Development of an Active Learning Approach for One Class Classifi cation using Bayesian Uncertainty
Zur Navigation springen
Zur Suche springen
Vortragende(r) | Tobias Haßberg | |
---|---|---|
Vortragstyp | Masterarbeit | |
Betreuer(in) | Bela Böhnke | |
Termin | Fr 3. Juni 2022 | |
Vortragsmodus | in Präsenz | |
Kurzfassung | In One-Class classification, the classifier decides if points belong to a specific class. In this thesis, we propose an One-Class classification approach, suitable for active learning, that models for each point, a prediction range in which the model assumes the points state to be. The proposed classifier uses a Gaussian process. We use the Gaussian processes prediction range to derive a certainty measure, that considers the available labeled points for stating its certainty. We compared this approach against baseline classifiers and show the correlation between the classifier's uncertainty and misclassification ratio. |