Assessing Hypotheses in Multi-Agent Systems for Natural Language Processing

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche
Vortragende(r) Dominik Fuchß
Vortragstyp Masterarbeit
Betreuer(in) Jan Keim
Termin Fr 13. November 2020
Kurzfassung In Multi-Agenten Systemen (MAS) arbeiten verschiedene Agenten an einem gemeinsamen Problem.

Auch im Bereich der natürlichen Sprachverarbeitung (NLP) werden solche Systeme verwendet. Agenten eines MAS für natürliche Sprache können neben Ergebnissen auch Ergebnisse mit Konfidenzen, s.g. Hypothesen generieren. Diese Hypothesen spiegeln die Mehrdeutigkeit der natürlichen Sprache wider. Sind Agenten abhängig voneinander, so kann eine falsche Hypothese schnell zu einer Fehlerfortpflanzung in die Hypothesen der abhängigen Agenten führen. Die Exploration von Hypothesen bietet die Chance, die Ergebnisse von Agenten zu verbessern. Diese Arbeit verbessert die Ergebnisse von Agenten eines MAS für NLP durch eine kontrollierte Exploration des Hypothesen-Suchraums. Hierfür wird ein Framework zur Exploration und Bewertung von Hypothesen entwickelt. In einer Evaluation mit drei Agenten konnten vielversprechende Ergebnisse hinsichtlich der Verbesserung erzielt werden. So konnte etwa mit der Top-X Exploration eine durchschnittliche Verbesserung des F1-Maßes des Topic-Detection-Agenten von ursprünglich 40% auf jetzt 49% erreicht werden.