Hauptseite

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 11:30–13:00 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 14. August 2020, 11:30 Uhr, Raum 348 (Gebäude 50.34)
Vortragende(r) Cem Özcan
Titel Meta-Learning for Feature Importance
Vortragstyp Bachelorarbeit
Betreuer(in) Jakob Bach
Kurzfassung Feature selection is essential to the field of machine learning, since its application results in an enhancement in training time as well as prediction error of machine learning models. The main problem of feature selection algorithms is their reliance on feature importance estimation, which requires the training of models and is therefore expensive computationally. To overcome this issue, we propose MetaLFI, a meta-learning system that predicts feature importance for classification tasks prior to model training: We design and implement MetaLFI by interpreting feature importance estimation as a regression task, where meta-models are trained on meta-data sets to predict feature importance for unseen classification tasks. MetaLFI calculates a meta-data set by characterizing base features using meta-features and quantifying their respective importance using model-agnostic feature importance measures as meta-targets. We evaluate our approach using 28 real-world data sets in order to answer essential research questions concerning the effectiveness of proposed meta-features and the predictability of meta-targets. Additionally, we compare feature rankings put out by MetaLFI to other feature ranking methods, by using them as feature selection methods. Based on our evaluation results, we conclude that the prediction of feature importance is a computationally cheap alternative for model-agnostic feature importance measures.