Hauptseite

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 11:30–13:00 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 13. November 2020, 14:00 Uhr, https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft_Teams
Vortragende(r) Dominik Fuchß
Titel Assessing Hypotheses in Multi-Agent Systems for Natural Language Processing
Vortragstyp Masterarbeit
Betreuer(in) Jan Keim
Kurzfassung In Multi-Agenten Systemen (MAS) arbeiten verschiedene Agenten an einem gemeinsamen Problem.

Auch im Bereich der natürlichen Sprachverarbeitung (NLP) werden solche Systeme verwendet. Agenten eines MAS für natürliche Sprache können neben Ergebnissen auch Ergebnisse mit Konfidenzen, s.g. Hypothesen generieren. Diese Hypothesen spiegeln die Mehrdeutigkeit der natürlichen Sprache wider. Sind Agenten abhängig voneinander, so kann eine falsche Hypothese schnell zu einer Fehlerfortpflanzung in die Hypothesen der abhängigen Agenten führen. Die Exploration von Hypothesen bietet die Chance, die Ergebnisse von Agenten zu verbessern. Diese Arbeit verbessert die Ergebnisse von Agenten eines MAS für NLP durch eine kontrollierte Exploration des Hypothesen-Suchraums. Hierfür wird ein Framework zur Exploration und Bewertung von Hypothesen entwickelt. In einer Evaluation mit drei Agenten konnten vielversprechende Ergebnisse hinsichtlich der Verbesserung erzielt werden. So konnte etwa mit der Top-X Exploration eine durchschnittliche Verbesserung des F1-Maßes des Topic-Detection-Agenten von ursprünglich 40% auf jetzt 49% erreicht werden.

Vortragende(r) Lukas Hennig
Titel Describing Consistency Relations of Multiple Models with Commonalities
Vortragstyp Masterarbeit
Betreuer(in) Heiko Klare
Kurzfassung folgt