Hauptseite

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348
Zeit jeweils freitags, 11:30–13:00 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 9. August 2019, 11:30 Uhr, Raum 348 (Gebäude 50.34)
Vortragende(r) Andreas Foitzik
Titel Enhancing Non-Invasive Human Activity Recognition by Fusioning Electrical Load and Vibrational Measurements
Vortragstyp Masterarbeit
Betreuer(in) Klemens Böhm
Kurzfassung Professional installation of stationary sensors burdens the adoption of Activity Recognition Systems in households. This can be circumvented by utilizing sensors that are cheap, easy to set up and adaptable to a variety of homes. Since 72% of European consumers will have Smart Meters by 2020, it provides an omnipresent basis for Activity Recognition.

This thesis investigates, how a Smart Meter’s limited recognition of appliance involving activities can be extended by Vibration Sensors. We provide an experimental setup to aggregate a dedicated dataset with a sampling frequency of 25,600 Hz. We evaluate the impact of combining a Smart Meter and Vibration Sensors on a system’s accuracy, by means of four developed Activity Recognition Systems. This results in the quantification of the impact. We found out that through combining these sensors, the accuracy of an Activity Recognition System rather strives towards the highest accuracy of a single underlying sensor, than jointly surpassing it.