Hauptseite

Aus IPD-Institutsseminar
Version vom 14. Januar 2022, 13:33 Uhr von Erik Burger (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 12:00–13:30 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 28. Januar 2022, 12:00 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: https://sdqweb.ipd.kit.edu/wiki/SDQ-Oberseminar/Microsoft_Teams

Vortragende(r) Felix Rittler
Titel Entwicklung und Analyse von Auto-Encodern für GUI-basiertes Software-Testing durch KI
Vortragstyp Masterarbeit
Betreuer(in) Daniel Zimmermann
Vortragsmodus online
Kurzfassung Das Testen von Software über deren graphischen Benutzeroberflächen wird mit zunehmender Komplexität der Software (und damit einhergehender Variabilität in der Benutzeroberfläche) aufwendiger. Rein manuelles Testen durch den Entwickler und das Schreiben von Testfällen sind oft nicht mehr möglich. Daher sind neue Ansätze aus dem Bereich des maschinellen Lernens erforderlich, um diese Arbeiten zu erleichtern. Ein Lösungsansatz kann der Einsatz neuronaler Netze sein, die am Forschungszentrum Informatik (FZI) entwickelt werden. Als Eingabedaten sollen dabei Zustände einer graphischen Benutzeroberfläche als Bild dienen, welche jedoch zu komplex sind, um in Echtzeit von diesen Netzen verarbeitet zu werden. In dieser Masterarbeit wurde untersucht, inwiefern eine Kompression der Daten durch den Encoder-Teil von Autoencodern stattfinden kann. Hierzu wurden vier verschiedene Autoencoder-Architekturen entwickelt und analysiert, inwiefern sie sich für diesen Zweck eignen. Um die Autoencoder zu trainieren, wurde ein Trainingsdatengenerator in Rust unter Verwendung von dort vorhandenen GUI-Toolkits als Mock-Applikation einer realen GUI entwickelt. Der Trainingsdatengenerator eignet sich sehr gut zum Training der Autoencoder, da er sehr passgenau Trainingsdaten generieren kann. Aufgrund des frühen Stadiums der verwendeten Werkzeuge traten jedoch während der Entwicklung Fehler auf, die die Entwicklung hemmten. Für diese wurden Workarounds entwickelt, die teilweise die Handhabung des Generators erschweren. Darüber hinaus lässt sich feststellen, dass der Aufwand zur exakten Nachbildung einer Applikation als Mock sehr hoch ist.

Bezüglich der Kompression von Informationen über Benutzeroberflächen durch die Autoencoder waren die Ergebnisse dagegen vielversprechend, da die Testdaten auch in hoher Auflösung von 900 x 935 Pixeln mit hoher Genauigkeit rekonstruiert werden konnten. Erste Experimente ergaben, dass die Autoencoder darüber hinaus Fähigkeiten entwickeln, Applikationen mit ähnlichem Farbschema oder ähnlicher Designsprache zu kodieren und wiederzugeben. Ein erstes Fazit über die Fähigkeiten zur Generalisierung fällt daher ebenso positiv aus. Die Genauigkeit der Reproduktion sinkt, wenn die Eingabe farblich oder designtechnisch stark von den Trainingsdaten abweicht.

Freitag, 4. Februar 2022, 12:00 Uhr

Webkonferenz: https://sdqweb.ipd.kit.edu/wiki/SDQ-Oberseminar/Microsoft_Teams

Vortragende(r) Atilla Ateş
Titel Konsistenzerhaltung von Feature-Modellen durch externe Sichten
Vortragstyp Bachelorarbeit
Betreuer(in) Timur Sağlam
Vortragsmodus online
Kurzfassung Bei der Produktlinienentwicklung werden Software-Produktlinien(SPLs) meistens Featureorientiert strukturiert und organisiert. Um die gemeinsamen und variablen Merkmale der Produkte einer Produktlinie darzustellen, können Feature-Modelle verwendet werden. Ein Software-Werkzeug zum Erstellen und Editieren von Feature-Modellen ist FeatureIDE, welche die Zustände der Feature-Modelle als Dateien der Extensible Markup Language (XML) persistiert. Bei der Entwicklung von Software-Systemen existieren allerdings mehrere unterschiedliche Artefakte. Diese können sich Informationen mit den Feature-Modellen teilen. Um diese Artefakte und Modelle gemeinsam automatisch evolvieren zu können, werden Konsistenzerhaltungsansätze benötigt. Solche Ansätze sind jedoch nicht mit den persistierten XML-Dateien kompatibel.

In dieser Arbeit implementieren wir eine bidirektionale Modell-zu-Text-Transformation, welche die als XML-Dateien persistierten Zustände der FeatureIDE-Modelle in geeignete Modellrepräsentationen überführt, um daraus feingranulare Änderungssequenzen abzuleiten. Diese können zur deltabasierten Konsistenzerhaltung verwendet werden. Für die Modellrepräsentation verwenden wir ein bestehendes Metamodell für Variabilität. Zur Ableitung der Änderungssequenzen wird ein existierendes Konsistenzerhaltungsframework eingesetzt. Wir validieren die Korrektheit der Transformation mithilfe von Round-Trip-Tests. Dabei zeigen wir, dass die in dieser Arbeit implementierte Transformation alle geteilten Informationen zwischen FeatureIDE und dem Variabilitäts-Metamodell korrekt transformiert. Zudem können mithilfe der in dieser Arbeit implementierten Transformation und mit dem verwendeten Konsistenzerhatlungsframework zu 94,44% korrekte feingranulare Änderungssequenzen aus den als XML-Datei persistierten Zuständen der FeatureIDE-Modelle abgeleitet werden.

Freitag, 11. Februar 2022, 12:00 Uhr

Webkonferenz: https://sdqweb.ipd.kit.edu/wiki/SDQ-Oberseminar/Microsoft_Teams

Vortragende(r) Kevin Haag
Titel Automated Classification of Software Engineering Papers along Content Facets
Vortragstyp Bachelorarbeit
Betreuer(in) Angelika Kaplan
Vortragsmodus online
Kurzfassung Kurzfassung

Freitag, 18. März 2022, 12:00 Uhr

Ort: Raum 348 (Gebäude 50.34)

Vortragende(r) Niko Benkler
Titel Architecture-based Uncertainty Impact Analysis for Confidentiality
Vortragstyp Masterarbeit
Betreuer(in) Sebastian Hahner
Vortragsmodus
Kurzfassung TBD

Freitag, 1. April 2022, 12:00 Uhr

Ort: Raum 348 (Gebäude 50.34)

Vortragende(r) Felix Griesau
Titel Data-Preparation for Machine-Learning Based Static Code Analysis
Vortragstyp Masterarbeit
Betreuer(in) Robert Heinrich
Vortragsmodus
Kurzfassung TBD
Vortragende(r) Patrick Spiesberger
Titel Verfeinerung des Angreifermodells und Fähigkeiten in einer Angriffspfadgenerierung
Vortragstyp Bachelorarbeit
Betreuer(in) Maximilian Walter
Vortragsmodus
Kurzfassung TBA

weitere Termine