in Scenario 6 is the
root cause for the occurring OLB. Consequently, the blocking times caused by the Account
Manager increase strictly with increasing concurrency level as depicted in Figure 6.13(a).
The analysis technique SMRCA recognizes these circumstances and identifies the Account
Manager instance as a possible root cause for the OLB antipattern in Scenario 6.

6.5.2.2. Database Lock Root Cause

In this subsection we introduce the Database Lock Root Cause Analysis (DBRCA) intended
to find database locks which cause an One Lane Bridge. In general, we again can apply
the Blocking Times Analysis technique to detect the database root cause of the OLB.
However, instead of observing or calculating the blocking times of single synchronized
methods, we have to determine the blocking times of individual database accesses. As
we consider the database as a black-box it is not possible to capture the blocking times
of database requests. In particular, we can not distinguish requests which are blocked
within the database from requests which are performed concurrently by the database
application. However, it requires only little effort to measure the response times of database
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accesses. For this purpose, we instrument all classes which implement certain database
access interfaces with response time probes. For instance in the case of Java environments
paired with usage of JDBC, we dynamically instrument all implementations of the JDBC
interface. We execute the same experiment series as before varying the concurrency level
from experiment to experiment. The experiments provide for each concurrency level wi
and each database access operation a response time sample Ri. Let Xi be the random
variable for the sample Ri. As done with blocking times in Section 6.5.1.2, we perform
n − 1 pairwise t-tests on the response time samples Ri and Ri+1 with the following null
hypothesis:

H i
0 : µi = E[Xi] = E[Xi+1] = µi+1 (6.39)

If for all 1 ≤ i < n the t-tests reject the corresponding null hypothesis and ¯Ri+1 > R̄i,
we consider that response times increase significantly with the concurrency level. The
consequence of this discovery is that the database is some kind of bottleneck during the
execution of the target software system. In general, there might be two possible reasons
why a database becomes a bottleneck. Either the bottleneck is caused by a passive re-
source, for instance a database lock, or an active resource is the bottleneck. In the latter
case, the corresponding active resource (for instance a CPU) is highly utilized. High CPU
utilization on the database node could be the consequence of bad resource planning or
other performance antipatterns like the Stifle (cf. Chapter 2.1.3.3). In contrast, a bottle-
neck caused by a passive resource is a classic OLB antipattern which does not compulsorily
lead to high (hardware) resource utilizations. Thus, in order to distinguish these two cases
we additionally monitor the CPU utilization of the database node. If for any considered
concurrency level the mean utilization of at minimum one CPU on the database node
exceeds a threshold ThCPU = 90%, we assume a CPU bottleneck. If the CPU utilization
is low for all considered concurrency levels and the database access response times increase
strictly, we assume a database lock manifestation of the OLB antipattern.
We applied the DBRCA technique on all scenarios containing an OLB antipattern. Al-
though Scenario 6 contains database accesses, these database requests do not cause an
OLB. Consequently, the response times of these requests do not increase with the con-
currency level. Therefore, the DBRCA technique did not find any database lock which
could be the root cause for the observed OLB. In the cases of Scenario 8 and 10, long SQL
update statements lock the target database table for long time intervals causing a typical
One Lane Bridge. Accordingly, the response times of database requests increase strictly
with the concurrency level while the CPU utilization on the database node is quite low
(less than 20%). The measurement results for these both scenarios are depicted in Figure
6.14. In both cases, the DBRCA technique recognized these circumstances as indicators
for a database lock which causes the observed OLB.
In order to investigate the case when the CPU of the database node becomes a bottleneck,
we modified Scenario 7. As described in Section 6.1.2 the viewAccontState service of the
Online Banking system makes requests to the database to retrieve information. In Sce-
nario 7, these requests where are quite simple such that the database is utilized to a quite
low degree. Modifying these database requests to quite complex SQL queries increases the
database utilization significantly. In the following, we call the modified scenario: Scenario
7*. This modification makes Scenario 7* to a positive scenario for the Varying Response
Times problem and the One Lane Bridge. Applying the DBRCA technique on Scenario
7* yields the results depicted in Figure 6.15. Similar to Scenario 8 and 10, the response
times increase steadily with the concurrency level. However, the CPU utilization of the
database node exceeds 90% for a concurrency level greater than 5 users. In this scenario,
the DBRCA technique recognizes a database CPU bottleneck. Thus, the overload of the
database CPU is the reason why response times increase with the concurrency level.
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(a) Scenario 8:
isolated database manifestation of the OLB
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(b) Scenario 10:
database manifestation of the OLB interacting with
other antipatterns

Figure 6.14.: Mean response times and database CPU utilization for scenarios containing
the database manifestation of the OLB antipattern.

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0
Number of Users

0

250

500

750

1.000

R
es

p
o

n
se

 T
im

e 
[m

s]

(a) Response times
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(b) Utilization

Figure 6.15.: Mean response times and database CPU utilization for Scenario 7*

6.5.3. Summary

In this section, we introduced two detection techniques for the One Lane Bridge antipat-
tern. Both detection techniques are based on the analysis of blocking times in dependence
of the concurrency level. However, the detection techniques differ in the way blocking times
are measured or derived from other metrics. For both possible root causes of the One Lane
Bridge we introduced analysis techniques which are based on the same experiment con-
figurations as the detection part. In order to find the root causes we investigate blocking
times and response times for methods and requests on a more detailed level. Using Little’s
Law we derived the blocking times of synchronized methods. Database manifestations of
the One Lane Bridge are discovered by analysing the response times of database requests
paired with an analysis of the CPU utilization of the database node. In this way, we are
able to distinguish database locks from database CPU bottlenecks.
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7. Evaluation

In this chapter, we evaluate the described antipattern detection approach on a more real-
istic software system. For this purpose, we examine a Java implementation of the TPC-W
Benchmark [Tra02]. In Section 7.1, we briefly describe main aspects of the TPC-W Bench-
mark, including the system under test, the workload specification and a solution model.
In Section 7.2, we describe the experiment setup for evaluation. Finally in Section 7.3,
we present and discuss the results of the antipattern detection approach applied on the
TPC-W scenario.

7.1. TPC-W Benchmark

In this section, we introduce the TPC-W Benchmark following the descriptions in [Tra02]
and [Men02]. In general, a benchmark is a specification of a software system which is
used to compare different hardware configurations, environment setups or implementa-
tions. The Transaction Performance Processing Council (TPC) [tpc] is one of the most
important organisations providing benchmarks for databases and transaction processing
solutions. TPC-W [Tra02] is a benchmark for investigating the scalability of web commerce
solutions. This includes the evaluation of used database, application implementation, web
infrastructure as well as underlying hardware. In general, a benchmark specifies three main
aspects. Firstly, a benchmark describes the architecture and dynamic aspects of a system
under test (SUT). The SUT specified in TPC-W is intended to emulate the performance
behaviour of a web commerce application as realistic as possible. Secondly, a workload has
to be specified which is submitted to the SUT. Finally, performance metrics are specified,
which are used to compare different alternatives.
In this thesis, we do not use the TPC-W Benchmark for comparing alternatives of web
commerce solutions. However, we use the SUT specification of the TPC-W Benchmark
as a realistic scenario for evaluation of our antipattern detection approach. Therefore,
we are not interested in the performance metrics specified by the TPC-W Benchmark.
For this reason, we abstain from introducing the performance metrics specified within
TPC-W. In the following, we introduce only the TPC-W specification of the SUT and the
corresponding workloads.
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7.1.1. System Under Test: Bookstore Emulator

The TPC-W Benchmark provides a specification for an emulator of a bookstore appli-
cation. This bookstore application serves as a representative for realistic web commerce
applications. Like most web commerce solutions, the bookstore application comprises
three layers: a web layer, an application layer and a data layer. On the web layer, the
bookstore application provides several services comprising the following user interactions:

• Home: Generates and shows the home web page of the bookstore which serves as
the common navigation point. All user activities start with this interaction.

• Shopping Cart: Used to update the state of the cart by adding new items to the
cart or updating the state of existing items.

• Customer Registration: Allows a user to register as a new customer or to au-
thenticate as a known customer. This action is a precondition for a buy request.

• Buy Request: Generates a web page summarizing all selected items and providing
input fields for entering billing information.

• Buy Confirm: Generates a new order from the current cart state and shows a
purchase confirmation web page. During purchase processing the bookstore accesses
an external system (the Payment Gateway) for payment authorization.

• Order Inquiry: Generates and shows a web page containing input fields for iden-
tifying a customer in order to inquire the last order of the corresponding customer.

• Order Display: Retrieves information about the last order of the identified cus-
tomer and shows this information on a generated web page.

• Search Request: Generates and shows a web page containing input fields for sub-
mitting a search request.

• Search Result: Performs a search on items in the bookstore according to entered
key words in the search input field of the search request web page. Shows the search
result on a generated web page.

• New Products: Generates and shows a web page containing a list of new items in
the bookstore.

• Best Sellers: Generates and shows a web page containing a list of best selling items
in the bookstore.

• Product Detail: Retrieves and shows detailed information about a selected prod-
uct.

• Admin Request: Allows a bookstore administrator to update items of the book-
store.

• Admin Confirm: Executes an item update request of an administrator and shows
the result.

These interactions are described in more detail in [Tra02]. Each user interaction triggers
the execution of application code which accesses a transactional database on the data
layer in order to retrieve and update customer or ordering information. The TPC-W
Benchmark specification prescribes the implementation of a minimum of eight database
tables containing information about customers, addresses, countries, orders, order lines,
items, authors and credit card transactions. The corresponding database schemas are
described in [Tra02]. Furthermore, in [Tra02] TPC prescribes rules for implementing and
realising the bookstore. Beyond the scope of these rules, it is up to the TPC-W solution
provider how the bookstore is implemented.
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7.1.2. Workload Specification

In the previous section we listed the services provided by the bookstore to the system
users. The usage of these services is described by the workload specification which is
an important part of the TPC-W Benchmark. A workload specification describes two
things: the user behaviour and the workload intensity. In the TPC-W specification the
user behaviour is described by a Customer Behaviour Model Graph (CBMG) [Men02]. A
CBMG is a Markov Model describing for each two interactions A and B the probability
pA→B that an user performs interaction B directly after interaction A. Figure 7.1 shows
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Figure 7.1.: Customer Behaviour Model Graph (following [Men02])

possible transitions between the services provided by the bookstore. Depending on the
workload mix the arcs can be annotated with different probabilities. TPC divides the
bookstore user interactions into two categories:

• Browse: Home, New Products, Best Sellers, Product Detail, Search Request and
Search results

• Order: Shopping Cart, Customer Registration, Buy Request, Buy Confirm, Order
Inquiry, Order Display, Admin Request and Admin Confirm

In [Tra02] three workload mixes are defined. The Browsing Mix is specified by 95%
browsing actions and only 5% ordering actions. A Shopping Mix comprises 80% browsing
and 20% ordering. Finally, the Ordering Mix consists of 50% browsing and 50% ordering.
The TPC-W Benchmark prescribes a closed workload whereby the workload intensity is
defined by a number of concurrent users and a think time (cf. Chapter 2.4). Each user
is represented by an Emulated Browser which communicates with the SUT by sending
and receiving HTTP requests. Emulated Browsers follow the Customer Behaviour Model
performing interactions with the specified probabilities. Emulated Browsers are executed
by Remote Browser Emulators (RBE), whereby one RBE can contain a set of Emulated
Browsers. The workload submitted to the SUT is the set of all RBEs.
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7.1.3. TPC-W Solution Model

As the TPC-W Benchmark specification provides many degrees of freedom for implement-
ing and realizing the specified scenario, there is no common implementation of the TPC-W
Benchmark. Here, we describe a typical model of a TPC-W solution following [Smi00].
However, individual implementations can deviate from this model. Figure 7.2 shows a
model of a valid TPC-W solution. The overall setup consists of two parts, the SUT and
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Figure 7.2.: Typical environment configuration for TPC-W (following [Smi00])

aspects which do not belong to the SUT. The layers of the web commerce application
can be mapped to three tiers: a set of Web Servers, a cluster of Application Servers
and a Database Server. As the TPC-W specification does not prescribe a specific server
configuration, this distribution of the layers is not mandatory for realizing the TPC-W
Benchmark. For instance, deploying the three layers on one server is a valid solution,
too. Furthermore, the Image Server and the Web Cache are optional parts of the SUT.
As mentioned before, the Payment Gateway is not a part of the SUT, but is an external
system which is accessed by the Web Servers in order to perform payment authorization.
The Remote Browser Emulators can be distributed among several devices. In the case
of multiple Web Servers, the RBEs communicate with the Web Servers through a Load
Balancer. The Web Servers interpret HTML requests from the Emulated Browsers and
delegate the requests to the Application Server which communicates with the Database
Server. In order to retrieve images the RBEs access the Image Server directly using refer-
ences from the Web Servers.
In the following, we describe the setup we used for evaluation of the antipattern detection
approach.

7.2. Experiment Setup

As mentioned before, we use the TPC-W Benchmark not for comparing alternatives but
as a quasi-realistic scenario for evaluating our detection approach. For this purpose, we
use a Java implementation (from [jav]) of the TPC-W Benchmark. In this implementation
the bookstore is implemented using Java Servlets. Each user interaction is represented
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by a Java Servlet. The Servlets interpret user requests, access directly the database to
retrieve data and create HTML responses. For the management of database connections a
connection pool is used which is accessed by the Servlets to acquire and release database
connections. We use MySQL Community Server 5.5.22 [mys] as database software for the
bookstore application. As web server and application server we use Apache Tomcat 6.0.35
[tom]. The Image Server, Web Cache and Payment Gateway are not implemented in the
used realization. In Figure 7.3, we depicted the server configuration and distribution of
the SUT as we use it for evaluation.

Web Server / Application Server

:Apache Tomcat (6.0.35)

TPC-W
Bookstore

Database Server

OS = SUSE Linux
CPU = 4 x Intel Xeon L5630 (2.13 GHz) (16 Cores)

RAM = 16 GB

OS = Windows XP x64
CPU = 1 x Intel Core 2 Duo E8400 (3 GHz) (2 Cores)

RAM = 4 GB

Measurement Control Node

APD 
Detection

Load
Driver

SoPeCo

Usage 
Adapter

SoPeCo
Satellite

MySQL

OS = Windows 7 x64
CPU = 1 x Intel Core 2 Duo E8400 (3 GHz) (2 Cores)

RAM = 4 GB

SoPeCo 
Satellite

<< JDBC >>

<< HTML / HTTP >>

<< RMI >>

<< RMI >>

Figure 7.3.: Experiment setup for evaluation of the antipattern detection approach

The MySQL database is deployed on a SUSE Linux Server with 16 CPU cores and 16
GB RAM. Running on a Windows XP machine with 2 CPU cores and 4 GB RAM, the
Apache Tomcat instance executes the TPC-W bookstore application. The application
communicates with the database over the Java Database Connectivity (JDBC) interface.
On both nodes SoPeCo Satellites are deployed which are responsible for instrumenting
the SUT and gathering measurement data. The satellite on the database server purely
monitors the utilization of hardware resources. The satellite on the Web Server additionally
performs dynamic instrumentation of the bookstore application code. The Measurement
Control Node is a Windows 7 machine with 2 CPU cores and 4 GB RAM running a
SoPeCo instance (cf. Chapter 2.5), the APD Detection extension, the Load Driver and
the Usage Adapter (cf. Chapter 4.3). SoPeCo communicates over RMI with the satellites in
order trigger dynamic instrumentation and collecting measurement data after experiment
execution. The Usage Adapter realizes a simplified form of the workload described in
Section 7.1.2. The communication with the bookstore effects via HTTP by sending HTML
requests and receiving responses.
As we perform systematic measurement experiments, we are less interested in a realistic
workload mix. We are rather interested in the possibility to control the workload which
is submitted to the SUT. Therefore, we do not utilize the Remote Browser Emulator
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implementation of the used TPC-W solution. Within the Usage Adapter we define an
own workload. In Section 7.1.2, the workload was defined by a Markov Model using
probability values for individual interaction transitions. For antipattern detection, we
define a workload in form of a sequence diagram yielding a fix workload mix which does
not change over time. The user interaction sequence implemented by the Usage Adapter
is depicted in Figure 7.4. Within an interaction scenario, a user visits the Home web
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Search 
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Figure 7.4.: Sequence diagram describing the workload for evaluation of the antipattern
detection approach

page, searches for books, requests the product details for a found book and adds the
corresponding product to the cart. This sequence is repeated five times before the user,
finally, registers as a customer and places an order for the five books in the cart. According
to the workload classification defined within the TPC-W specification (cf. Section 7.1.2)
this workload sequence comprises 20 browsing interactions and 8 ordering interactions.
With an ordering proportion of 28.6% our workload definition is between a Shopping Mix
and an Ordering Mix [Tra02]. Although we define the interaction sequence, we do not
determine workload type and workload intensity in advance. These values are defined
for each detection step individually (cf. Chapter 6) and the corresponding workload is
generated by the Load Driver (cf. Figure 7.3).
Using this experiment setup, we applied the antipattern detection approach described in
this thesis on the TPC-W Benchmark. In the following, we present the results in detail.

7.3. Results

In this section, we present the antipattern detection results for the TPC-W solution de-
scribed in the previous section. The detection approach discovered the Varying Response
Times and the One Lane Bridge antipatterns in the used TPC-W solution. For the Ramp
antipattern the detection result was negative. Consequently, the Dormant References an-
tipattern has not been examined anymore as it is a hierarchical successor of the Ramp
antipattern (cf. Figure 6.1). In the following, we consider the detection results in more
detail.

7.3.1. The Varying Response Times Problem

For the analysis of the Varying Response Times (VRT) problem, response times have been
measured for arrival rates between 1s−1 and 32s−1. In Figure 7.5 the response times are
depicted in dependence on the arrival rate. Measurements have been stopped after an
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arrival rate of 32s−1 as response times increased greatly under this workload intensity (cf.
Chapter 6.2.1.2). As can be seen in Figure 7.5 response times are quite small and have low
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Figure 7.5.: Response times in dependence on the arrival rate
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(a) Response time progression for arrival rate 8s−1
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(b) Response time progression for arrival rate 16s−1

Figure 7.6.: Response times depicted over execution time for arrival rates 8s−1 and 16s−1

variance for arrival rates up to 8s−1. However, for arrival rates about 16s−1 or 32s−1 the
response time values and their range increase greatly. Thus, we have reason to assume that
the SUT runs into an unsteady state under arrival rates greater or equal 16s−1. In Figure
7.6, we depicted the response time progression over execution time for arrival rates 8s−1

and 16s−1. Under an arrival rate of 8s−1 the response times steadily vary between 650 ms
and 850 ms indicating a steady state. In contrast, the response times increase permanently
under an arrival rate of 16s−1. As response times steadily increase under high load but
not under low load it is likely that the considered response time behaviour is caused by
some kind of bottleneck. Actually, the detection approach discovers the VRT problem
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Figure 7.7.: COV for measured response times (points), calculated threshold for COV
(curve)

because values for the coefficient of variance (COV) exceed the calculated threshold (cf.
Chapter 6.2). Figure 7.7 shows the COV values for the measured response times. The
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calculated threshold for COV is illustrated by the curve in Figure 7.7. As response times
increase greatly for arrival rates 8s−1 and 16s−1 the adapted COV threshold (cf. Chapter
6.2.2.2) decreases rapidly, falling below the COV values of the corresponding arrival rates.
Consequently, the detection technique for the VRT problem discovers the arrival rates for
which the SUT presumably is in an unsteady state. As the VRT problem has been detected
the detection process proceeded with investigating the Ramp and the One Lane Bridge
antipattern according to the performance problem hierarchy (cf. Figure 6.1 in Chapter 6).

7.3.2. The Ramp

As mentioned before, the Ramp antipattern was not discovered by the detection approach.
Figure 7.8 shows the measurement data from experiments according to the Separated
Time Windows Analysis (cf. Chapter 6.3.1.2). For single measurement time windows the
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Figure 7.8.: Response times over increasing warm-up time durations

response times vary slightly within a range of 70 ms. However, considered over increasing
warm-up time durations the response times are quite constant. Therefore, the Ramp
antipattern could not be detected.

7.3.3. The One Lane Bridge

For the detection of the One Lane Bridge (OLB), each service on the application layer
has been instrumented automatically in order to retrieve response times and CPU times
of each service request. Based on this data the Advanced Approximated Blocking Times
Analysis (cf. Chapter 6.5.1.3) has been conducted. In six of the eight provided services an
One Lane Bridge has been detected. For the Search Request and the Buy Confirm interac-
tions an OLB could not be found. In Figure 7.9, we exemplary depicted the approximated
blocking times over the concurrency level (Number of Users) for the Buy Request interac-
tion. The blocking times increase monotonously over the concurrency level indicating the
presence of an One Lane Bridge antipattern which forces some execution threads to wait.
The OLB detection technique discovered an OLB antipattern by applying the Advanced
Approximated Blocking Times Analysis (cf. Chapter 6.5.1.2) on this data. Therefore,
a search for OLB root causes has been conducted during the investigation of the OLB
antipattern.

Firstly, the detection approach searched for synchronized methods in the bookstore im-
plementation. However, no synchronized methods has been found in the implementation
of the bookstore. Therefore, the search for a synchronized methods root cause has been
aborted. As a second step, a search for database related root causes has been conducted
automatically. Through dynamic instrumentation monitoring probes for capturing re-
sponse times have been injected in all operations accessing the database or the database
connection pool. For some of these operations the measured response times are depicted in
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Figure 7.9.: Approximated blocking times for the Buy Request interaction

Figure 7.10. The get connection operation is the only one which yields strictly growing
response times under increasing workload intensity. Therefore, the OLB root cause analy-
sis technique discovers this operation as the root cause for the observed One Lane Bridge.
Now, we know that the used TPC-W solution contains a bottleneck which is caused by
the get connection operation. Further interpretations of this detection result have to be
conducted manually. As these steps require much semantics they are not realized in the
scope of the detection approach, yet. Using the detection and measurement results from
the detection approach, in the following, we conduct some further steps to find the actual
reason for the discovered performance problem.
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(a) execute query
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(c) commit transaction
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(b) execute update
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(d) get connection

Figure 7.10.: Response times of database related operations

7.3.4. Interpreting the Result

The response times for executing queries and updates or committing transactions do not
increase with the concurrency level (cf. Figure 7.10(a), (b), (c)). At the same time, the
mean utilization of the CPUs on the database server is very low as can be seen in Figure
7.11(a). Thus, the database itself or the access to the database is not the root cause for
the discovered One Lane Bridge. However, according to Figure 7.10(d) the response times
for getting a database connection increase with the number of concurrent users which
causes a bottleneck. According to the description of the experiment setup (cf. Section
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7.2), database connections are retrieved from a database connection pool (DBCP). As the
DBCP runs on the application server it is possible that the bottleneck is caused by the
machine hosting the application server. However, as depicted in Figure 7.11(b) the mean
utilization of the CPUs on the application server machine does not exceed 70%. Moreover,
the application server quickly reaches an utilization of about 60% which does not grow
anymore with further increase of the concurrency level. Therefore, we have reason to
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(b) Mean CPU utilization of the application server

Figure 7.11.: CPU utilizations

presume that the considered bottleneck is caused by the DBCP itself.
Analyzing the configurations for connection pooling, we discovered that the pool size was
set to 15 connections. As the system has been examined under concurrency levels which
are much higher than 15, it seems that the observed bottleneck is caused by a lack of
available database connections. We reran the antipattern detection approach using DBCP
sizes of 100 and 500 connections. However, the same antipatterns have been discovered as
before. Considering response times from the Varying Response Times measurements we
observe a response time behaviour which is even worse when using pool sizes of 100 or 500
(cf. Figure 7.12). Using a pool size of 15 yields a mean response time about 35s for an
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(a) Pool size: 15
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(b) Pool size: 100
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(c) Pool size: 500

Figure 7.12.: Mean response times measured using different DBCP sizes

arrival rate of 32s−1. For the same arrival rate and a pool size of 100 connections the mean
response time value is 150s. For a pool size of 500 the mean response time is 190s even
for an arrival rate of 16s−1. Thus, increasing the pool size did not solve the bottleneck.
Moreover, the bottleneck behaviour has been intensified. Consequently, more connections
increase the management overhead of the DBCP. Figure 7.13 confirms this presumption.
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(a) Pool size: 15 (red line)
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(b) Pool size: 50 (red line)
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(c) Pool size: 100

Figure 7.13.: CPU times of the get connection operation in dependence on the concur-
rency level for different DBCP sizes

As long as the concurrency level is smaller than the DBCP size the CPU times for retrieving
a database connection increase with the concurrency level. Furthermore, retrieving and
releasing connections from the DBCP are synchronized operations. Thus, more connections
lead to higher CPU times of the get connection operation. Higher CPU times plus
synchronization lead to queueing. Finally, progressive queueing leads to a bottleneck.
Thus, a big DBCP size leads to a bottleneck. On the other hand, a small DBCP size leads
to a bottleneck, too. Although the CPU times do not increase anymore if the concurrency
level exceeds the DBCP size (cf. Figure 7.13), a bottleneck is caused by a lack of available
database connections. In order to solve this scalability problem, the server configuration
of the used TPC-W solution has to be adapted. In particular, more application instances
are needed in order to reduce the bottleneck effect of each used DBCP. However, we do
not investigate other server configurations as this is beyond the scope of this thesis.

7.4. Summary

In this chapter, we conducted a comprehensive evaluation of the antipattern detection
approach introduced in this thesis. For this purpose, we set up a solution of the TPC-W
Benchmark using a Java implementation of the bookstore, one application server machine
hosting Apache Tomcat and one database server machine running MySQL. Instead of using
the workload generation as specified by TPC-W we defined an own interaction sequence.
Using this sequence, different workload types and workload intensities have been applied
to the system under test according to the antipattern detection approach described in
this thesis. The detection approach automatically discovered a Varying Response Times
problem caused by an One Lane Bridge. Furthermore, the get connection operation of
the database connection pool has been automatically identified as root cause for the ob-
served One Lane Bridge. Using this information and measurement data from the detection
approach we easily found the actual reason for the discovered bottleneck by performing
some manual steps. The evaluation in this chapter demonstrates the applicability of the
described detection approach.
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In this thesis, we introduced a measurement-based approach for automatically detecting
performance problems by executing systematic experiments. In this Chapter, we conclude
our work by summarizing the results and defining issues for future work.

8.1. Summary

In order to overcome the problems of existing monitoring-based detection approaches we in-
troduced and combined some concepts. We introduced an adaptive measurement approach
which is based on systematic measurement experiments. Through systematic measurement
experiments we are able to conduct target-oriented search for performance problems. In
particular, the detection results do not depend on a random workload but are yielded
from controlled experiments. For the realization of the adaptive measurement approach
we developed an antipattern detection process and introduced an architecture which is
based on the Software Performance Cockpit.
As our approach is based on analyses of measurement data, we investigated different alter-
natives for capturing this data. In particular, we have shown that the monitoring overhead
of dynamic instrumentation is negligible in contrast to full instrumentation.
For a set of antipatterns to be detected we investigated different detection techniques. To
compare these alternatives we introduced and implemented a validation software system
used for testing each detection technique. Based on the validation system, we defined
some scenarios by injecting specific performance antipatterns into the application. For
each investigated antipattern and each scenario we defined our expectations for the detec-
tion result. These expectations and the compliance degree of the actual detection results
form a quality metric which has been used for comparing different detection techniques.

We examined different alternatives for investigating the variety of response times. As a
common metric we used the coefficient of variance (COV) as an indicator for the Varying
Response Times problem. However, using a fixed threshold for the COV yielded wrong
decisions for some scenarios. Adapting the threshold to the median of measured response
times solved this problem yielding correct decision results for all scenarios.
The Ramp was the second examined antipattern. Here, we were interested in the response
time progression over operation time. As concurrency effects impair the typical behaviour
of a Ramp antipattern we developed an experiment configuration which allows us to ex-
clude concurrency effects when observing the Ramp antipattern. For root cause analysis
of the Ramp antipattern we analyzed the call tree of invoked service requests. Using a
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breadth-first-search on the call tree we provided two algorithms allowing to identify oper-
ations which cause an observed Ramp antipattern.
The detection of the Dormant References antipattern is quite similar to the detection
technique of the Ramp antipattern. However, we experienced that accurately measuring
memory consumption is a difficult task when using programming languages with a man-
aged heap (like Java or C#). As garbage collection is a non-deterministic task differences
in memory consumption could be captured only when big sized objects have been used
causing large memory consumption differences.
The One Lane Bridge was the last examined antipattern, whose detection is based on
the analysis of blocking times. We investigated different alternatives for determining and
analyzing blocking times. Retrieving blocking times directly from the virtual machine did
not capture external blocking times. Therefore, wrong detection decisions for scenarios
containing a database related One Lane Bridge have been made. We applied Little’s Law
to approximate the blocking times from response times and CPU times of the correspond-
ing request. Analyzing the approximated blocking times yielded correct decisions for all
scenarios. Finally, we examined root causes for the One Lane Bridge. For the synchronized
methods root cause we analyzed the blocking times at each synchronized method. In order
to discover database related root causes we captured and analyzed response times of all
operations accessing the database.

Having developed proper detection techniques for the considered antipatterns we evaluated
the overall detection approach. Therefore, we applied the detection approach to a Java
Servlets solution of the TPC-W Benchmark which is a quasi-realistic software system for
scalability testing. In the used TPC-W solution two antipatterns have been detected
automatically: the Varying Response Time problem and the One Lane Bridge. Moreover,
the detection approach discovered an operation causing the observed problems. With little
effort, we were able to determine the actual problem root cause by performing some manual
considerations. Finding the problem and its root cause without the introduced detection
approach would be a much more difficult and time-consuming task. The evaluation shows
the applicability and the benefits of the introduced detection approach.

8.2. Future Work

In this section, we discuss some open problems to be investigated in future work.

Although we developed a flexible and extendable architecture for detecting performance
antipatterns, we provided detection techniques only for some specific antipatterns. One
goal for future work is to investigate further antipatterns and provide detection techniques
for these antipatterns, as well.
When examining the Dormant References antipattern we experienced the difficulty to ac-
curately conduct memory measurements. Thus, for future work it is important to find
approaches which allow to overcome this problem in order to detect memory related per-
formance antipatterns.
One of the biggest disadvantages of measurement-based performance evaluation approaches
is the time required to conduct measurements. In this thesis, we increased the efficiency by
introducing the adaptive measurement approach. However, there is further potential for
optimizing the efficiency of experiment execution. For instance, analysis could be executed
in parallel to experiment execution aborting the measurements when no further measure-
ment data is required. Finding such optimization options is another task for future work.
The evaluation with the TPC-W Benchmark has shown that the described antipattern
detection approach is very useful when searching for performance problems. However at
the end, we had to perform some consideration steps manually in order to find the actual
root cause. Some steps require much semantics and knowledge about the specific system
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under test to make decisions about possible root causes. Developing concepts which allow
to automate these steps is another interesting point for future investigations.
Finally, we mentioned that the described detection approach is intended to be used by
developers during the development phase of a software system. However, right now the
approach comprises some steps which entail additional effort for the developer. In par-
ticular, the developer has to provide a measurement specification and a usage adapter.
Furthermore, as measurement execution takes long (hours), many developers will not be
willing to execute these measurements. Therefore, for future work we plan to apply the
described detection approach on automatically extracted system models by executing sim-
ulations rather than real measurements. This idea has the potential to reduce the time
and effort required to detect antipatterns.
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Appendix

A. Validation Scenarios
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(a) Scenario 1 - classic ramp behaviour:
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(c) Scenario 3 - periodical clean-up
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(e) Scenario 5 - hashing transactions
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(g) Scenario 7 - resolved synchronization
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(i) Scenario 9 - using proper database structures
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(b) Scenario 2 - growing list

0 10.000 20.000 30.000 40.000 50.000 60.000
Timestamp [ms]

0
25
50
75

100
125
150
175

R
es

p
o

n
se

 T
im

e 
[m

s]

(d) Scenario 4 - fixed-sized queue
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(f) Scenario 6 - synchronized method:
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(h) Scenario 8 - storing data as big byte arrays
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(j) Scenario 10 - SPA interaction

Figure A.1.: Validation scenarios: response times for arrival rate of 8 s−1
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B. TPC-W Measurements

B.1. Varying Response Times
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(a) Response times in dependence on arrival rate
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(c) Mean response times over operation time
for arrival rate 8s−1
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(b) COV values of the measured response times
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(d) Mean response times over operation time
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Figure B.2.: Response time measurements for the Varying Response Times problem

B.2. The Ramp
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Figure B.3.: Response times over increasing warm-up time durations
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B.3. One Lane Bridge Detection
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(c) Search request interaction
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(b) Customer registration interaction

0 10 20 30 40 50 60 70 80 90 100 110 120
Number of Users

0

250

500

750

1.000

B
lo

ck
in

g
 T

im
e 

[m
s]

(d) Search result interaction
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Figure B.4.: Mean approximated blocking times depicted over concurrency level for each
TPC-W service
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B.4. One Lane Bridge Root Cause Analysis
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(c) commit transaction
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(b) execute update
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Figure B.5.: Response times of database related operations
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Figure B.6.: CPU utilizations

108



List of Figures

2.1. Decorator Pattern, [GHJ+02] . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Antipattern hierarchy (following and extending [PM08]) . . . . . . . . . . . 6

2.3. Empty Semi Trucks antipattern: example of an improper interface . . . . . 10

2.4. Illustration of the Ramp antipattern, following [SW03b] . . . . . . . . . . . 12

2.5. More is Less antipattern: example throughput behaviour . . . . . . . . . . . 14

2.6. Overview on the categorization . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7. Performance Problem Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8. Kieker architecture, following [kie] . . . . . . . . . . . . . . . . . . . . . . . 24

2.9. Example for a queueing network . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10. Architecture of the Software Performance Cockpit . . . . . . . . . . . . . . 31

4.1. Antipattern detection integrated with development . . . . . . . . . . . . . . 38

4.2. Overall process applying general monitoring approach . . . . . . . . . . . . 39

4.3. Example for a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4. Overall process applying adaptive measurement approach . . . . . . . . . . 41

4.5. General antipattern detection architecture . . . . . . . . . . . . . . . . . . . 42

4.6. Antipattern Detection Process . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7. Experiment Execution Sub-Process . . . . . . . . . . . . . . . . . . . . . . . 44

5.1. Example: comparing partly instrumentation with full instrumentation . . . 48

5.2. Full instrumentation compared to top-level instrumentation . . . . . . . . . 48

5.3. Dynamic AOP instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4. Dynamic instrumentation with Javassist, HotSwap & Kieker . . . . . . . . . 51

6.1. Part of the performance problem hierarchy . . . . . . . . . . . . . . . . . . 53

6.2. Online Banking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3. Detection result expectations for each considered scenario . . . . . . . . . . 59

6.4. Adapted COV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5. COV for Scenario 8 and Scenario 9 . . . . . . . . . . . . . . . . . . . . . . . 63

6.6. Measurement data for the Separated Time Windows Analysis technique . . 67

6.7. Memory consumption measurements for Scenario 2 . . . . . . . . . . . . . . 73

6.8. Memory consumptions for Scenario 2 and 3 using big transaction objects . 73

6.9. Mean response time and blocking time behaviour for Scenario 6 and 7 . . . 75

6.10. Mean response time and blocking time behaviour of Scenario 8 . . . . . . . 76

6.11. Object locked by one method. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.12. Object locked by multiple methods. . . . . . . . . . . . . . . . . . . . . . . 79

6.13. Mean blocking times for locked objects of Scenario 6 and 10 . . . . . . . . . 80

6.14. Mean response times and database CPU utilization for DB-Lock Scenarios . 82

6.15. Mean response times and database CPU utilization for Scenario 7* . . . . . 82

7.1. Customer Behaviour Model Graph (following [Men02]) . . . . . . . . . . . . 85

7.2. Typical environment configuration for TPC-W (following [Smi00]) . . . . . 86

109



110 List of Figures

7.3. Experiment setup for evaluation of the antipattern detection approach . . . 87
7.4. Workload for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5. Response times in dependence on the arrival rate . . . . . . . . . . . . . . . 89
7.6. Response times depicted over execution time for arrival rates 8s−1 and 16s−1 89
7.7. Evaluation result: COV for Varying Response Times . . . . . . . . . . . . . 89
7.8. Response times over increasing warm-up time durations . . . . . . . . . . . 90
7.9. Approximated blocking times for the Buy Request interaction . . . . . . . . 91
7.10. Response times of database related operations . . . . . . . . . . . . . . . . . 91
7.11. CPU utilizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.12. Mean response times measured using different DBCP sizes . . . . . . . . . . 92
7.13. CPU times of the get connection operation . . . . . . . . . . . . . . . . . 93

A.1. Validation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2. VRT detection measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3. Response times over increasing warm-up time durations . . . . . . . . . . . 106
B.4. OLB detection measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.5. Response times of database related operations . . . . . . . . . . . . . . . . . 108
B.6. CPU utilizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

110



List of Tables

2.1. Overview on software performance antipatterns . . . . . . . . . . . . . . . . 8

6.1. Detection experiments with different values for the threshold TCOV . . . . . 61
6.2. Response time gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3. T-test analyses with different confidence level values, second half analysis . 66
6.4. Memory consumption analysis for different magnitudes of memory sizes . . 72
6.5. Comparison of detection techniques for the OLB antipattern . . . . . . . . 76

111





Nomenclature

AOP Aspect Oriented Programming

APD Antipattern Detection

API Application Programming Interface

CPU Central Processing Unit

DB database

DBCP Database Connection Pool

DBRCA Database Lock Root Cause Analysis

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JDBC Java Database Connectivity

JDK Java Development Kit

JMS Java Messaging Service

JPDA Java Platform Debugger Architecture

JVM Java Virtual Machine

OLB One Lane Bridge performance antipattern

OS Operating System

PCM Palladio Component Model

RMI Remote Method Invocation

SE Software Engineering

SIGAR System Information Gatherer

SMRCA Synchronized Methods Root Cause Analysis

SoPeCo Software Performance Cockpit

SPA Software Performance Antipattern

SPE Software Performance Engineering

UML Unified Modeling Language

VRT Varying Response Times performance problem

113


	Contents
	1 Introduction
	1.1 Software Performance Engineering
	1.2 Performance Antipatterns as an SPE Concept
	1.3 Idea
	1.4 Overview

	2 Fundamentals
	2.1 Software Performance Antipatterns
	2.1.1 The Nature of Software Performance Antipatterns
	2.1.2 Performance Antipattern Categorization Template
	2.1.2.1 Observable Behaviour
	2.1.2.2 Scope of Observation
	2.1.2.3 Indicators

	2.1.3 Description and Categorization of Software Performance Antipatterns
	2.1.3.1 The Blob Antipattern
	2.1.3.2 The Empty Semi Trucks Antipattern
	2.1.3.3 The Stifle Antipattern
	2.1.3.4 The Ramp Antipattern
	2.1.3.5 The Traffic Jam Antipattern
	2.1.3.6 The One Lane Bridge Antipattern
	2.1.3.7 The More is Less Antipattern
	2.1.3.8 Unbalanced Processing Antipattern
	2.1.3.9 The Dormant References Antipattern
	2.1.3.10 Session as a Data Store Antipattern
	2.1.3.11 The Sisyphus Database Retrieval Performance Antipattern
	2.1.3.12 The Circuitous Treasure Hunt Antipattern
	2.1.3.13 The Tower of Babel Antipattern
	2.1.3.14 Unnecessary Processing Antipattern
	2.1.3.15 Excessive Dynamic Allocation Antipattern
	2.1.3.16 Spin Wait Antipattern

	2.1.4 Software Performance Antipatterns at a Glance

	2.2 Instrumentation
	2.2.1 Aspect Oriented Programming
	2.2.2 Structural Reflection and HotSwap
	2.2.3 SIGAR API
	2.2.4 Kieker

	2.3 Mathematical Foundations
	2.3.1 Central Tendency
	2.3.2 Measures of Dispersion
	2.3.3 Comparing two Samples
	2.3.3.1 Confidence Interval
	2.3.3.2 T-Test

	2.3.4 Linear Regression

	2.4 Foundations on Performance Evaluation
	2.4.1 Performance Modeling
	2.4.2 Measurement-Based Performance Evaluation

	2.5 Software Performance Cockpit

	3 Related Work And Contribution
	3.1 Related Work
	3.2 Contribution

	4 Approach
	4.1 Big Picture On The Antipattern Detection Approach
	4.2 The Adaptive Measurement Approach
	4.3 Antipattern Detection Architecture and Process
	4.4 General Assumptions
	4.4.1 Monitoring Overhead
	4.4.2 Knowledge About Usage
	4.4.3 No Disturbing Sources
	4.4.4 Fixed Environment
	4.4.5 Standard Technologies
	4.4.6 Byte Code Analysis

	4.5 Summary

	5 Instrumentation
	5.1 Full Instrumentation
	5.2 Dynamic Instrumentation
	5.2.1 Dynamic Instrumentation with AOP and Kieker
	5.2.2 Dynamic Instrumentation using Javassist, HotSwap and Kieker


	6 Antipattern Detection in Detail
	6.1 Validation System and Scenarios
	6.1.1 Online Banking System
	6.1.2 Scenarios

	6.2 The Varying Response Times Detection
	6.2.1 Experiment Setup
	6.2.1.1 Problem Specific Instrumentation
	6.2.1.2 Proper Workload for Experiments

	6.2.2 Detection Techniques
	6.2.2.1 Fixed COV Threshold
	6.2.2.2 Adapted COV Threshold


	6.3 The Ramp Detection
	6.3.1 Detection
	6.3.1.1 Analyses on Chronologically Continuous Measurement Data
	6.3.1.2 Separated Time Windows Analysis

	6.3.2 Root Cause Analysis
	6.3.2.1 Realization
	6.3.2.2 Evaluation

	6.3.3 Summary

	6.4 The Dormant References Detection
	6.4.1 Experiment Configuration
	6.4.2 Analyzing Memory Consumption
	6.4.3 Evaluation

	6.5 The One Lane Bridge Detection
	6.5.1 Detection
	6.5.1.1 Experiment Configuration
	6.5.1.2 Direct Blocking Times Analysis
	6.5.1.3 Approximated Blocking Times Analysis

	6.5.2 Root Cause Analysis
	6.5.2.1 Synchronized Methods Root Cause
	6.5.2.2 Database Lock Root Cause

	6.5.3 Summary


	7 Evaluation
	7.1 TPC-W Benchmark
	7.1.1 System Under Test: Bookstore Emulator
	7.1.2 Workload Specification
	7.1.3 TPC-W Solution Model

	7.2 Experiment Setup
	7.3 Results
	7.3.1 The Varying Response Times Problem
	7.3.2 The Ramp
	7.3.3 The One Lane Bridge
	7.3.4 Interpreting the Result

	7.4 Summary

	8 Conclusion
	8.1 Summary
	8.2 Future Work
	Bibliography
	Appendix
	A Validation Scenarios
	B TPC-W Measurements
	B.1 Varying Response Times
	B.2 The Ramp
	B.3 One Lane Bridge Detection
	B.4 One Lane Bridge Root Cause Analysis


	List of Figures
	List of Tables


	Abbreviations

