Hauptseite

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 11:30–13:00 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 18. Juni 2021, 11:30 Uhr, conf.dfn.de/webapp/conference/979148706
Vortragende(r) Aleksandr Eismont
Titel Integrating Structured Background Information into Time-Series Data Monitoring of Complex Systems
Vortragstyp Bachelorarbeit
Betreuer(in) Pawel Bielski
Kurzfassung Monitoring of time series data is increasingly important due to massive data generated by complex systems, such as industrial production lines, meteorological sensor networks, or cloud computing centers. Typical time series monitoring tasks include: future value forecasting, detecting of outliers or computing the dependencies.

However, the already existing methods for time series monitoring tend to ignore the background information such as relationships between components or process structure that is available for almost any complex system. Such background information gives a context to the time series data, and can potentially improve the performance of time series monitoring tasks.

In this bachelor thesis, we show how to incorporate structured background information to improve three different time series monitoring tasks. We perform the experiments on the data from the cloud computing center, where we extract background information from system traces. Additionally, we investigate different representations and quality of background information and conclude that its usefulness is independent from a concrete time series monitoring task.


Freitag, 25. Juni 2021, 14:00 Uhr, https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft_Teams
Vortragende(r) Julian Roßkothen
Titel Analyse von KI-Ansätzen für das Trainieren virtueller Roboter mit Gedächtnis
Vortragstyp Bachelorarbeit
Betreuer(in) Daniel Zimmermann
Kurzfassung In dieser Arbeit werden mehrere rekurrente neuronale Netze verglichen.

Es werden LSTMs, GRUs, CTRNNs und Elman Netze untersucht. Die Netze werden dabei untersucht sich einen Punkt zu merken und anschließend nach dem Punkt mit einem virtuellen Roboterarm zu greifen.

Bei LSTM, GRU und Elman Netzen wird auch untersucht wie die Netze die Aufgabe lösen, wenn jedes Neuron nur auf den eigenen Speicher zugreifen kann.

Dabei hat sich herausgestellt, dass LSTMs und GRUs deutlich besser bei den Experimenten bewertet werden als CTRNNs und Elman Netze. Außerdem werden die Rechenzeit und der Zusammenhang zwischen der Anzahl der zu trainierenden Parameter und der Ergebnisse der Experimente verglichen.

Vortragende(r) Lukas Bach
Titel Automatically detecting Performance Regressions
Vortragstyp Masterarbeit
Betreuer(in) Robert Heinrich
Kurzfassung One of the most important aspects of software engineering is system performance. Common approaches to verify acceptable performance include running load tests on deployed software. However, complicated workflows and requirements like the necessity of deployments and extensive manual analysis of load test results cause tests to be performed very late in the development process, making feedback on potential performance regressions available much later after they were introduced.

With this thesis, we propose PeReDeS, an approach that integrates into the development cycle of modern software projects, and explicitly models an automated performance regression detection system that provides feedback quickly and reduces manual effort for setup and load test analysis. PeReDeS is embedded into pipelines for continuous integration, manages the load test execution and lifecycle, processes load test results and makes feedback available to the authoring developer via reports on the coding platform. We further propose a method for detecting deviations in performance on load test results, based on Welch's t-test. The method is adapted to suit the context of performance regression detection, and is integrated into the PeReDeS detection pipeline. We further implemented our approach and evaluated it with an user study and a data-driven study to evaluate the usability and accuracy of our method.

Vortragende(r) Jan Wittler
Titel Derivation of Fine-Grained Change Sequences from State-Based Deltas of XML Files for Model Consistency
Vortragstyp Masterarbeit
Betreuer(in) Timur Sağlam
Kurzfassung Kurzfassung