Hauptseite

Aus IPD-Institutsseminar
Zur Navigation springen Zur Suche springen

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 12:00–13:30 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 20. Mai 2022, 11:30 Uhr

Ort: MS Teams
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Jonathan Schenkenberger
Titel Architectural Generation of Context-based Attack Paths
Vortragstyp Masterarbeit
Betreuer(in) Maximilian Walter
Vortragsmodus online
Kurzfassung In industrial processes (Industry 4.0) and other fields in our lives like the energy or health sector, the confidentiality of data becomes increasingly important. For the protection of confidential information on critical systems, it is crucial to be able to find relevant attack paths in different access-control contexts to a critical element. In order to minimize costs, it is important to already consider this issue in the design phase of the software architecture. There are already approaches considering the topic of attack path generation. However, they do not consider software architecture modeling or they do not consider both vulnerabilities and access control mechanisms. Hence, this thesis presents an approach for finding all potential attack paths in a software architecture model considering access control and vulnerabilities. However, all attack paths are often to many, so the approach presented here introduces and utilizes meaningful filter criteria based on wide-spread vulnerability classification standards.
Vortragende(r) Limanan Nursalim
Titel Automated Test Selection for CI Feedback on Model Transformation Evolution
Vortragstyp Masterarbeit
Betreuer(in) Timur Sağlam
Vortragsmodus online
Kurzfassung The development of the transformation model also comes with the appropriate system-level testing to verify its changes. Due to the complex nature of the transformation model, the number of tests increases as the structure and feature description become more detailed. However, executing all test cases for every change is costly and time-consuming. Thus, it is necessary to conduct a selection for the transformation tests. In this presentation, you will be introduced to a change-based test prioritization and transformation test selection approach for early fault detection.

Freitag, 3. Juni 2022, 11:30 Uhr

Ort: MS Teams
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Tobias Haßberg
Titel Development of an Active Learning Approach for One Class Classifi cation using Bayesian Uncertainty
Vortragstyp Masterarbeit
Betreuer(in) Bela Böhnke
Vortragsmodus in Präsenz
Kurzfassung In One-Class classification, the classifier decides if points belong to a specific class. In this thesis, we propose an One-Class classification approach, suitable for active learning, that models for each point, a prediction range in which the model assumes the points state to be. The proposed classifier uses a Gaussian process. We use the Gaussian processes prediction range to derive a certainty measure, that considers the available labeled points for stating its certainty. We compared this approach against baseline classifiers and show the correlation between the classifier's uncertainty and misclassification ratio.
Vortragende(r) Raoul Teichmann
Titel Entwicklung einer Entwurfszeit-DSL zur Formalisierung von Runtime Adaptationsstrategien für SAS zum Zweck der Strategie-Optimierung
Vortragstyp Proposal
Betreuer(in) Martina Rapp
Vortragsmodus online
Kurzfassung Domänenspezifische Modellierungssprachen (DSL) zur Formalisierung von Adaptionsstrategien

stellen ein wichtiges Mittel dar, um den Entwurf von Rückkopplungsschleifen selbst-adaptiver Softwaresysteme zu modellieren und zu optimieren. Diese Arbeit beschäftigt sich mit der Fragestellung, wie eine Optimierung von Adaptionsstrategien in einer DSL zur Entwurfszeit beschrieben werden kann.

Freitag, 24. Juni 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Kevin Werber
Titel Assessing Word Similarity Metrics For Traceability Link Recovery
Vortragstyp Bachelorarbeit
Betreuer(in) Jan Keim
Vortragsmodus in Präsenz
Kurzfassung Kurzfassung

Freitag, 1. Juli 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Quang Dao
Titel Coreference Resolution for Traceability Link Recovery
Vortragstyp Bachelorarbeit
Betreuer(in) Jan Keim
Vortragsmodus in Präsenz
Kurzfassung Kurzfassung

Freitag, 22. Juli 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Philipp Uhrich
Titel Empirical Identification of Performance Influences of Configuration Options in High-Performance Applications
Vortragstyp Masterarbeit
Betreuer(in) Larissa Schmid
Vortragsmodus online
Kurzfassung Kurzfassung