Hauptseite

Aus IPD-Institutsseminar
Version vom 29. April 2021, 10:37 Uhr von Erik Burger (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 11:30–13:00 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 7. Mai 2021, 11:30 Uhr, https://conf.dfn.de/webapp/conference/979160755
Vortragende(r) Elena Schediwie
Titel Bachelorarbeit: Local Outlier Factor for Feature‐evolving Data Streams
Vortragstyp Bachelorarbeit
Betreuer(in) Florian Kalinke
Kurzfassung Outlier detection is a core task of data stream analysis. As such, many algorithms targeting this problem exist, but tend to treat the data as so-called row stream, i.e., observations arrive one at a time with a fixed number of features. However, real-world data often has the form of a feature-evolving stream: Consider the task of analyzing network data in a data center - here, nodes may be added and removed at any time, changing the features of the observed stream. While highly relevant, most existing outlier detection algorithms are not applicable in this setting. Further, increasing the number of features, resulting in high-dimensional data, poses a different set of problems, usually summarized as "the curse of dimensionality".

In this thesis, we propose FeLOF, addressing this challenging setting of outlier detection in feature-evolving and high-dimensional data. Our algorithms extends the well-known Local Outlier Factor algorithm to the feature-evolving stream setting. We employ a variation of StreamHash random hashing projections to create a lower-dimensional feature space embedding, thereby mitigating the effects of the curse of dimensionality. To address non-stationary data distributions, we employ a sliding window approach. FeLOF utilizes efficient data structures to speed up search queries and data updates.

Extensive experiments show that our algorithm achieves state-of-the-art outlier detection performance in the static, row stream and feature-evolving stream settings on real-world benchmark data. Additionally, we provide an evaluation of our StreamHash adaptation, demonstrating its ability to cope with sparsely populated high-dimensional data.


Freitag, 7. Mai 2021, 14:00 Uhr, https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft_Teams
Vortragende(r) Gilbert Groten
Titel Automatisches Auflösen von Abkürzungen in Quelltext
Vortragstyp Masterarbeit
Betreuer(in) Tobias Hey
Kurzfassung Abgekürzte Quelltextbezeichner stellen ein Hindernis bei der Gewinnung von Informationen aus Quelltext dar. Im Rahmen dieser Arbeit werden Abkürzungsauflösungsverfahren entwickelt, um diese abgekürzten Quelltextbezeichner zu den gemeinten, nicht abgekürzten Begriffen aufzulösen. Zum einen wird die Entscheidung für den besten Auflösungskandidaten mittels worteinbettungsbasierten Ähnlichkeitsfunktionen getroffen. Zum anderen werden Trigramm-Grammatiken verwendet, um die Wahrscheinlichkeit eines Auflösungskandidaten zu bestimmen. Die im Rahmen dieser Arbeit entwickelten Verfahren bauen auf zwei Verfahren auf, welche von Alatawi et al. entwickelt wurden. In diesen werden statistische Eigenschaften von Quelltextabkürzungen, sowie Uni- und Bigramm-Grammatiken verwendet, um die Auflösung einer Abkürzung zu bestimmen. Das präziseste der im Rahmen dieser Arbeit entwickelten Verfahren (das Trigramm-basierte) löst auf einem Beispielquelltext, evaluiert gegen eine von Alatawi et al. bereitgestellte Musterlösung, 70,33% der abgekürzten Quelltextbezeichner richtig auf, und ist damit 3,30 Prozentpunkte besser als das nachimplementierte, präziseste Verfahren von Alatawi et al.
Vortragende(r) Niklas Ewald
Titel Identifikation von Rückverfolgbarkeitsverbindungen zwischen Anforderungen mittels Sprachmodellen
Vortragstyp Bachelorarbeit
Betreuer(in) Tobias Hey
Kurzfassung Die Rückverfolgbarkeit zwischen Anforderungen ist ein wichtiger Teil der Softwareentwicklung. Zusammenhänge werden dokumentiert und können für Aufgaben wie Auswirkungs- oder Abdeckungsanalysen verwendet werden. Da das Identifizieren von Rückverfolgbarkeitsverbindungen von Hand zeitaufwändig und fehleranfällig ist, ist es hilfreich, wenn automatische Verfahren eingesetzt werden können. Anforderungen werden häufig während der Entwicklung verfeinert. Entstehende Anforderungen lassen sich zu den ursprünglichen Anforderungen zurückverfolgen. Die entstehenden Anforderungen befinden sich auf einem anderen Abstraktionslevel. Dies erschwert die automatische Identifizierung von Rückverfolgbarkeitsverbindungen. Auf großen Textkorpora trainierte Sprachmodelle stellen eine mögliche Lösung für dieses Problem dar. In dieser Arbeit wurden drei auf Sprachmodellen basierende Verfahren entwickelt und verglichen: Feinanpassung einer Klassifikationsschicht, Ausnutzen der Ähnlichkeit der jeweiligen Satzeinbettungen und eine Erweiterung des zweiten Verfahrens, bei dem zusätzlich zunächst Cluster gebildet werden. Es wurden sechs öffentlich verfügbare Datensätze verwendet, um die Verfahren zu evaluieren. Von den drei Verfahren erreichen jeweils das Sprachmodell mit Klassifikationsschicht und das Ausnutzen der Ähnlichkeit zwischen Satzeinbettungen für drei Datensätze die besten Ergebnisse, die aber hinter den Ergebnissen von anderen aktuellen Verfahren zurückbleiben. Das feinangepasste Sprachmodell mit Klassifikationsschicht erzielt eine Ausbeute von bis zu 0,96 bei einer eher geringen Präzision von 0,01 bis 0,26.