Evaluierung architektureller Datenflussanalyse mittels Fallstudie anhand Corona-Warn-App

Aus IPD-Institutsseminar
Version vom 12. April 2021, 07:58 Uhr von Michael Tobias (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Vortragende(r) Michael Tobias
Vortragstyp Bachelorarbeit
Betreuer(in) Stephan Seifermann
Termin Fr 23. April 2021
Kurzfassung Die Wahrung von Vertraulichkeit ist essentiell für moderne Softwaresysteme. Eine Überprüfung auf Probleme bereits während der Entwurfsphase ermöglicht eine effiziente Fehlerbehebung. Mit dem datenzentrierten Palladio-Komponenten-Modell (DPCM) ist eine solche Prüfung möglich. Im Rahmen der Arbeit soll der Ansatz über eine realistische Fallstudie anhand der Corona-Warn-App evaluiert werden. Dazu müssen zunächst aus den Entwurfsdokumenten Vertraulichkeitsanforderungen extrahiert werden, um anschließend deren Einhaltung prüfen zu können. Um den Ansprüchen an ein systematisches und nachvollziehbares Vorgehen bei der Evaluierung zu genügen, wird zunächst ein Prozess zur Anforderungsextraktion konzipiert. Die Evaluation des DPCM findet anschließend für die Qualitätseigenschaften der Ausdrucksmächtigkeit und Genauigkeit statt. Das Ergebnis der Arbeit besteht aus einem Katalog von Vertraulichkeitsanforderungen für die Corona-Warn-App, dem entwickelten Extraktionsprozess, sowie initialen Ergebnissen für die Evaluation des DPCM.