Evaluating architecture-based performance prediction for MPI-based systems

Aus IPD-Institutsseminar
Zur Navigation springen Zur Suche springen
Vortragende(r) Haris Dzogovic
Vortragstyp Bachelorarbeit
Betreuer(in) Larissa Schmid
Termin Fr 23. Juli 2021
Kurzfassung One research field of High Performance Computing (HPC) is computing clusters. Computing clusters are distributed memory systems where different machines are connected through a network. To enable the machines to communicate with each other they need the ability to pass messages to each other through the network. The Message Passing Interface (MPI) is the standard in implementing parallel systems for distributed memory systems. To enable software architects in predicting the performance of MPI-based systems several approaches have been proposed. However, those approaches depend either on an existing implementation of a program or are tailored for specific programming languages or use cases. In our approach, we use the Palladio Component Model (PCM) that allows us to model component-based architectures and to predict the performance of the modeled system. We modeled different MPI functions in the PCM that serve as reusable patterns and a communicator that is required for the MPI functions. The expected benefit is to provide patterns for different MPI functions that allow a precise modelation of MPI-based systems in the PCM. And to obtain a precise performance prediction of a PCM instance.