
Resource Elasticity Benchmarking
in Cloud Environments

Master Thesis of

Andreas Weber

At the Department of Informatics
Institute for Program Structures

and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek
Advisor: Dipl.-Inform. Nikolas R. Herbst
Second advisor: Dr.-Ing. Henning Groenda

Duration: January 15th, 2014 – July 14th, 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, July 14th, 2014

. .
(Andreas Weber)

Acknowledgements

I would like to thank Amazon for providing a research grant that allowed me to evaluate
the applicability of the benchmarking approach on a public cloud without any costs.

Special thanks go to my advisors Nikolas Herbst and Henning Groenda. Both supported
me with ideas, inspiring discussions and detailed constructive feedback. Their outstand-
ing supervision contributed invaluably to the successful planning and realization of this
thesis.

I would like to thank Prof. Samuel Kounev for his advise and for encouraging me to
present my work even in an early state at an ICPE 2014 Conference Workshop in Dublin.
The Conference was a great experience and allowed me to enhance my work with feedback
from professional researchers.

My thanks go to the research students of the FZI Student Lab with whom I spent a great
time in course of the last half year. Particularly, I thank Jóakim v. Kistowski for various
discussions about LIMBO, elasticity benchmarking and for helping me to develop creative
benchmark and metric names.

Finally, my warm thanks go to my family and friends who supported me in all their
individual ways.

v

Zusammenfassung

Anbieter von modernen Cloud-Diensten offerieren insbesondere auf Infrastrukturebene
(Infrastructure-as-a-Service - IaaS) in den meisten Fällen die Möglichkeit, Resourcen an
den aktuellen Bedarf des Kunden anzupassen. Die Fähigkeit eines Dienstes sich dy-
namisch an Lastschwankungen anpassen zu können, wird im Cloud-Kontext als Elastizi-
tät bezeichnet. Der Vergleich von Cloud-Diensten hinsichtlich der Qualität der Elastizität
ist eine Herausforderung, da es bisher noch keine verlässlichen Messmethodiken und
Metriken zur Bewertung der unterschiedlichen Aspekte von Elastizität gibt.

Diese Masterarbeit analysiert existierende Ansätze zur Messung von Elastitzität und stellt
einen neuen Ansatz zum Benchmarken von elastischen Systemen vor. Dieser basiert auf
der Idee das zu evaluierende System einem realistischen Lastintensitätsverlauf auszuset-
zen, um damit eine schwankende Nachfrage nach Resourcen zu induzieren. Zeitgleich
werden die tatsächlich bereitgestellten Resourcen überwacht und im Anschluss an die
Messung mit dem rechnerisch nötigen Resourcenbedarf verglichen. Der Vergleich erfolgt
mittels Metriken, welche die Elastitzität hinsichtlich der Genauigkeit und des zeitlichen
Verhaltens bewerten. Um einen fairen Vergleich von verschiedenen Systemen auch bei
unterschiedlicher Effizienz der zu Grunde liegenden Resourcen zu ermöglichen, wird
der Lastintensitätsverlauf vor der Messung systemspezifisch so angepasst, dass auf allen
Systemen im Vergleich die gleichen Nachfragevariationen induziert werden.

Das Benchmarkkonzept untergliedert die Elastizitätsanalyse in vier Schritte: Zunächst
wird im Rahmen einer System Analyse die zu evaluierende Plattform bezüglich ihres
Skalierungsverhaltens und der Effizienz der zu Grunde liegenden Resourcen ausgewertet.
Das Resultat wird dann in einer Kalibrierung genutzt, um ein gegebenes Lastintensitätspro-
fil systemspezifisch anzupassen. Im eigentlichen Messschritt wird eine variierende Last
entsprechend des angepassten Lastintensitätsprofils generiert und die Resourcennutzung
auf der zu evaluierenden Plattform überwacht. Die abschließende Auswertung beurteilt
das beobachtete elastische Verhalten mittels der entwickelten Metriken.

Im Rahmen dieser Arbeit wird das Benchmarkkonzept mit der Entwicklung eines java-
basierten Frameworks - genannt BUNGEE - zur Messung der Elastizität von IaaS-Cloud-
Plattformen umgesetzt. Aktuell ermöglicht BUNGEE die Evaluation von Clouds, die
virtuelle Maschinen horizontal skalieren und auf CloudStack oder Amazon Web Services
(AWS) basieren.

In einer umfassenden Evaluation zeigt die Arbeit, dass die entwickelten Elastizitäts-
metriken in der Lage sind, unterschiedliche elastische Systeme in eine ordinale und
konsistente Ordnung zu bringen. Eine Fallstudie belegt darüber hinaus die Anwend-
barkeit des Benchmarkkonzeptes in einem realitätsnahen Szenario unter Verwendung
eines realistischen Lastintensitätsprofils, welches mehrere Millionen Anfragen model-
liert. Die Fallstudie zeigt die Anwendbarkeit sowohl auf einer privaten als auch auf einer
öffentlichen AWS basierten Cloud unter Verwendung von elf verschiedenen Konfigura-
tionen von Elastizitätsregeln und vier verschieden effizienten Instanztypen von virtuellen
Maschinen.

vii

Abstract

Auto-scaling features offered by today’s cloud infrastructures provide increased flexibility,
especially for customers that experience high variations in the load intensity over time.
However, auto-scaling features introduce new system quality attributes when considering
their accuracy and timing. Therefore, distinguishing between different offerings has
become a complex task, as it is not yet supported by reliable metrics and measurement
approaches.

This thesis discusses the shortcomings of existing approaches for measuring and evaluat-
ing elastic behavior and proposes a novel benchmark methodology specifically designed
for evaluating the elasticity aspects of modern cloud platforms. The benchmarking con-
cept uses open workloads with realistic load intensity profiles in order to induce resource
demand variations on the benchmarked system and compares them with the actual vari-
ation of the allocated resources. To ensure a fair elasticity comparison between systems
with different underlying hardware performance, the load intensity profiles are adjusted
to induce identical resource demand variations on all compared platforms. Furthermore,
this thesis proposes new metrics that capture the accuracy of resource allocations and
deallocations, as well as the timing aspects of an auto-scaling mechanism, explicitly.

The benchmark concept comprises four activities: The System Analysis evaluates the load
processing capabilities of the benchmarked platform for different scaling stages. The
Benchmark Calibration then uses the analysis results and adjusts a given load intensity pro-
file in a system specific manner. Within the Measurement activity, the evaluated platform
is exposed to a load varying according to the adjusted intensity profile. The final Elasti-
city Evaluation measures the quality of the observed elastic behavior using the proposed
elasticity metrics.

A java based framework for benchmarking the elasticity of IaaS cloud platforms called
BUNGEE implements this concept and automates benchmarking activities. At the mo-
ment, BUNGEE allows to analyze the elasticity of CloudStack and Amazon Web Service
(AWS) based clouds that scale CPU-bound virtual machines horizontally.

Within an extensive evaluation, this thesis demonstrates the ability of the proposed elas-
ticity metrics to consistently rank elastic systems on an ordinal scale. A case study that
uses a realistic load profile, consisting of several millions of request submissions, exhibits
the applicability of the benchmarking methodology for realistic scenarios. The case study
is conducted on a private as well as on a public cloud and uses eleven different elasticity
rule configurations and four instance types assigned to resources with different levels of
efficiency.

ix

Publications and Talks

Refereed Workshop Paper

[WHGK14]

A. Weber, N. R. Herbst, H. Groenda and S. Kounev, “Towards a Resource Elasticity
Benchmark for Cloud Environments", in Proceedings of the 2nd International Workshop on
Hot Topics in Cloud Service Scalability (HotTopiCS 2014), co-located with the 5th ACM/SPEC
International Conference on Performance Engineering (ICPE 2014). ACM, March 2014.

Invited Talk

“Towards a Resource Elasticity Benchmark for Cloud Environments", at the SPEC RG
Annual Meeting 2014, Dublin. March 26th, 2014.

xi

Contents

Acknowledgements v

Zusammenfassung vii

Abstract ix

Publications and Talks xi

1 Introduction 1
1.1 Goals and Research Questions . 3
1.2 Thesis Structure . 4

2 Foundations 5
2.1 Elastic Cloud System Architecture . 5
2.2 Terms and Differentiation . 6

2.2.1 Efficiency . 6
2.2.2 Scalability . 7
2.2.3 Elasticity . 10
2.2.4 Relation and Differentiation . 10

2.3 Resource Elasticity . 11
2.3.1 Definition . 11
2.3.2 Prerequisites . 12
2.3.3 Core Aspects . 12
2.3.4 Strategies . 14

2.4 Benchmark Requirements . 16

3 Related Work 19
3.1 Early Elasticity Measurement Ideas and Approaches 19
3.2 Elasticity Models and Simulating Elastic Behavior 20
3.3 Business Perspective Approaches . 21
3.4 Elasticity of Cloud Databases . 22
3.5 Conclusions . 22

4 Resource Elasticity Benchmark Concept 25
4.1 Limitations of Scope . 25
4.2 Benchmark Overview . 26
4.3 Workload Modeling and Generation . 27

4.3.1 Worktype . 27
4.3.2 Load Profile Modeling . 28
4.3.3 Load Generation . 28

4.4 Analysis and Calibration . 31
4.4.1 System Analysis . 32
4.4.2 Benchmark Calibration . 34

xiii

xiv Contents

4.5 Measurement: Demand and Supply Extraction 37
4.5.1 Resource Demand . 37
4.5.2 Resource Supply . 38

5 Resource Elasticity Metrics 39
5.1 Accuracy . 40
5.2 Timing . 41

5.2.1 Under- / Over-provision Timeshare 41
5.2.2 Jitter . 42

5.3 Considered but Rejected Metrics . 43
5.3.1 Delay . 43
5.3.2 Dynamic Time Warping Distance . 45

5.4 Compare Different Systems Using Metrics 45
5.4.1 Distance Based Aggregation . 46
5.4.2 Speedup Based Aggregation . 46
5.4.3 Cost Based Aggregation . 48

6 BUNGEE - An Elasticity Benchmarking Framework 49
6.1 Benchmark Harness . 49

6.1.1 Architectural Overview . 49
6.1.2 Load Profiles . 53
6.1.3 Load Generation and Evaluation . 55
6.1.4 System Analysis: Evaluation of Load Processing Capabilities . . . 58
6.1.5 Benchmark Calibration: Load Profile Adjustment 60
6.1.6 Resource Allocations . 61
6.1.7 Cloud Information and Control . 61
6.1.8 Metrics . 65
6.1.9 Visualization . 66

6.2 Cloud-Side Load Generation . 68
6.2.1 Requirements . 68
6.2.2 Implementation . 68

6.3 Conclusion . 70

7 Evaluation 71
7.1 Experiment Setup . 71

7.1.1 Private Cloud Deployment . 71
7.1.2 Elastic Cloud Service Configuration 72
7.1.3 Benchmark Harness Configuration 75
7.1.4 Evaluation Automatization . 76

7.2 Analysis Evaluation . 76
7.2.1 Reproducibility . 76
7.2.2 Linearity Assumption . 77
7.2.3 Discussion . 80

7.3 Metric Evaluation . 80
7.3.1 Under-provision Accuracy: accuracyU 80
7.3.2 Over-provision Accuracy: accuracyO 82
7.3.3 Under-provision Timeshare: timeshareU 83
7.3.4 Timeshare Ratio: timeshareO . 84
7.3.5 Jitter Metric: jitter . 86
7.3.6 Discussion . 89

7.4 Case Study with a Realistic Load Profile . 90
7.4.1 Private Cloud - CloudStack . 90

xiv

Contents xv

7.4.2 Public Cloud - Amazon Web Services 100
7.4.3 Discussion . 107

8 Future Work 109
8.1 Further Evaluations . 109
8.2 Extensions of the Benchmark . 109
8.3 Other Considerations . 110

9 Conclusion 111

Bibliography 113

List of Figures 120

List of Tables 121

Glossary 123

xv

1. Introduction

Context

In course of the last years, the usage of cloud based services such as GoogleMail or
Dropbox became part of the everyday life of many people. With an ongoing consumer-
ization, the popularity of cloud based solutions in industry is increasing, too. The Cloud
Accounting Institute yearly conducts a survey where accounting professionals are asked
about their current and intended use of cloud solutions [Ins13]. Between 2012 and 2013,
the percentage of respondents that claim to use cloud solutions increased from 52% to
75%. When asked for the expected benefits of using cloud solutions, more than half of
the respondents mention reducing cost as one of the benefits.

Cloud providers nowadays offer their services with a “Pay-Per-Use” accounting model to
increase flexibility and efficiency with respect to traditional offers. Customers can specify
their demand and pay accordingly. When the demand is changing, the customer asks
the provider for a scaled version of the service and uses them for an adjusted price. A
further step is providing elasticity. Elasticity means dynamic scaling of resources over
time according to the recent demand. With an elastic cloud service, the customer does not
have to specify his demand himself. The provider dynamically adapts the offered service
according to the customer’s demand and the customer pays for the actually consumed
resources. This business model is referred to as "Utility Computing" [AFG+10].

Motivation

Researchers have proposed various elasticity strategies that define adaptation processes
for cloud systems as summarized and compared in the surveys of Galante et al. [GB12]
and of Jennings and Stadler [JS14]. These elasticity strategies can be rather simple and
rule based or use advanced techniques such as load forecasting in order to provision
resources in time. A benchmark can help to evaluate the realized elasticity and allows to
compare different strategies against each other.

Cloud providers often offer tools that allow customers to implement scaling rules to
define the elastic behavior. Varying the parameters of these rules leads to different
behaviors. Finding the optimal parameter configuration is not trivial. A benchmark can
help customers to compare these parameter configurations in an objective manner.

Besides the used elasticity strategy and its parameter configuration, elasticity is also
influenced by other factors such as the underlying hardware, the virtualization technology

1

2 1. Introduction

or the used cloud management software. These factors vary across providers and are often
unknown to the cloud customer. Therefore, even when cloud providers offer the same
strategy and the customer configures them identically, the quality of the elastic behavior
can be very different. Again, a benchmark allows to evaluate and compare the resulting
elasticity.

State of the Art

Previous works [BKKL09, LYKZ10, DMRT11, LOZC12, CGS13] in the field of analyzing
elasticity often evaluate elasticity only to a limited extend. For example, they just mea-
sure the elasticity aspect timing but not the accuracy aspect or vice versa. Additionally,
elasticity is often not measured as a distinct attribute but is mixed up with efficiency. Fur-
thermore, the employed load profiles for benchmarking do not reflect a realistic variability
of the load intensity over time.

Other approaches [Wei11, FAS+12, ILFL12, Sul12, MCTD13] take a business perspective
when evaluating elasticity. They analyze the financial impact of choosing between differ-
ent elastic cloud solutions. This is a valid approach for a customer who must make cost
based decision between alternative cloud offerings. However, this approach mixes up the
evaluation of (i) the business model, (ii) the performance of underlying resources and (iii)
the technical property elasticity.

Approach

This thesis focuses on the evaluation of the technical property elasticity in the Infrastruc-
ture as a Service (IaaS) context. To stress that scaling in the IaaS context is realized by
scaling of the underlying resources, the term resource elasticity will be used through-
out the thesis. The thesis refines and extends an existing concept [Her11] for evaluating
resource elasticity. In addition, it presents the benchmarking framework BUNGEE that
implements the concept and allows to benchmark real cloud platforms.

The main idea for evaluating resource elasticity bases on comparing a changing resource
demand over time with the actual allocation of resources that is triggered by an elasticity
mechanism. The varying resource demand is induced by resource specific workloads. To
allow the usage of workloads with a realistic variation in load intensity, the framework
incorporates the modeling of characteristic load variations. Different levels of hardware
efficiency on the compared systems has effects on their scaling behavior and can hamper
an objective evaluation. This issue is tackled by analyzing the benchmarked systems with
respect to the efficiency of their underlying resources and their scaling behavior. The
results of this analysis are used to adjust the load intensity in a way that all systems are
stressed in a comparable manner. Hence, the induced resource demand is equal on the
compared systems.

Based on previous research [Her11], this thesis proposes simple intuitive and effective
metrics for characterizing the elasticity of a system. These metrics compare the system
specific resource allocation curve with an system independent resource demand curve.
Different metrics allow to measure different aspects concerning accuracy and timing,
separately. In addition, this thesis discusses how the developed metrics can be used to
compare the elasticity of a targeted system to a baseline system.

The benchmarking approach is evaluated on a private cloud as well as on public AWS
based cloud. The evaluation analyzes the reproducibility of the System Analysis and the
effect of using a simplified analysis version. The metrics are evaluated towards their
ability to consistently rank different degrees of elasticity on an ordinal scale. In a case
study, the benchmarking capabilities for a realistic scenario are demonstrated. The study

2

1.1. Goals and Research Questions 3

uses a realistic load profile, consisting of several millions of request submissions, and is
conducted using virtual machine (VM) instance types that differ in terms of the levels of
efficiency of the resources assigned to them.

1.1 Goals and Research Questions
This section lists the main goals for the envisioned thesis. The different aspects of the
goals are specified as research questions that have to be answered in order to accomplish
the goal.

Goal 1: Identify the key characteristics of elasticity and important properties for an elas-
ticity benchmark.

RQ 1.1: What are the prerequisites for a meaningful comparison of different elastic
behaviors?

RQ 1.2: What are the relevant aspects of resource elasticity?

RQ 1.3: What are important properties of a benchmark that targets the measurement
of resource elasticity?

Goal 2: Analyze existing approaches for measuring elasticity and their limitations.

RQ 2.1: What is the focus of existing measuring and benchmarking approaches?

RQ 2.2: What are the limitations of existing measurement methodologies?

Goal 3: Develop a concept for evaluating resource elasticity of IaaS cloud platforms.

RQ 3.1: How can workloads suitable for elasticity benchmarking be modeled?

RQ 3.2: How can a matching function that maps load intensities to resource demands
be derived for a cloud system under test (CSUT)?

RQ 3.3: How can a modeled load intensity curve be adjusted in a way that it induces the
same resource demands over time on systems with different levels of efficiency?

RQ 3.4: How can the resource demand that was induced by exposing the system to a
load be extracted?

RQ 3.5: How can the amount of allocated resources, the resource supply, be monitored?

Goal 4: Measure elasticity by comparing the actual resource supply with the resource
demand that a realistic dynamic load induces.

RQ 4.1: Which metrics can be derived to measure the different aspects of elasticity?

RQ 4.2: How can the metric results be used in order to create a ranking within a group
of different CSUTs?

Goal 5: Build an elasticity benchmarking framework which allows to evaluate the elas-
ticity of IaaS cloud platforms that scale CPU-bound resources horizontally.

This goal is not connected to specific research questions but it includes known
software engineering tasks such as selecting an appropriate architecture and
design, specification of interfaces as well as documentation and testing.

Goal 6: Evaluation of the System Analysis and the elasticity metrics.

RQ 6.1: Is the System Analysis reproducible?

RQ 6.2: How big is the deviation between the real resource demand and an linearly ex-
trapolated resource demand when the test system uses more than one resource
unit?

RQ 6.3: Do the developed metrics allow to rank the benchmarked systems on an ordinal
scale?

3

4 1. Introduction

1.2 Thesis Structure

The remainder of this thesis is structured according to the main gain goals as follows:

Chapter 2 describes several foundations for the context of resource elasticity benchmark-
ing. The foundations include a blue print for an elastic cloud architecture, the definition
and discrimination of important terms, information about the variety of existing elasticity
strategies and explanations of requirements for elasticity targeted benchmarks.

Related work in the field of evaluating elasticity is analyzed in Chapter 3.

Chapter 4 describes the concept of the benchmark in greater detail. After a coarse grained
overview of the benchmark, this chapter describes the main components of the bench-
mark: The modeling and generation of realistic workloads, the System Analysis and the
Benchmark Calibration as a way for overcoming different levels of hardware efficiency and
the extraction of resource demand and supply during the Measurement.

The metrics which are used to measure elasticity in the final Elasticity Evaluation are
discussed separately in Chapter 5. It explains metrics for the different elasticity aspects
and discusses ways for aggregating them into a single elasticity measure. Furthermore,
metrics which have been considered but were rejected for the benchmark are discussed.

Chapter 6 outlines the architecture and the design of the benchmarking framework BUN-
GEE which was developed based on the benchmarking concept in course of this thesis.

Chapter 7 evaluates the System Analysis as well as the elasticity metrics and illustrates the
applicability of the benchmark within a case study.

Possible future extensions and evaluations are discussed in Chapter 8, before Chapter 9
concludes the thesis.

4

2. Foundations

This chapter provides some relevant background for elasticity benchmarking and thus
addresses the first goal mentioned in Section 1.1. It starts with a description of the
architecture of elastic cloud systems and a definition of the (cloud) system under test in
Section 2.1. This description is followed by Section 2.2 which explains terms commonly
(mis-)used in the cloud context. After this differentiation, resource elasticity is analyzed
more detailed in Section 2.3. The final Section 2.4 presents requirements for benchmarking
in the context of measuring resource elasticity.

2.1 Elastic Cloud System Architecture

Figure 2.1 shows a blueprint architecture of a simple elastic cloud system. Elastic cloud
systems typically consist of two components: The scalable infrastructure and a manage-
ment system.

Load Balancer
2

Monitoring
System

Reconfiguration
Management

Elasticity
Mechanism

4 5

Active VMsActive VMs

Hypervisor

6

Hypervisor

31

...

...Host
1

Host
2

...

Figure 2.1: Blueprint architecture of a resource elastic system

As a basic service, cloud providers offer infrastructure to their customers in form of
VMs with network access and storage. This service is called IaaS [MG11]. The VMs are

5

6 2. Foundations

hosted on a hypervisor which acts as virtualization layer that allows a shared usage of
the underlying physical hardware. When customers need more resources they have -
depending on the provider - at least one of two options. They can either ask the provider
to assign more resources to their VMs (scale up) or request additional VM instances (scale
out). Sometimes even a combination of both methods is possible. The first option is limited
by the amount of resources the underlying hardware can provide. As soon as multiple
instances are available, incoming load must be distributed. This task is performed by a
load balancer. It forwards incoming requests according to a configured scheme, e.g., round
robin, to the VM instances.

The scaleable infrastructure is managed by a cloud management server. It offers different
services via modules. The reconfiguration management module supports the creation of new
VMs and allows starting and stopping them. A monitoring module allows the collection
of monitoring data about the VMs and about the underlying physical infrastructure. The
load balancer can be part of the cloud management server but can also be an external module.
Often, the cloud management server also offers an elasticity mechanism. This mechanism uses
monitoring data and triggers reconfigurations of the scalable infrastructure according to
an elasticity strategy. It also reconfigures the load balancer if this is required due to a
reconfiguration of the elastic system. Thus, the system adapts itself according to the
demand and the customer does not need reconfigure the system himself everytime his
demand changes. The software running on the cloud management server is called cloud
management software.

Cloud System Under Test

The cloud system under test (CSUT) defines the boundaries of the system evaluated by an
elasticity benchmark. The CSUT for the benchmark developed in course of this thesis
includes the following components that impact the resulting elastic behavior:

• The scalable infrastructure

• The load balancer

• The cloud management server, including

– The reconfiguration management

– The monitoring system

– The elasticity mechanism

2.2 Terms and Differentiation

In the context of cloud computing the terms efficiency, scalability and elasticity are com-
monly used without a clear distinction by referring to a precise definition . Although these
terms are related to each other, they describe different properties. This section explains
the meaning of each property in the context of cloud computing and the relations between
them.

2.2.1 Efficiency

The Oxford Dictionary [OED14a] defines efficiency for the context of systems and ma-
chines as “achieving maximum productivity with minimum wasted effort or expense”.
The way productivity and wasted effort are measured strongly depends on the context.
For computing systems the term efficiency is tightly coupled with performance and can
be split up into cost efficiency, energy efficiency or resource efficiency.

6

2.2. Terms and Differentiation 7

Cost Efficiency describes to what degree a system is able to achieve maximum produc-
tivity with minimum costs.

Energy Efficiency describes to what degree a system is able to achieve maximum pro-
ductivity with minimum energy consumption.

Resource Efficiency either describes to what degree a system is able to achieve max-
imum productivity with minimal use of resources (system property), or describes
the level of efficiency of an underlying resource unit (resource property).

For efficiency measurements, black box approaches are commonly used.

2.2.2 Scalability

The term scalability is used in various contexts and often in a way that important aspects
of scalability get lost. To gain a better understanding, the next paragraph presents some
general insights about scalability before the term is examined in the cloud context.

General Findings

Scalability describes the degree to which a subject is able to maintain application
specific quality criteria when it is applied to large situations. Although the term is
frequently used, statements about scalability often lead to just a vague impression
about the analyzed subject [DRW06]. Many authors have tried to overcome this
issue by proposing own definitions or systematic ways to analyze scalability. The
most important insights that are shared by several authors are summarized in the
following paragraphs.

Scalability is fulfilled within a range according to a specific quality. Therefore
sentences like “The system is scalable” do not provide much insight. Every
system is scalable to some extend. Discriminating is the range within and the
quality to which it is scalable. Whereas the range is typically specified by an
upper scaling bound, the quality usually describes the growth of a measured
quality criteria. Possible qualities include linear or exponential growth, for
example.

Scalability refers to input variables that are scaled. Scalability describes how the
subject reacts when one or more input variables, sometimes referred to as at-
tributes [vSVdZS98] or independent variables [DRW06], are varied. Examples
for such input variables are problem size, number of concurrent users or number
of requests per second.

Scalability is measured by evaluating at least one quality criteria. To measure
how the subject reacts, one or more quality criteria have to be observed while
input variables are varied. These quality criteria are sometimes referred to as
performance measures [vSVdZS98] or dependent variables [DRW06]. Examples
for quality criteria are memory consumption, I/O device usage, or response time.

Scalablity in Clouds

With the help of the above explained terms input variable and quality criteria, scalability
in the cloud context can be described more precisely than commonly practiced.

Input Variable

Typically the input variable for scalability analysis of cloud systems is load intensity.
It describes how much work a system has to handle in a given time span. Load
intensity can be varied either by different work unit sizes or by varying the arrival
rate of work units.

7

8 2. Foundations

Quality Criteria

There are two kinds of quality criteria for cloud systems: service levels and used
resource amount.

Service Levels: A service level can be described by measures like response time
or abort rate. Cloud customers usually specify service level objectives (SLOs)
which define the minimal acceptable service level for their application. Service
levels are normally specified with the help of probabilities for or probability
distributions over the measures. For example: “95% of all response times
should be below one second”. SLOs are often part of a service level agreement
(SLA) that contains multiple SLOs.

Resource Amounts: Resources are required means to conduct certain types of
work. The amount of consumed resources can be measured for different resource
types and at different abstraction levels. Different types of physical resources
are: processing resources like Central Processing Units (CPUs) or Graphics Pro-
cessing Units (GPUs), memory resources like random access memory or storage
resources like hard disk drives. Resources can also be software resources like
server instances, threads or locks. Different abstraction levels cater for different
granularities. For processing resources for example, the resource amount can be
measured by the number of used CPU cycles, physical CPUs, VMs. The latter
one is a special case as a VM is a container resource, that contains several other
resources.

Cloud customers typically want to offer their end users a constant service level which
is independent of the input variable load intensity. Thus, quality criteria that are de-
fined in SLOs should always be satisfied. This means the used resource amount
characterizes the scaling behavior, as it has to increase when the load intensity in-
creases. To emphasize that the scaling behavior of a cloud system is based on scaling
of underlying resources the term resource scaling will be used throughout this thesis
when referring to such systems.

load intensity

response time
tolerable response time

re
sp

on
se

tim
e

(a) System fixed resource amount

re
so

ur
ce

am
ou

nt
/ r

es
po

ns
e

tim
e

load intensity

response time resource amount
tolerable response time

(b) System with resource scaling

Figure 2.2: Resource scaling allows cloud systems to comply with predefined service levels
even for increased load intensity

Figure 2.2 illustrates the difference between a system that uses resource scaling and
one that does not. Here a maximal tolerable response time is defined as service level.
However, other measures that define a service level are possible, too. In case the
amount of resources for a system is fixed, the system’s response time will increase

8

2.2. Terms and Differentiation 9

when the load intensity increases. As soon as the response time exceeds the prede-
fined threshold the system is not usable anymore. The scalablity of this system with
respect to response time is therefore very limited.

In contrast, the system whose underlying resources can be scaled is able to comply
with the maximum tolerable response time even for a higher load intensity. The
scalability with respect to response time of this system is higher compared to the
system without resource scaling. Still, the scalability is limited - as the maximum
amount of underlying resources is limited.

Note that the exponential increase of the response time is just exemplary. Other
growth characteristics are also possible. Moreover, other measures that measure a
service level could be put in place of response time, too.

Scalability is a Static Property

It is important to understand that scalability does not contain any temporal aspect.
In the context of cloud computing, scalability does not make any assumption about
when the resources are scaled. Scalability just describes how much additional re-
sources a system needs when the load increases to be able to offer a constant service
level. Thus, scalability does not provide any information about the system’s ability
to scale resources on demand in a fast and accurate manner, it even does not make
any assumptions about the existence of an - automated - scaling mechanism.

Scaling Method

Resource scaling can be achieved in two different ways, often referred to as scaling
dimensions:

Vertical Scaling or scaling up/down refers to varying the amount of resources by
adding/ removing resources to an existing resource node. Looking at computing
resources for instance, scaling up can mean adding CPU time slices shares
or additional CPU cores to a node. As the underlying physical hardware is
limited, vertical scaling is only possible to some extend. This is true for low-
level resources like CPUs but also for high level resources like threads in a
thread pool, whose maximum pool size is a given parameter of the underlying
hardware.

Horizontal Scaling or scaling out/in refers to varying the amount of resources by
adding/removing resource nodes to a cluster. One example is the allocation of an
additional VM. The added VM can be located at the same physical location like
previous ones or at another remote location. Horizontal scaling typically is more
expensive than vertical scaling since the allocation of new nodes and additional
communication causes significant overhead. Depending on the application and
the scaling architecture, scaling out can in some cases even lead to a decreasing
service level.

Migration is mentioned in [GB12] as a third scaling method. It describes the trans-
ference of a VM from one physical location to another for global infrastructure or
locality optimization. Since the number of assigned resources typically changes but
the number of virtual instances does not, migration can be treated as a special case
of vertical scaling.

9

10 2. Foundations

2.2.3 Elasticity

Elasticity is known in physics and likewise in economics. In physics [OED14b], elasticity
is a material property that describes to which degree a material returns to its original state
after being deformed. In economics, elasticity describes the responsiveness of a dependent
variable to one or more other variables [CW09]. On a high level of abstraction one can
argue elasticity captures how a subject reacts to changes that occur in its environment.

For the context of cloud computing elasticity was previously analyzed in [HKR13]. This
thesis builds upon this work and further refines it. While scalability - in the cloud context -
describes the degree to which a system is able to adapt to a varying load intensity by using
a scaled resource amount, elasticity reflects the quality of the adaptation process in relation
to load intensity variations over time. Thus, elasticity adds a temporal component to
scalability. As elasticity describes properties of an adaptation process, elasticity requires
the existence of a mechanism that controls the adaptation.

Before analyzing resource elasticity in detail in Section 2.3, the effect of different degrees
of resource elasticity in cloud systems is illustrated by a simple example.

time

lo
ad

 in
te

ns
ity

/

re
so

ur
ce

s

resource demand resource supply
load intensity

(a) System A

lo
ad

 in
te

ns
ity

/

re
so

ur
ce

s

time

resource demand resource supply
load intensity

(b) System B

Figure 2.3: Different degrees of elasticity due to different elasticity mechanisms

Figure 2.3 shows the behavior of two systems that are equal except for their elasticity
mechanisms. In particular, their underlying resources have the same efficiency and the
scalability of both systems is equal as well. Thus, for an arbitrary load intensity, both
systems require the same amount of resources to comply with predfined SLOs. Thus,
both systems have the same resource demand. In this example the second system exhibits
a higher degree of elasticity. The red curve - resource supply - matches the blue curve -
resource demand - better comparing System A to System B. System A’s adaptation process
reacts faster and more precise to changes in load intensity than the one of System B. To
compare the elasticity of both systems in a quantitative manner metrics are required. The
metrics which have been developed in course of this thesis are explained in Chapter 5.

Comparing elasticity in this simple case is easy. It becomes more complex, when the
system’s underlying resources have different levels of efficiency or exhibit different scaling
behaviors. To cope with these difficulties elasticity is analyzed in detail in Section 2.3.

2.2.4 Relation and Differentiation

Efficiency is a term that can be applied to both, a part of a system, e.g., a single resource
(resource property), or an entire system (system property). In any case it reflects the
ability of the subject to process a certain amount of work with smallest possible effort.

10

2.3. Resource Elasticity 11

Improving efficiency of underlying resources normally results in a better efficiency for
the whole system.

Scalability describes the degree to which a system is able to adapt to a varying load inten-
sity by using a scaled resource amount to maintain a predefined service level. Improving
scalability normally means reducing scaling overhead and therefore leads to improved
efficiency (system property). In contrast, an improved efficiency of the underlying re-
sources does not necessarily result in an improved scalability, e.g., quality attributes such
as the response time can still increase exponentially even for an improved efficiency of
the underlying resources.

Elasticity reflects the sensitivity of a system’s scaling process in relation to load intensity
variations over time. Thus, scalability is a prerequisite for elasticity. Normally, a higher
degree of elasticity results in higher efficiency (system property) since a high degree of
elasticity implies appropriate resource allocation and usage. The other way around this
implication is not necessarily given. No direct implications exist between scalability and
elasticity or vice versa.

The fact that efficiency and scalability do not determine elasticity entirely, strengthens the
consideration to treat elasticity as an individual property of a cloud computing environ-
ment.

2.3 Resource Elasticity

This section presents a definition for resource elasticity and explains it. Afterwards,
Subsection 2.3.2 illustrates the prerequisites for measuring elasticity and thereby answers
RQ 1.1. The following Subsection 2.3.3 explains the core aspects of elasticity and thus
addresses RQ 1.2. Finally, Subsection 2.3.4 gives a brief overview about existing elasticity
strategies that can be used when implementing elasticity mechanisms.

2.3.1 Definition

In [HKR13] the following definition for resource elasticity was proposed:

“Elasticity is the degree to which a system is able to adapt to load changes
by provisioning and deprovisioning resources in an autonomic manner, such
that at each point in time the available resources match the current demand as
closely as possible.”

Several important aspects can be derived from this definition. Previous informal defini-
tions included them to some extend but not with respect to all points:

Elasticity is

“... the degree to which ...” As true for scalability, elasticity is not a feature which is
fulfilled or not. Elasticity is measurable and therefore it should be possible to
compare the degree elasticity for different systems to each other. Nevertheless,
some prerequisites have to be fulfilled in order to allow elasticity comparisons.
These prerequisites are discussed in the next section.

“... a system is able to adapt ... (in an autonomic manner)” A system which is able to
adapt needs a defined adaptation process. This process specifies how and when the
system adapts. Normally, the process should be automated to ensure a consistent
adaptation behavior.

11

12 2. Foundations

“... to load changes ...” In a realistic cloud scenario, load intensity changes over time.
Thus, a benchmark that measures elasticity should model the variability of load
intensity in a realistic way to enforce a realistic behavior of the evaluated elastic
systems.

“... by provisioning and deprovisioning resources ...” Elasticity includes both: Provi-
sioning resources when demand increases and deprovisioning them when demand
decreases.

“... resources match the current demand as closely as possible.” As a close match
between resource demand and availability is desired, comparing both is the central
point for evaluating elasticity.

2.3.2 Prerequisites

Before evaluating resource elasticity several prerequisites should be checked beforehand
cf. [HKR13].

Autonomic Scaling: Elasticity is the result of an adaptation process that scales resources
according to the load intensity. Evaluation of elasticity therefore requires that this
process is specified. The adaptation process is usually realized by an automated
mechanism. However, the adaptation process could also contain manual steps. A
notable aspect in the latter case is that repeatability of measurements in that case
may be limited.

Resource Type: Elastic systems scale resources. The type of resources can be quite
different: There are base resources like CPU, memory or disk storage and there are
container resources, which comprise several base resources and are very common
in cloud systems. To avoid comparing apples to oranges when evaluating elasticity,
systems should be compared that use the same resource types.

Resource Scaling Unit: The amount of used resources can be measured in different
units, e.g., CPU time slice shares, processors or VMs. If elasticity is analyzed by
comparing resource demands to actual resource consumption, it is crucial to use the
same units when comparing different systems.

Scaling Method: The different scaling methods are explained in Section 2.2.2. Compar-
ing elastic systems that are based on different scaling dimensions may be desirable.
Nevertheless, this should be done with care as the choice about the scaling method
may have side effects such as different resource scaling units.

Scalability Bounds: The scalability of every system is limited. The scalability bounds
depend on the maximum amount of available physical resources and on the ser-
vice level constraints that are specified in SLOs. Elasticity comparisons should be
performed within a scaling range that is supported by all compared systems.

2.3.3 Core Aspects

Definition 2.3.1 states that elasticity measures the degree to which a system is able to
(de-)provision resources in a way that demand and provided resources “match as closely
as possible”. This definition helps to understand the meaning of perfect elasticity. By
changing the perfect elastic behavior, it is possible to gain insights of the core aspects of
elasticity.
Figure 2.4 illustrates an artificial system A with perfect elasticity. The curves for re-
source demand and allocated resources are equal and thus the property “match as closely
as possible” is perfectly fulfilled. To illustrate different aspects of elasticity the curve
for allocated resources is now deformed, and therefore the elastic behavior is changed
systematically.

12

2.3. Resource Elasticity 13

re
so

ur
ce

s

time
resource demand resource supply

Figure 2.4: System A: Ideal elasticity

Accuracy

time
resource demand resource supply

re
so

ur
ce

s

(a) System B

time
resource demand resource supply

re
so

ur
ce

s

(b) System C

Figure 2.5: Systems with imperfect accuracy

Subfigure 2.5(a) shows a system that over-provisions at all times. This could be due to a
very conservative adaptation process, aiming to never violate SLOs. Although this system
B reacts very fast, it does not match the demand as closely as possible and should therefore
be considered less elastic than the ideal elastic System A. Subfigure 2.5(b) shows another
System C that also always adapts at the exact points where the demand changes. But, in
contrast to system B it over-provisions and under-provisions. Systems B and C have in
common that they seem to react immediately when demand changes. But although they
react fast, both systems do not match the demand very accurately. Thus, accuracy can be
seen as one core aspect of elasticity.

Timing

Another way how the curve for available resources can be deformed is illustrated in
Figure 2.6. Subfigure 2.6(a) shows the behavior of a hypothetical system D, which is able
to match the resource demand, but with some delay. System D could be a system that
needs some time to perform its adjustments after the resource demand changes. Similar,
one can imagine a system that performs allocation activities in advance before the demand
actually changes. Such a system foresees changes too early. A further way how the curve
for available resources can be modified is shown in Subfigure 2.6(b). Whereas, the curve
for available resources generally matches the curve for the resource demand, the available

13

14 2. Foundations

time
resource demand resource supply

re
so

ur
ce

s

(a) System D

time
resource demand resource supply

re
so

ur
ce

s

(b) System E

Figure 2.6: Systems with imperfect timing

resources seem to be updated with - an unnecessary - high frequency. It can be argued
that systems D and E have a timing behavior that is not ideal. Therefore, the timing of the
adaptation process can be seen as a second core aspect.

It is valid to argue that system E not only has a bad timing but also its accuracy is not
optimal. Although accuracy and timing are no orthogonal dimensions, these core aspects
help to describe and compare different elastic behaviors in a structured way.

Metrics that capture the core aspects of elasticity are presented in Chapter 5 and evaluated
in Section 7.3.

2.3.4 Strategies

This section gives a short overview of existing elasticity strategies which can be used when
implementing elasticity mechanisms and shows how they can be classified according to
a taxonomy. The broad variety of different elasticity strategies warrants the need for a
benchmark to evaluate the quality of different strategies.

A cloud system with resource elasticity is a self-adaptive system. Resources - as part of
the system - are allocated according to a changing demand. In their journal article “Self-
Adaptive Software: Landscape and Research Challenges”[ST09] Salehie and Tahvildari
present a taxonomy of self-adaptive systems. The taxonomy is shown in figure 2.7(a).
Although Salehie and Tahvildari target self-adaptive systems on a high abstraction level,
most variation points are applicable to systems with elastic resource scaling.

Galante and de Bona present in their survey about cloud computing elasticity [GB12] a
comparable taxonomy targeted at resource elasticity. This taxonomy is shown in figure
2.7(b).

Without going into too much detail or explicitly picking advantages of an individual
strategy, some relevant aspects that appear in at least one of the taxonomies are highlighted
in the following. Hereby, aspects limiting the comparability as well as aspects that
motivate the need for a benchmark are emphasized.

The target abstraction layer for elasticity strategies, i.e., IaaS, PaaS, can be different. This is
one reason why the unit of the scaled resources or even the type of the considered unit can
be different. Elasticity strategies can make use of different scaling methods to adjust the
amount of available resources. As outlined in Section 2.3.2 resource type, resource unit
and scaling method can limit the comparability of elasticity.

14

2.3. Resource Elasticity 15

Object to Adapt

Realization Issues

Temporal Characteristics

Interaction Concerns

Self-Adaptation

Layer

Artifact & Granularity

Impact & Cost

Approach

Type

Making/Achieving

External/Internal

Static/Dynamic Decision-Making

Open/Close

Specific/Generic

Model-Based/Free

Reactive/Proactive

Continuous/Adaptive Monitoring

Human Involvement

Interoperability

Trust

(a) Self-adaptive systems [ST09]

���������	

�����
��	
��

��
�
�

�������
��������
	�
�

������
������

��
���
��

��
����

��
	�
�����

���
�������	
��

��
�
��������
�

���

���
��

��
���

�������
���

��������������

���
�
���

����
���

�
����
���

(b) Elastic Systems [GB12]

Figure 2.7: Taxonomies for (a) self-adaptive systems and (b) elastic systems

15

16 2. Foundations

Elasticity strategies can be reactive or proactive/predictive. Reactive strategies start the adap-
tation process as soon as they detect a changed demand. Due to the time needed for the
adaptation itself, available resources match the demand only after some delay. Predictive
systems extend reactive ones. They try to foresee demand changes in order to provision
the correct amount of resources in time. By intuition, strategies that contain predictive
elements should perform better than others that are purely reactive. A benchmark which
evaluates elasticity helps to substantiate the intuition and to bring different strategies into
an order.

Apart from these temporal characteristics of elasticity strategies many variants exist for
different methodical realization issues, compare [ST09, p.13ff]. All of them have their own
advantages and disadvantages. A benchmark can reveal their impact on elasticity.

2.4 Benchmark Requirements

Before creating a new benchmark, it is important to know about the properties of a
good benchmark. The paper “The Art of Building a Good Benchmark” [Hup09] is one
of the first approaches to capture the characteristics of a good benchmark. Huppler
mentions relevance, repeatability, fairness, verifiablity and economic efficiency as main
characteristics of a benchmark. In a later paper [Hup12], Huppler addresses some new
challenges that occur when developing benchmarks for cloud systems.

These five characteristics of a benchmark can - although structured differently - also be
found in the benchmark requirements defined by Folkerts et. al. in their paper “Bench-
marking in the Cloud: What it Should, Can, and Cannot Be”[FAS+12]. Folkerts et. al.
arranged their benchmark requirements according to three groups: general requirements,
implementation requirements and workload requirements. The following paragraph uses
the requirement structure proposed by Folkerts et. al. to explain benchmark requirements
and mention eventual implications for an elasticity benchmark. This way, RQ 1.3 is an-
swered.

1. General Requirements

a) Strong Target Audience
One precondition for the success of a benchmark is a target audience of a
considerable size. In the cloud context, possible target audiences are cloud
customers who want to use cloud services and cloud providers who want stand
out of their competition. In the case of elasticity benchmarking, researchers
represent another target audience as they need a tool for evaluating developed
elasticity strategies.

b) Relevant
Generally, a benchmark should measure the performance of operations that are
typical within the targeted domain. Elasticity benchmarking is not targeted to
a narrow domain. It should rather be possible to benchmark elastic systems
that are open for different domains. To achieve relevance, typical operations
that stress elasticity - provisioning and deprovisioning - should be triggered.

c) Economical
Running the benchmark should be affordable. For the sake of relevance, an
elasticity benchmark has to trigger provisioning or deprovisioning operations
at different scales. This can be expensive when comparing different public
cloud systems. However, for the evaluation of different elasticity strategies in
research it may be sufficient to them on a private cloud or a cheap public cloud.

16

2.4. Benchmark Requirements 17

d) Simple
A benchmark with a highly complex structure is often difficult to understand
and hard to trust. If people do not trust a benchmark, they will not use it.
Benchmarks should therefore be as simple as possible. Necessary complexity
can be explained in a benchmark documentation.

2. Implementation Requirements

a) Fair and Portable
Fairness is an intuitive property of any benchmark. However, this does not
mean that fairness is easy to establish. A benchmark can ensure fairness
either by taking care of certain properties of different systems or by limiting
the participant systems in way that the remaining systems are evaluated fair.
When elasticity is benchmarked, fairness is an important issue when comparing
systems whose underlying resources have different levels of granularity or
efficiency. Comparing elastic systems which use different scaling methods can
also be difficult with respect to fairness.

b) Repeatable
Benchmark results should be reproducible. Without reproducibility it is diffi-
cult to create trust for a benchmark.

c) Realistic and Comprehensive
This requirement is similar to the requirement relevant and means that the
typical features used in the major classes of target applications should be
exercised.

d) Configurable
The workload used to exercise the benchmarked system should be config-
urable. This true in particular for elasticity benchmarks, as depending on the
targeted domain, the type of needed elasticity can vary. In some domains,
elasticity is necessary to compensate seasonal patterns, in others it is important
to react properly to high variations due to short bursts.

3. Workload Requirements

a) Representativeness
Representative workloads are important as the system should be stressed in
realistic way. Configurable workloads help to customize the benchmark in a
way that fits to the targeted domain.

b) Scalable
Scalability of workloads should be supported by a benchmark. In the context
of elasticity benchmarking, scalability plays an inherent important role.

c) Metric
The metric used for a benchmark should be meaningful and understandable.
For elasticity benchmarking this means the metrics should preferably reflect
the different aspects of elasticity in an easy-to-grasp manner.

Fulfilling all these requirements completely is hard since some them, i.e., simplicity and
fairness, tend to conflict with each other. Nevertheless, having these requirements and
the corresponding implications in mind is important when developing a new benchmark.

17

3. Related Work

This section analyzes existing approaches in the context of measuring and modeling
elasticity and thus addresses the second goal mentioned in Section 1.1. The approaches
are grouped according to their focus (compare RQ 2.1) and are analyzed with respect to
their limitations (compare RQ 2.2).

3.1 Early Elasticity Measurement Ideas and Approaches

Binning et al. [BKKL09] present initial ideas for measures that capture different aspects of
cloud systems. Although the authors do not use the term elasticity, one of the discussed
aspects is related to it: The ability of a system to adapt to peak loads. Binning et al.
suggest to measure the adaptability as the ratio between the number of requests that are
answered within a given response time and the total number of issued requests. It stays
unknown, if the peak was big enough to enforce an adaptation or if the peak was so big
that even at the upper scaling bound the system is not able to handle the request within
the response time. Still, this can be seen as an early approach for measuring elasticity
based on response time variability.

Ang Li et al. [LYKZ10] introduce the Scaling Latency metric. It measures the time between
a manual request of an resource instance and its availability for use. Ang Li et al. further
split up the Scaling Latency into the time necessary to make the instance available and
power it on (Provisioning Latency) and the time between powering it on and its availability
for use (Booting Latency). These time spans are one aspect that influences the elasticity of
a system. In addition, the scaling behavior strongly depends on the elasticity mechanism
that triggers the creation or removal of instances. This influence cannot be measured with
the Scaling Latency metric.

Zheng Li et al. [LOZC12] present a catalog of metrics for various cloud aspects. For
elasticity, they identify the aforementioned Scaling Latency and additionally the Resource
Release Time and a metric called Cost and Time Effectiveness as elasticity measures. The latter
takes the granularity of resources into account. Li et al. argue that using small instances
offers higher elasticity than using big ones because the customer is billed according to
a fine grained resource usage. All three metrics measure static system properties. As
discussed in the previous paragraph, the dynamic behavior of a System also influenced
by other factors such as the ability of the elasticity mechanism to detect or foresee demand
changes.

19

20 3. Related Work

The SPEC Open Systems Group (OSG) [CCB+12] defines four elasticity metrics in their
Report on Cloud Computing. The first metric, Provisioning Interval, is equal to the Scaling
Latency metric mentioned above. With an Agility metric the SPEC OSG measures the
sum of over- and provisioned resources, normalized with an quality of service dependent
resource demand. The remaining two elasticity metrics Scaleup/Down and ElasticSpeedup
measure scalability not elasticity. The first two metrics however, already capture the
accuracy and the timing aspect of elasticity to some extend.

Herbst [Her11] proposes four elasticity metrics and demonstrates their use for analyz-
ing the elasticity of thread pools. Elasticity is evaluated by measuring the reaction time
between demand and corresponding supply changes, by analyzing the distribution of re-
configuration effects, by comparing the reconfiguration frequency of demand and supply
and by evaluating the dynamic time warping (DTW) distance between the demand and
the supply curve.
Herbst et al. [HKR13] extend those metrics with speed and precision as further elasticity
metrics. Both metrics capture the scale up and the scale down behavior of a system
separately. The scale up/down speed metric measures the average time to switch from an
under-/over-provisioned state to an optimal or over-/under-provisioned state. The scale
up/down precision metric measures the average amount of under-/over-provisioned re-
sources during a measurement period.
Furthermore, Herbst et al. state the importance of not mixing up elasticity with other
system properties like efficiency and scalability when comparing the elasticity of systems.
They sketch the idea of inducing equal demand curves on systems with different scaling
behaviors or different levels of efficiency of underlying resources in order to allow a fair
elasticity comparison.
This presents a matured concept for benchmarking resource elasticity based on this idea
and refines, extends, and evaluates the metrics.

Coutinho et al. [CGS13] propose based on the work of Herbst et al. [HKR13] metrics to
support the analysis of elastic systems. Coutinho et al. use the term underprovisioned state
to refer to the state of a system in that it is adding resources. The term underprovisioned
state is used accordingly for the removal of resources. Additionally, a stable state is defined
as a system state where instances are neither added nor removed. A further transient state
is not clearly defined. The proposed metrics measure the time spent within these states
and the amount of resources allocated within them. Sample metric values are computed
for two experiments. The authors name the refinement and the interpretation of these
metrics as future work. None of the provided metrics measures the accuracy of elastic
behavior.

3.2 Elasticity Models and Simulating Elastic Behavior

Shawky and Ali [SA12] measure elasticity of clouds at the infrastructure level in analogy
to the definition of elasticity in physics as the ratio of stress and strain. Hereby, stress is
modeled by the ratio of required and allocated computing resources. Strain is modeled as
the product of the relative change of the data transfer rate and the time required to scale
up or down one resource. In simulated experiments the modeled elasticity decreases with
the total number of VMs. No experiments for scaling down are presented.

Brebner [Bre12] presents an approach to model and predict the elasticity characteristics of
cloud applications. The approach models the essential components of cloud platforms:
The incoming load, the load balancer, the elasticity mechanism and the VMs together
with a deployed application. The behavior of the cloud platform is simulated using a
discrete event simulator in order to predict compliance with response time SLOs and

20

3.3. Business Perspective Approaches 21

costs. In contrast to a classical benchmark, this approach predicts the behavior instead of
measuring it.

Similarly to Brebner, Suleiman et al. [SV13] present analytic models that emulate the
behavior of elasticity rules. The models allow to predict metrics such as CPU utilization or
response time for given elasticity rules and a statistically modeled number of concurrent
users. Since a model of the evaluated system is required, measuring the elasticity of
systems with unknown elasticity mechanisms or other system internals is hardly possible.

Bersani et al. [BBD+14] formalize concepts and properties of elastic systems based on
a temporal logic. The approach leverages the automatic verification whether proposed
constraints hold during the execution of a workload. A benchmark in contrast, does
not evaluate constraints that are either true or false but measures the quality of different
elasticity aspects. Although the perspective of the approach of Bersani et al. is different
from benchmarking, some of the constraints can be transformed into useful metrics. For
example, a constraint that restricts the amount of under- or over-provisioned resources
or one that limits an oscillating behavior can be transformed into metrics that measure
the amount of under- or over-provisioned resources (compare the accuracy metrics, Sec-
tion 5.1) or respectively into a metric that measures the frequency of oscillations (compare
the jitter metric, Section 5.2.2).

3.3 Business Perspective Approaches

Many proposed approaches use a business perspective when evaluating elasticity. They
measure elasticity indirectly by comparing the financial implications of alternative plat-
forms or strategies. This may be a valid approach from a cloud customer perspective,
but is often hard to implement because it is difficult to derive necessary cost or penalty
functions. Furthermore, such approaches mix up the evaluation of the technical aspects of
elasticity and the business model. Nevertheless, the following paragraphs explain some
of the business oriented approaches for the sake of completeness.

Folkerts et al. [FAS+12] propose a simple cost oriented approach to evaluate the financial
impact of elasticity. They suggest to measure elasticity by running a varying load and
comparing the resulting price with the price for the full load. A reduced price for varying
load is a rough indicator for elasticity, but it does not allow more detailed evaluation.

Weinman [Wei11] presents a metric very similar to the Agility metric of the SPEC OSG
[CCB+12] and the precision metric of Herbst et al. [HKR13]. He compares the demand
curve D(t) and the resource allocation curve A(t) for a computational resource with a loss
function. The loss function measures the weighted sum of the financial losses for over-
(A(t) > D(t)) and under-provisioning (A(t) < D(t)) periods. The paper also analyzes how
different elasticity strategies influence the resulting loss. This approach evaluates the
financial implications of the accuracy aspect of elasticity but does not evaluate the timing
aspect explicitly.

Sharma et al. [SSSS11] present a concept for cost-aware resource provisioning. The
approach accounts for infrastructure and transitioning costs and optimizes them using
integer linear programming. However, the approach does not allow to compare different
resource provisioning options with other metrics than infrastructure or transitioning costs.

Suleiman et al. [Sul12] propose a framework that allows to collect different cost and
performance metrics and supports trade-off analysis. Initial results compare costs and
the maximum latency for a simple step wise increasing load intensity. Of course, the
maximum latency of requests is influenced by the elasticity of a system, but it cannot
quantify the elasticity of a system alone.

21

22 3. Related Work

Islam et al. [ILFL12] present a concept that allows cloud customers to evaluate the
financial implications of choosing different elastic cloud providers. In contrast to many
other works, this paper analyzes over- and under-provisioning. It also considers the fact,
that the amount of allocated resources is not necessarily equal to the amount of resources
the customer is charged for. Besides the costs for resource allocations, Islam et al. take the
penalty costs for violating SLAs into account. The load profiles used for the evaluation is
a set of simple mathematical functions including linear functions, exponential functions
and sines containing plateaus of different lengths. These load profiles are one step towards
a realistic variation of load intensity, but still the use of a workload model that captures
the expected variability of load intensity better may be desired.

Moldovan et al. [MCTD13] propose MELA, a framework targeted at cloud service
providers that allows to analyze the elasticity dimensions resource elasticity, cost elasticity
and quality elasticity. The framework monitors low level data for every dimension and
offers mechanisms to compose the monitored data to higher level metrics. For a set of
metrics the framework can analyze the boundaries between that the metric values vary
during the measurement. Additionally, relationships between metrics can be discovered
by analyzing the rate of different metric value combination occurrences. The proposed
framework is a generic monitoring tool and allows cloud providers to analyze different
financial elasticity aspects. Currently, the framework does not allow to retrieve or monitor
the resource demand as required for a technical analysis of resource elasticity.

3.4 Elasticity of Cloud Databases

Dory et al. [DMRT11] propose an approach to measure the elasticity for cloud databases.
They analyze elasticity by measuring how a cluster of database nodes reacts after adding
new nodes. The quality of the behavior is measured using the observed distribution of
response times after triggering the scale up. The removal of database nodes as well as the
influence of an elasticity mechanism that triggers the adaptations is not analyzed.

Almeida et. al. [ASLM13] present another response time based elasticity measurement
methodology for cloud databases. Over-provisioning as well as under-provisioning are
evaluated within the approach. For the over-provisioning case, the ratio of expected
and actual response time is used to determine the degree of elasticity. Implicitly, this
assumes that adding more resources will always result in a decreasing response time. For
the most systems, this assumption does not hold for a low utilization of the underlying
resources. Without this assumption, the approach may be able to evaluate if a system
over-provisions, but it cannot quantify how much over-provisioning is occurring.

Tinnefeld et al. [TTP14] propose an approach to evaluate the elasticity of cloud database
management systems by analyzing the financial implications of using a certain system.
This approach bases on and is very similar to the approach of Islam et al. [ILFL12]
discussed in Section 3.3.

3.5 Conclusions

Existing elasticity measurement approaches analyze elasticity only to a limited extend.
Their metrics often cover only the elasticity aspect timing but not the accuracy aspect
or vice versa. Many approaches evaluate the elastic behavior in scale up or scale out
scenarios, but do not consider scenarios where resources are decreased. Approaches
that analyze both behaviors often use simple workload models, where the load intensity
is varied according to simple mathematical functions. For benchmarking purposes the
usage of representative workloads is desirable [FAS+12]. All analyzed approaches but

22

3.5. Conclusions 23

[HKR13] neglect to take the levels of efficiency of underlying resources and the scaling
behavior of a system explicitly into account in order to not mix up these properties with
elasticity. Business perspective analysis approaches are important for customers who
are interested in the financial implications of choosing between different cloud offerings.
These approaches are often difficult to implement and mix up the evaluation of the
technical property elasticity and of the business model of the cloud provider.

23

4. Resource Elasticity Benchmark Concept

This chapter addresses Goal 3 by explaining the benchmarking concept that was further
developed and refined in course of this thesis based on previous research [Her11]. Section
4.1 outlines the scope and explains the limitations of the benchmarking approach. A gen-
eral overview about the benchmark components and about the benchmarking workflow
is then given in Section 4.2. The conceptual ideas for the essential benchmark compo-
nents are discussed in own sections. The implementation of the concept is illustrated in
Chapter 6.

4.1 Limitations of Scope
This thesis adopts a technical perspective on resource elasticity. Therefore, the developed
benchmark targets researchers, cloud providers and customers interested in comparing
elastic systems from a technical, not a business value perspective. As a result, this
approach does not take into account the business model of a provider or the concrete
financial implications of choosing between different cloud providers, elasticity strategies
or strategy configurations.

Since this approach evaluates resource elasticity from a technical perspective, a strict
black-box view of the CSUT is not sufficient. The evaluation bases on comparing the
induced resource demand with the actual amount of used resources. To monitor the
latter, access to the CSUT is required. Furthermore, the calibration requires to manually
scale the amount of allocated resources. Since cloud providers usually offer APIs that
allow resource monitoring and manual resource scaling, this limitation does not restrict
the applicability of the benchmark.

Cloud services offer their customers different abstraction layers. These layers are com-
monly referred to as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS) [MG11]. As this thesis focuses on resource elasticity, the
target systems for elasticity comparisons are mainly systems that provide IaaS. In the
SaaS context resources are not visible to the user. The user pays per usage quota instead
of paying for allocated resources. SaaS systems are therefore not within scope of this
thesis. Although this approach is not explicitly targeted at PaaS, the approached bench-
mark should also be applicable in the PaaS context as long as the underlying resource are
transparent.

The workloads used for this approach are realistic with respect to load intensity. They
are modeled as open workloads with uniform requests. The work units are designed

25

26 4. Resource Elasticity Benchmark Concept

to specifically stress the scaled resources. Workloads that use a mixture of work unit
sizes, stress a several (scalable) resources types at the same time or workloads modeled
as closed workloads remain future work. The application that uses the resources is
assumed to be stateless. Thus, a requests always consumes the same amount of resources.
Furthermore, selecting appropriate load profiles is not in scope of this thesis. However,
the thesis demonstrates how complex realistic load profiles can be modeled and adjusted
in a system specific manner in order to allow fair comparisons of systems with different
levels of efficiency of underlying resources and different scaling behaviors.

The range of different resources that a resource elastic system can scale is broad. This
thesis focuses on processing resources such as CPUs but can also be applied to other
physical resources. The evaluation will showcase a simple IaaS scenario where VMs are
bound to processing resources. Thus, scaling the virtual machines corresponds to scaling
the processing resources. Elasticity of resources on a higher level of abstraction, like
thread pools, have been analyzed before [KHvKR11] and are not in scope of this thesis.

Elastic systems can scale resources horizontally, vertically or even combine both methods
to match the resource demand. This thesis focuses on comparing systems that scale VMs
horizontally.

4.2 Benchmark Overview

Load Balancer
2

Monitoring
System

Reconfiguration
Management

Elasticity
Mechanism

4 5

Active VMsActive VMs

Hypervisor

6

Hypervisor

31

...

...Host
1

Host
2

...

Load Generator

System Analysis &
Load Adjustment

Supply & Demand
Extraction

Metric Calculation

Load Modeling &
Generation

Send
Requests

Monitor
Resource Supply

Figure 4.1: Blueprint for the CSUT and the benchmark controller

26

4.3. Workload Modeling and Generation 27

This section presents the structure of the benchmark concept. Figure 4.1 shows an ex-
tended version of the cloud architecture blueprint that was presented in Chapter 2.4. The
extended version additionally contains the benchmark controller, which runs the bench-
mark. The benchmark components facilitate the process for benchmarking resource
elasticity that is depicted in Figure 4.2.

Benchmark

Benchmark
Calibration

System
Analysis

Measurement
Elasticity
Evaluation

Figure 4.2: Activity diagram for the benchmark work flow

The benchmarking process comprises four activities:

1. System Analysis
The benchmark analyzes the CSUT with respect to the efficiency of underlying
resources and its scaling behavior.

2. Benchmark Calibration
The analysis result is used to adjust a load intensity profile in a way that it induces
the same resource demand on all compared systems.

3. Measurement
The load generator exposes the CSUT to a load varying according to the adjusted
load profile. The benchmark extracts the induced resource demand as well as the
actual resource allocations (resource supply) on the CSUT.

4. Elasticity Evaluation
Metrics compare the curves for resource demand and resource supply with respect
to different elasticity aspects.

The remainder of this chapter explains the benchmark components according to the
following structure: Section 4.3 explains how workloads can be modeled and executed.
Section 4.4 explains why analyzing the evaluated system and calibrating the benchmark
accordingly is necessary and describes the concept for realizing both activities. Finally,
Section 4.5 explains how the resource demand curve and the resource supply curve can
be extracted during the measurement.

4.3 Workload Modeling and Generation
This section covers modeling and executing workloads suitable for elasticity benchmark-
ing and thereby addresses RQ 3.1.

4.3.1 Worktype

A benchmark should stress the CSUT in representative way. Therefore, a benchmark
which measures the performance of a system for example should execute a representative
mix of different programs to stress the system. An elasticity benchmark however measures
how a system reacts when the demand for specific resources changes. Thus, an elasticity
benchmark must induce representative demand changes.

Varying demand is mainly caused by a varying load intensity. An elasticity benchmark
should therefore vary load intensity in a representative way. Section 4.3.2 illustrates how
the variation of load intensity is modeled in this approach.

27

28 4. Resource Elasticity Benchmark Concept

In order to induce a processing demand, the work which is executed within each request is
designed to be CPU-bound. In particular, for every request a fibonacci numer is calculated.
To minimize the memory consumption, an iterative algorithm is used in lieu of a recursive
one. Result caching is avoided by adding random numbers within each calculation step.
Furthermore, the final result is returned as part of the response to prevent compiler
optimizations that remove the whole execution.

The overhead for receiving requests is limited by using a lightweight web server. More
details about how requests are handled and processed on the server side can be found in
Section 6.2.

4.3.2 Load Profile Modeling

A good benchmark uses realistic load profiles to stress the CSUT in a representative man-
ner. Workloads are commonly modeled either as closed workloads or as open workloads
[SWHB06]. Whereas in closed workloads new job arrivals are triggered by job comple-
tions, arrivals in open workloads are independent of job completions. The elastic behavior
of a system is usually triggered by a change in load intensity. Hence, for elasticity bench-
marking it is important that the variability of the load intensity is modeled realistically.
As this can be achieved with an open workload model, the developed benchmark will
use an open workload model. Unnecessary complexity due to a closed workload model
is avoided.

Workloads typically consist of a mixture of several patterns. These patterns can model
linear trends, bursts that are characterized by a exponential increase, or patterns which
model the general variability over a day, a week or a year. V. Kistowski et al. present
in [vKHK14a] a meta-model that allows modeling of varying load intensity behaviors.
They also offer the LIMBO toolkit described in [vKHK14b] to facilitate the creation of
new load profiles that are either similar to existing load traces or contain different desired
properties like a seasonal pattern and additional bursts. The usage of this toolkit and
the underlying meta-model allows the creation of realistic load variations that are still
configurable. Thus, the load profiles used for benchmarking can be adapted with low
effort to suit the targeted domain.

4.3.3 Load Generation

In order to stress an elastic system reproducible, it is necessary to send accurately timed
requests to the tested system. This subsection illustrates the concepts for the parallel
submission of requests and shows how the timing accuracy of the request transmission
can be evaluated. The implementation of the load driver is described in Section 6.1.3.

4.3.3.1 Parallel Submission and Response Handling

Partitioning Techniques

Depending on the request response time, the handling (sending of a request and waiting
for the corresponding response) of consecutive requests overlaps and must therefore
be done concurrently. Three different strategies which allow share the work of request
submission and handling of the answers between threads have been developed in course
of this thesis. One of them bases on static partitioning, two on dynamic partitioning.

1. Static Partitioning - Round Robin
Timestamps are assigned to the threads in a round robin approach. Every thread has
its own list of timestamps which it processes one after another. For every timestamp,
the thread first sleeps until the time of submission specified by the timestamp is

28

4.3. Workload Modeling and Generation 29

reached. Then, the thread sends a request and waits for the corresponding response.
If a response is received delayed, the next request cannot be send in time anymore,
although other threads may idle at the same time. However, a timeout which
limits the maximum response time and a sufficient number of threads can solve this
problem.

2. Dynamic Partitioning - Thread Pool Pattern
The dynamic partitioning approaches base both on the thread pool pattern, which

is also known as the replicated worker pattern [FHA99]. In the thread pool pattern,
a number of threads performs a set of tasks concurrently. The tasks are typically
produced by a master thread, who puts them into a data structure, such as a syn-
chronized queue. Whenever a thread has completed a task, it takes a new one from
the queue. If the queue does not contain any tasks, the threads wait until a new task
is inserted into the queue. The two options explained in the following mainly differ
in when tasks are added to the task queue. They are both illustrated in Figure 4.3.

(a) Waiting Master Thread

master thread pushes all request
tasks into task queue immediately

(b) Waiting Worker Threads

Figure 4.3: Alternative ways for using the Thread Pool Pattern

a) Waiting Master Thread
The master first reads the list of timestamps. Then, the master waits until the

submission time for the first request is reached. It pushes the task of sending
this request into the queue. One of the free worker threads takes the task from
the queue and immediately executes it. In the mean time, the master thread
waits until the submission time for the next request is reached and again pushes
it into the queue. Again, one of the free worker threads takes the task from the
queue and executes it. This procedure is repeated for all timestamps.

b) Waiting Worker Threads
Waiting for the time of submission is shifted from the master thread to the

worker threads. The master thread pushes submission tasks into the task
queue immediately after reading the timestamps. As in the first variant, the
worker threads take tasks from the queue as soon as they are finished with the
previous task. In contrast to the waiting master thread variant, now the worker
threads wait until the point of submission for the request contained in their
specific task is reached. When the submission time is reached, the request is
sent. After the response has been received, the thread takes the next task from
the queue.

29

30 4. Resource Elasticity Benchmark Concept

Scale Request Submission across Hardware Nodes

For high load intensities, the capabilities of one hardware node may not be sufficient
to send all requests in time. In this case, request submission must be scaled out. This
means request are sent from different machines (nodes). One way to do so is using static
partitioning to assign requests to the different nodes. On each node, the requests can then
be sent concurrently using a set of threads and one of the above mentioned partitioning
techniques.

Required Number of Parallel Threads

When the maximum response time is known - this is the case when a timeout is defined
for the requests - the amount of threads which is necessary to handle all request without
delays due to a lack of parallelism can be computed as follows:

Algorithm 1 Calculate Number of Threads

function numberOfThreads(timestamps,timeout)
requiredThreads← 0
concurrentRequests← {}
for all timestamp ∈ timestamps do

add timestamp to concurrentRequests
while size(concurrentRequests) > 0 and

concurrentRequests. f irst + timeout < timestamp do
removeFirstElement(concurrentRequests)

end while
currentRequiredThreads← size(concurrentRequests)
requiredThreads← max(requiredThreads,currentRequiredThreads)

end for
return requiredThreads

end function

These threads can either be located on one node or be split up across several nodes.

4.3.3.2 Request Transmission Accuracy Evaluation

Sending requests in time is a crucial aspect to ensure that resource demands are induced
correct and repeatable over different runs. Evaluating the accuracy of the request submis-
sion times is therefore desirable.

A simple approach for this evaluation bases on comparing the planned submission times
of the requests with the real ones. Therefore, real submission times have to be logged
by the load driver which executes the request. Unfortunately, the order of the logged
timestamps is not necessarily equal to the order of planned timestamps. In particular, the
logged timestamps can be disordered when the record for the request is written only after
the response has been received.

Thus, it is necessary to match the logged real submission times with the correct planned
submission times. This can be achieved by assigning a unique identificator (UID) to every
timestamp. When this UID is logged together with the submission time, it is easy to match
the real and planned submission times.

If planned and real time of submission are known for all requests, simple statistical
measures such as sample mean X and sample standard deviation S can be calculated
for difference of planned and real submission times. These measures allow insights into

30

4.4. Analysis and Calibration 31

different aspects: X specifies how much requests are delayed on average. S specifies if
the observed delay is rather constant or is varying. For accurately send requests both
measures should be close to zero. Since especially X is highly affected by outliers another
option for measuring the submission accuracy is evaluating the p percentile, e.g., the 95th
percentile, of the difference between planned and real submission times.

4.4 Analysis and Calibration

The resource demand of a system for a fixed load intensity depends on two factors: The
efficiency of a single underlying resource unit and the overhead caused by combining
multiple resource units. Both aspects can vary from system to system and define distinct
properties namely efficiency and scalability. Elasticity is a different property and should
be measured separately. One way to do so relies on analyzing the load processing
capabilities of a system before evaluating elasticity. After such an analysis, it is known
how many resources a system needs to satisfy a given static resource demand. The
resource demand can then be expressed as function of the load intensity: resourceDemand =
demand(intensity). With the help of this mapping function, which is specific for every
system, it is possible to compare the resource demand to the amount of the actually
allocated resources. In the following section RQ 3.2 is answered by explaining how the
mapping function can be derived.

time
resource demand resource supply

re
so

ur
ce

s

(a) System A (less efficient resources)

time
resource demand resource supply

re
so

ur
ce

s

(b) System B (more efficient resources)

Figure 4.4: Different resource demands for equal load profiles

Figure 4.4 shows how two systems react when they are exposed to the same load profile.
Since the resources of System B are more efficient than those of System A, System B can
handle the load with less resources than System A. For both systems there exist some
points in time where the systems over-provision and other points in time where they
under-provision. Comparing their elasticity is difficult as the resource demands of the
systems are different.

The idea of this approach is to adjust a given load profile in a way that the induced resource
demand changes occur equal in amount and experiment time on all systems. By doing
so, the possibly different levels of efficiency of underlying resources as well as different
scaling behaviors are compensated. With an equal resource demand it is now easier to
compare the quality of the adaptation process and thus the evaluation of elasticity can be
done in a fair way. This adjustment is explained in detail in Section 4.4.2, which thereby
answers RQ 3.3.

31

32 4. Resource Elasticity Benchmark Concept

4.4.1 System Analysis

The goal of the System Analysis is to derive a function that maps a given load intensity
to the corresponding resource demand. Hereby, the resource demand is the minimum
resource amount that is necessary to handle the load intensity without violating a set
given SLO. Therefore, the analysis assumes predefined SLOs. They have to be chosen
according to the targeted domain.

Since this System Analysis should not evaluate any elastic behavior, scaling is controlled
manually during the analysis.

load intensity

re
so

ur
ce

am
ou

nt

resource amount

upper scaling bound

Figure 4.5: The result of a System Analysis: The mapping function demand(intensity)

The result of an hypothetical analysis is shown in figure 4.5. The dashed gray line marks
the upper scaling bound and thus the maximal load intensity the system can cope without
violating SLOs. This upper bound is either caused by a limited amount of available
resources or by a limited scalability due to other reasons like a limited bandwidth or
increased overhead. In the latter case, additional resources are available, but even after
adding resources the SLO cannot be satisfied.

Figure 4.5 shows that the derived mapping function demand(intensity) is a step function.
The function is characterized by the intensities where the resource demand increases.
Thus, analyzing the system means finding those intensities. The search is realized within
an iterative process that is formalized in Algorithm 2.

The analysis is starts by configuring the CSUT to use one resource instance. This includes
configuring the load balancer to forward all requests to this instance. Now, the maximum
load intensity that the system can withstand without violating the SLO has to be deter-
mined, because this the load intensity at which the resource demand increases. In this
thesis, the maximum load intensity is also referred to as the load processing capability.

Several load picking algorithms that are able to find the load processing capability are
discussed in [SMC+08]. For this approach a binary search algorithm is applied, see
Algorithm 3. Binary search consumes more time than a model guided search but is, in
contrast to the latter, guaranteed to converge and still fast compared to a simple linear
search.

Since the upper and lower search bounds are not known at the beginning, the binary
search is preceded by an exponential increase/decrease of the load intensity to find those
bounds. As soon as both bounds are known a regular binary search is applied.

32

4.4. Analysis and Calibration 33

Algorithm 2 Detailed System Analysis

function analyzeSystem(startIntensity)
disableAutoScaling()
resourceAmount← 1
configureSystemAndLoadBalancer(resourceAmount)
lastIntensity← 0
f inished← f alse
while (! f inished) do

maxIntensity← searchMaxIntensity(startIntensity)
if (maxIntensity ≤ lastIntensity) then

f inished← true
else
addToMappingFunction(resourceAmount, maxIntensity)
if (f urtherInstanceAvailable) then

resourceAmount← resourceAmount + 1
configureSystemAndLoadBalancer(resourceAmount)
lastIntensity← maxIntensity
startIntensity← maxIntensity

else
f inished← true

end if
end if

end while
enableAutoScaling()
return function: demand(intensity)

end function

33

34 4. Resource Elasticity Benchmark Concept

Algorithm 3 Binary Search for Maximum Intensity

function searchMaxIntensity(startIntensity)
intensity← startIntensity
f oundLower← f alse
f oundUpper← f alse
while (! f oundLower || ! f oundUpper || (upper − lower) < threshold) do

comliant← checkCompliance(intensity)
if (comliant) then

lower← intensity
f oundLower← true
if (! f oundUpper) then

intensity← intensity ∗ 2
end if

else
upper← intensity
f oundUpper← true
if (! f oundLower) then

intensity← intensity/2
end if

end if
if (f oundLower && f oundUpper) then

intensity← (lower + upper)/2
end if

end while
return intensity

end function

Once the load processing capability for one resource is known, the system is reconfigured
to use an additional resource unit and the load balancer is reconfigured accordingly. After
the reconfiguration, the system should be able to comply with the SLOs again. The load
processing capability is again searched with algorithm 3. This process is repeated until
either there are no additional resources that can be added to the system, or even after
adding a new resource the load processing capability does not increase further. In both
cases the upper scaling bound is reached and the analysis is finished.

Simple and Detailed System Analysis

The analysis approach described above evaluates all scaling stages of a CSUT separately.
When it is known that the resource demand of the analyzed CSUT is increasing linearly
with the load intensity, the analysis can be simplified. In this case, it is sufficient to
analyze the load processing capabilities for the first scaling stage only. The load processing
capabilities for other scaling stages can then be extrapolated. For this thesis, analyzing
the system at each scaling stage separately is referred to as Detailed System Analysis. In
contrast, the simplified version is referred to as Simple System Analysis.

4.4.2 Benchmark Calibration

The goal of the Benchmark Calibration activity is to induce the same demand changes at
the same points in time on every compared system. To do so, the load intensity curve has
to be adapted for every system to overcome different levels of efficiency of underlying
resources and different scaling behaviors.

34

4.4. Analysis and Calibration 35

The mapping function demand(intensity) that was derived in the previous System Analysis
activity, contains information about both: The efficiency of underlying resources and
the scaling behavior. Figure 4.6 illustrates what impact different levels of efficiency and
different scaling behaviors have on the mapping function. Compared to System A, the
underlying resources of System B are more efficient. Hence, the length of steps of the
mapping function is bigger for System B than for System A. For both systems there is
no overhead when adding further resources. The resource demand is increasing linearly
with the load intensity and the length of the steps for one system is therefore independent
of the load intensity. For System C in contrast, the overhead increases when additional
resources are used. As a result of this non linear increasing resource demand, the length
of the steps of the mapping function decreases for increasing load intensities.

(a) System A (b) System B (c) System C

Figure 4.6: Different mapping functions

As illustrated in Figure 4.6, the resource demand variations on the Systems A-C are
different when they are exposed to the same load profile, although they offer same amount
of resources. The difference is caused by different scaling behaviors and different levels
of efficiency of the underlying resources.

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(a) System A

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(b) System B

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(c) System C

Figure 4.7: Resource demand induced by an unadjusted load profile

As basis for the transformation of load profiles, an artificial baseline system is used.
The baseline system serves as reference system for demand changes. Thus, the resource
demand on the compared systems is the same as of the baseline system when the resource

35

36 4. Resource Elasticity Benchmark Concept

demand of the baseline system is induced by an unchanged load profile and the demand
on the compared systems is induced by the respective transformed load profiles.

The resource demand of the baseline system is assumed to increase linearly with load
intensity. Thus, the length of the steps of the mapping function is equal. Using this
assumption, the mapping function demandbase(intensity) of the baseline system can be
characterized by two parameters: The number of steps nbase in the mapping function,
which equals the assumed number of available resources, and the maximum load intensity
maxintensitybase that the base system can withstand using all resources. The first parameter
is chosen as the maximum amount of resources that all systems support. The second
parameter should be greater than or equal to the maximum load intensity which occurs
in the load profile.

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(a) Mapping function demandbase(intensity)

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4
R

es
ou

rc
e

A
m

ou
nt

(b) Induced resource demand

Figure 4.8: Mapping function and resource demand on a baseline system for nbase = 4 and
maxintensitybase = 50

Having defined the mapping function demandbase(intensity) (compare Figure 4.8(a)), the
load profile adjustment step finds for every benchmarked system k an adjustment function
adjustedintensityk(intensity) such that the following applies:

∀intensity ∈ [0,maxIntensitybase] :
demandbase(intensity) = demandk(adjustedintensityk(intensity))

The adjustment function adjustedintensityk(intensity) maps the steps from the demandbase-
(intensity) function to steps of the demandk(intensity) function. The result is a piecewise
linear function, whereby every linear section represents the mapping of one step in the
demandbase(intensity) to the same step in the demandk(intensity) function. The parameters mi
and bi which define the linear function yki(x) = mi∗x+bi that maps the intensities belonging
to the ith step of the demandbase(intensity) function to the ith step of the demandk(intensity)
function can be calculated as follows:

startintensityki = max{intensity|demandk(intensity) < i}
endintensityki = max{intensity|demandk(intensity) = i}

steplength = endIntensity − startIntensity
mki = steplength/(maxintensitybase/nbase)
bki = startintensity − steplength ∗ (i − 1)

36

4.5. Measurement: Demand and Supply Extraction 37

and thus the function adjustedintensityk(intensity) can be expressed as:

adjustedintensityk(x) =


yk1 when startintensityk1 < x ≤ endintensityk1

...

yknk
when startintensityknk

< x ≤ endintensityknk

(4.1)

Having calculated the adjustment function adjustedintensityk(intensity), this function can
be applied onto the original load profile intensity(t) = lp(t) in order to retrieve a system
specific adjusted load profile lpk(t). This adjusted load profile can then be used in the
actual benchmark run.

lpk(t) = adjustedintensityk(lp(t))

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(a) System A

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(b) System B

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(c) System C

Figure 4.9: Induced resource demand for system specific adjusted load profiles

Figure 4.9 shows the induced load demand for Systems A, B and C using the adjusted
load profiles. It can be seen that although the systems have underlying resources with
different levels of efficiency and have different scaling behaviors, the induced resource
demand variations are now equal for all compared systems.

4.5 Measurement: Demand and Supply Extraction
During a measurement run, the load driver induces a varying resource demand on the
CSUT. At the same time, the CSUT tries to match this demand by adapting the amount
of allocated resources, the resource supply, dynamically. This section describes how the
resource demand and the resource supply can be extracted and thereby answers RQ 3.4
and RQ 3.5, respectively.

4.5.1 Resource Demand

The load on the CSUT is induced by requests which are sent according to a predefined
load profile. The load profile lp(t) defines the load intensity, i.e., the number of requests
sent per time unit, over time. Using the mapping function demand(intensity) derived in
the System Analysis (compare Section 4.4.1), this information can be used to derive the
resource demand. For every point in time t, the induced demand resourceDemand(t) can
be calculated as follows:

resourceDemand(t) = demand(lp(t))

37

38 4. Resource Elasticity Benchmark Concept

4.5.2 Resource Supply

Measuring the Amount of Usable Resources

The resource supply is the amount of resources which is available in a usable state.
Unfortunately, the resource supply is not necessarily the resource amount that a cloud
provider bills its customer. There are two reasons for the discrepancy. The main reason
is that cloud providers usually charge based on time intervals which are coarse grained
compared to the provisioning time. For example, for a resource that is used for ten minutes
only a provider may bills the same costs as for a resource used for one hour. The second
reason is that a resource may not be ready to use immediately after the allocation. This is
especially true for container resources like VMs. After allocation, a VM needs time to boot
and start required applications. Cloud providers may even bill the VM when its creation
was scheduled, although the customer cannot use it at this point. This approach does not
evaluate the business model of cloud providers. Therefore, the benchmark compares the
amount usable resources, the resource supply, with the amount of necessary resources,
the resource demand, independently of what the customer is billed for. The benchmark
user should be aware of this fact when implementing the resource supply monitoring.

For this thesis and for the presented benchmark, the amount of allocated or the resource
supply refers to the amount of resource that are currently available for use.

Elastic cloud systems are usually managed by a cloud computing software which also
provides monitoring tools. These monitoring tools can be used to retrieve the resource
supply. Hereby can, depending on the capabilities of the monitoring tools, two differ-
ent monitoring techniques be applied: Active Monitoring based on polling and passive
monitoring based on log parsing.

Active Monitoring - Polling the System State

This method polls the information about the resource supply periodically. The granularity
of this method depends on the frequency of the polling requests. The disadvantage of this
method is the creation of unnecessary network traffic and CPU load on the benchmark
and on the management node.

Passive Monitoring - Log Parsing

If the monitoring tool offers access to logs which contain information about when resources
have been de-/allocated, this log can be parsed to obtain the desired information. Log
parsing usually only offers information about relative changes of the resource supply
not about its absolute level. Thus, it is necessary to poll the absolute the number of
used resources additionally, once. Using this information about the absolute level of the
resource supply, the information from the parsed log can be used to compute the resource
supply for other points in time. If this method is feasible, it should be preferred over the
active monitoring, since it requires less overhead.

38

5. Resource Elasticity Metrics

The last activity within the benchmarking process, the Elasticity Evaluation, measures the
observed elastic behavior of the CSUT with the help of metrics. This section discusses
the elasticity metrics that have been developed and evaluated in course of this thesis and
thus addresses the fourth goal mentioned in Section 1.1.

Some previous works [LYKZ10, LOZC12, CCB+12] suggest to measure static system
properties that influence the elastic behavior. A drawback of this approach is that these
static properties cannot fully explain elasticity. One example for such a system property
is the Scaling Latency, defined as the time necessary to make a new resource available
after it has been requested. Knowing this time can be useful for understanding imperfect
elastic behavior in some cases. With a reactive elasticity strategy in place for example, an
increased Scaling Latency will most likely lead to a decreased elasticity. In contrast, with a
proactive elasticity strategy in place, the elasticity can be more or less independent of the
increased Scaling Latency since the strategy can incorporate a known Scaling Latency into
the decision making process.

This thesis presents metrics that do not evaluate system specific factors, such as the
underlying hardware, the virtualization technology, the used cloud management software
or the used elasticity strategy and its configuration. Instead, the metrics evaluate the
elastic behavior that is a result of these factors. As a consequence, this measurement
methodology is applicable in situations where not all influencing factors are known, too.

All metrics use two curves as input: The demand curve, which defines how the resource
demand varies during the measurement period, and the supply curve, which defines how
the amount of actually used resource varies.

The development of the metrics pursued three main targets:

1. Metrics should reflect the core aspects - accuracy and timing - of elasticity illustrated
in Section 2.3.3.

2. Metrics should measure criteria that are as understandable as possible and help the
communication between cloud providers and customers.

3. Limit the amount of metrics to as few metrics as are necessary in order measure
elastic behavior. A new metric is only necessary, when it is possible to create two
systems behaviors that result in equal metric values for the existing metrics but still
exhibit different degrees of elasticity.

39

40 5. Resource Elasticity Metrics

The next two sections present metrics for the core aspects of elasticity and thus address the
RQ 4.1. They are followed by Section 5.3 that discusses metrics which were considered
when creating the benchmark but were finally rejected. The last Section 5.4 answers
RQ 4.2 by illustrating how the elasticity can be compared within a group of cloud systems
using the discussed metrics as a basis.

5.1 Accuracy

The first aspect of elasticity that was discussed in Section 2.3.3 is accuracy. There are
two ways how the resource supply can deviate from the resource demand. The system
can either provision to much resources - in an over-provisioned state - or provision not
enough resources - in an under-provisioned state. Both deviations have a negative impact
on the accuracy, but depending on the preferences of the cloud customer, he may want
to weight the inaccuracy caused by under-provisioning different to inaccuracy caused by
over-provisioning. Since under-provisioning means violating SLOs, it can be assumed
that customers do want to use systems that are susceptible to under-provisioning at
all. Thus, the challenge for providers is to ensure that enough resources are provided
at any point in time, but at the same time beat the competitors by over-provisioning
not to much. Considering this, separate accuracy measures for over-provisioning and
under-provisioning help providers to communicate their elasticity capabilities and help
customers to select a cloud provider according to their needs.

Herbst et al. proposed [HKR13] two metrics that capture the accuracy for over-provisioning
periods and for under-provisioning periods separately. Since these metrics capture the
core aspect accuracy very well, they are implemented and evaluated within this thesis.

T

U2

O1

U1

U3 O3

O2

resource demand resource supply

re
so

ur
ce

s

Figure 5.1: Measuring accuracy:
red areas: under-provisioning, blue areas: over-provisioning

The metrics are calculated by accumulating the amount of resources in under-provisioned
states (

∑
U, red areas) or over-provisioned (

∑
O, blue areas) states and dividing them by

40

5.2. Timing 41

the length of the measurement period T.

Accuracy for under-provisioning periods: accuracyU [resource units] =

∑
U

T

Accuracy for over-provisioning periods: accuracyO [resource units] =

∑
O

T

Thus, accuracyU and accuracyO
1 measure the average amount of resources that are over-

provisioned during the measurement period. Of course, it is possible to combine these
metrics to a global accuracy metric:

global accuracy: accglobal [resource units] = accU + accO

As stated above, other weights for accuracyU and accuracyO are possible, too.

5.2 Timing
The second core aspect of elasticity discussed in Section 2.3.3 is timing. Timing is a very
generic term. To be able to cover the different sub-aspects of timing, the benchmark
includes different metrics which focus on the different sub-aspects.

5.2.1 Under- / Over-provision Timeshare

The accuracy metrics state how much resources are over- or under-provisioned on average
during the measurement. These metrics do not show if the inaccuracy results from a few
big deviations between demand and supply or if it is rather caused by a constant small
deviation. Therefore, the following two metrics give more insights about how often
under- or over-provisioning occurs.

The metric sums up the total amount time that was spend in an in under- (
∑

A) or over-
provisioned (

∑
B) state and divides the sum by the duration of the measurement. Thus,

it measures the timeshare spent in under- or over-provisioned states.

Timeshare spent in under-provisioned state: timeshareU [%] =

∑
A

T

Timeshare spent in over-provisioned state): timeshareO [%] =

∑
B

T

Today, cloud providers often advertise the availability of their infrastructure. Using these
metrics or slightly transformed versions like

resource_availability [%] = 1 − timeshareU

allows providers to advertise their elasticity mechanism with statements like: “No under-
provisioning occurs for 99,9% of the time”.

As for the accuracy metric, the timeshare submetrics can be combined to a global metric:

global timeshare: timeshareglobal [%] = timeshareU + timeshareO

This combined metric measures the timeshare where the CSUT is not able to match the
demand because either under-provisioning or over-provisioning occurs. Furthermore, the
it is possible to weight timeshareU and timeshareO differently according to user preferences.

1In [HKR13] these metrics are referred to as precision.

41

42 5. Resource Elasticity Metrics

T

A1 A2 A3B1 B2 B3

resource demand resource supply

re
so

ur
ce

s

Figure 5.2: Measuring timing:
Ai: Time spent in under-provisioned state
Bi: Time spent in over-provisioned state

5.2.2 Jitter

Although the accuracy and timeshare metrics measure important aspects of elasticity, sys-
tems can still behave very different although they produce the same metric values for
accuracy and timeshare. An example is shown in Figure 5.3.

Both systems have the same accuracy (accuracyU, accuracyO) and spend the same amount
of time in the under-provisioned respectively over-provisioned states. However, the be-
havior of both systems is different. System B triggers a lot of unnecessary resource supply
adaptations whereas System A triggers just a few. Within the developed benchmark this
behavior is measured with a further metric.

The jitter metric compares the amount of adaptations within the supply curve ES with the
number of adaptations within the demand curve ED. The difference is normalized with
the length of the measurement period T:

Jitter metric: jitter
[
#adap.

min

]
=

ES − ED

T

Big absolute values of jitter indicate that the system is not able to react on demand changes
appropriately. When the jitter metric is negative that means that the system does not do
enough allocations and behaves rather sluggish. A positive jitter metric means that the
system does to do de-/allocations and tends to oscillate like Systems A (little) and B
(heavily) in Figure 5.3.

Counting Adaptations

Figure 5.4 shows different possible behaviors after two successive demand changes. Sys-
tem C reacts by triggering two resource allocations of one resource. In contrast, System D
triggers simply one supply change consisting of the allocation of two resource units. If the
jitter metric simply counted supply and demand changes independently of the their size,
this would result in a missing adaptation for System D and therefore a worse jitter metric
compared to System C. This metric result would be unfair, because System D does not

42

5.3. Considered but Rejected Metrics 43

resource demand resource supply

re
so

ur
ce

s

(a) System A

resource demand resource supply

re
so

ur
ce

s

(b) System B

Figure 5.3: Systems with different elastic behaviors that produce equal results for accuracy
and timeshare metrics

miss to allocate resources. To overcome this problem the jitter metric counts adaptations
with respect to the resource granularity:
When the allocation of n resource units occurs at the same time within the resource supply
or demand curve, this allocation is counted as n concurrently occurring adaptations. This
way, the jitter metric evaluates to zero for System C and System D.

resource demand resource supply

re
so

ur
ce

s

(a) System C

resource demand resource supply

re
so

ur
ce

s

(b) System D

Figure 5.4: Systems C reacts with two small adaptations, System D with one big adapta-
tion. Both systems do neither do superfluous adaptations nor miss to adapt
the resource supply. Thus, the jitter metric should evaluate to zero for both.

5.3 Considered but Rejected Metrics

5.3.1 Delay

One way to characterize the timing behavior of a resource elastic system is to measure how
fast the system reacts when the resource demand changes. Thus, a metric that measures
something like the average time a system needs to react to a demand change with an
according supply change, sounds useful. This paragraph discusses different approaches
and explains why they have been rejected for the benchmark.

43

44 5. Resource Elasticity Metrics

1. Use of a Speed [HKR13] Metric
Herbst et al. [HKR13] proposed a speed metric which measures the average time
that a system needs to return from an under- or over-provisioned state back to a
state without under- or over-provisioning. In physics, speed is defined as distance
divided by time. A speed metric which computes the average time to do some-
thing is therefore not intuitive. Additionally, this metric can not be derived when
a mechanism either constantly over-provisions or constantly under-provisions. In
particular, a constant (but small) over-provisioning is reasonable for a real con-
servative cloud provider. Furthermore, a small value for the speed metric is not
necessarily an indicator for a high degree of elasticity. A system which provisions
and deprovisions resources with an unnecessary high frequency - as shown in Fig-
ure 5.3(b) - may have a small value for the speed metric although its elasticity is
suboptimal.

2. Measure Delay Between Demand and Supply Change
Measuring the delay between demand and corresponding supply changes is diffi-

cult for several reasons. Depending on the elasticity strategy, resource allocations
can occur in advance instead of after the corresponding demand change. In partic-
ular, this is true for proactive elasticity strategies. Thus, it is more appropriate to
measure the time difference between demand changes and corresponding supply
changes, instead of a delay.

resource demand resource supply

re
so

ur
ce

s

Figure 5.5: Matching supply change to demand changes is not trivial, when supply
changes occur with a long delay.

However, it is not trivial to evaluate which supply change corresponds to which
demand change. Supply changes can happen before or after their corresponding
demand changes. In addition, the total number supply changes must not be equal
to the number of demand changes. A simple way of creating those correspondences
would be just assigning every supply change to the closest demand change. How-
ever, this would not produce the desired outcome in every case. An example where
this assignment does not work is shown in Figure 5.5. More complex assignment
strategies, that are based on a mapping created by a DTW algorithm for example
may work for the scenario depicted in Figure 5.5. But still, there can be situations
where resource allocations and deallocations happen without a correlation to a de-
mand change. An example for such a behavior is shown in Figure 5.3(b). Filtering

44

5.4. Compare Different Systems Using Metrics 45

out these oscillating behavior could be an option, but would lead to a metric which
is not only difficult to measure but also not easy to understand.

5.3.2 Dynamic Time Warping Distance

The metrics within this benchmark are based on comparing two time series. The demand
series, which contains points in time where the demand changes, and accordingly the
supply series. A popular metric for comparing the distance between two timeseries is the
dynamic time warping (DTW) distance [SC07]. Within the domain of automatic speech
recognition it is often used to cope with different speaking speeds.

The DTW distance was used by Herbst [Her11] to measure the elasticity of thread pools.
For this benchmark, the DTW distance was therefore also considered. The DTW distance
is designed in way that the distance of two timeseries that describe curves with the same
shape is equal, no matter if they match each other exactly or are shifted, as depicted in
Figure 5.5 for example. However, a system which is able to match the demand all over
the time, does not have the same elasticity as a system where the supply changes occur
delayed. Thus, using the DTW distance as a measure for elasticity without modification
seems not meaningful.

Another option is to use the DTW algorithm not for a direct elasticity measurement,
but to create a mapping between demand and supply changes, to measure the average
delay between demand and supply changes afterwards. Under the assumption, that
the supply curve is mainly a shifted and or stretched demand curve, DTW seems to be
applicable here. Unfortunately systems, can - as discussed in Section 5.3.1.2.: Measure
Delay Between Demand and Supply - provision and deprovision resources without a
correlation to demand changes. In this case, DTW creates mappings even between supply
and demand changes that are not correlated.

For this reasons, DTW is not used within this benchmark at the moment.

5.4 Compare Different Systems Using Metrics

The sections above explained five different metrics, which allow to measure different
aspects of elasticity: accuracyU, accuracyO, timeshareU, timeshareO and | jitter|. All metrics
have in common that smaller values signify higher degrees of elasticity. One option for
comparing the elasticity of different CSUTs is to choose a single metric and compare the
metric results for this single metric. However, benchmarks typically provide a measure
that aggregates different metrics to a single number. This makes comparing the overall
performance easier.

When aggregating the elasticity metrics to a single number metric, it is necessary to
consider that the measurement units and therefore the scales of the metrics are different:

• accuracyU and accuracyO measure average resource amount deviations

• timeshareU and timeshareO measure ratios of time periods

• | jitter|measures deviations of adaptation event amounts normalized with time

Thus, simply averaging the metric results for one system and comparing the result to the
averaged metric result for another system does not allow a fair comparison.

The following subsections discuss three ways for creating an aggregated elasticity mea-
sure.

45

46 5. Resource Elasticity Metrics

5.4.1 Distance Based Aggregation

One way to create a single elasticity measure bases on measuring the distance between
system behaviors. The elastic behavior of a system is characterized by its metric vector m:

m =
(
accuracyU, accuracyO, timeshareU, timeshareO, | jitter|

)
The metric values for an ideal elastic behavior are known to be zero for every element of
the vector.

mideal = (0, 0, 0, 0, 0)

Different elastic behaviors can now be compared with the help of their distance to the
ideal behavior mideal as a single number measure. The distance must be computed using
an appropriate distance measure that accounts for the different scales of the metrics.
Normalizing the metric would allow to use the euclidean distance, but normalization
without distortion is not possible for accuracyO and | jitter| since no upper bound exists for
them.

A possible distance measure is the mahalanobis distance [Mah36]. It requires a covariance
matrix which describes the variance of the metrics and the correlation between them.
The matrix can be obtained using the metric results for a set of sample behaviors. As
a drawback, adding new sample behaviors changes the covariance matrix and therefore
potentially the metric results.

5.4.2 Speedup Based Aggregation

Performance benchmarks often use a baseline system and rank systems according to
their performance speedup with respect to the baseline system. This thesis presents a
similar approach that ranks systems according to their elastic speedup. As a limitation,
this approach includes the accuracy and the timeshare metrics only, not the jitter metric. It
consists of the following steps:

1. Aggregate the accuracy and timeshare sub metrics into a weighted accuracy and a
weighted timeshare metric, respectively.

2. Compute elasticity speedups for both of the aggregated metrics using the metric
values of a baseline system.

3. Use the geometric mean to aggregate the speedups for accuracy and timeshare to a
elasticspeedup measure.

The resulting elasticspeedup measure can be used to compare systems without having to
compare each elasticity metric separately.

Each of the three steps is now explained more detailed:

1. The accuracyU and accuracyO metrics are combined to a weighted accuracy metric
accuracyweighted:

accuracyweighted = waccU · accuracyU + waccO · accuracyO

with
waccU , waccO ∈ (0, 1), waccU + waccO = 1

In the same way, the timeshareU and timeshareO metrics are combined to a weighted
timeshare metric timeshareweighted:

timeshareweighted = wtsU · timeshareU + wtsO · timeshareO

with
wtsU , wtsO ∈ (0, 1), wtsU + wtsO = 1

46

5.4. Compare Different Systems Using Metrics 47

2. Let x be a vector that stores the metric results:

x = (x1, x2) =
(
accuracyweighted, timeshareweighted

)
For a metric vector xbase of a given baseline system and a metric vector xk of a
benchmarked system k, the speedup vector sk is computed as follows:

sk =
(
skaccuracy , sktimeshare

)
=

(
xbase1

xk1

,
xbase2

xk2

)
3. The elements of sk are aggregated to an unweighted elastic speedupunweightedk

measure
using the geometric mean:

elastic speedupunweightedk
=

√
skaccuracy · sktimeshare

The geometric mean produces consistent rankings, no matter how measurements
are normalized and is the only correct mean for normalized measurements [FW86].
Thus, the ranking of the systems according to elastic speedupk is consistent, regardless
of the chosen baseline system. The geometric mean is also used in some popular
performance benchmarks such as the SPEC CPU2006 in order to aggregate the
results for different workloads [RR10].

Furthermore, different preferences concerning the elasticity aspects can be taken into
account by using the weighted geometric mean for computing the elastic speedupweightedk

:

elastic speedupweightedk
= skaccuracy

wacc · sktimeshare
wts

with
wacc, wts ∈ [0, 1], wacc + wts = 1

The following equation summarizes the three steps:

elastic speedupweightedk
=

(
waccU ·accuracyUbase + waccO ·accuracyObase

waccU ·accuracyUk + waccO ·accuracyOk

)wacc

·(
wtsU ·timeshareUbase + wtsO · timeshareObase

wtsU ·timeshareUk + wtsO ·timeshareOk

)wts

(5.1)

with
waccU , waccO , wtsU , wtsO ∈ (0, 1), wacc, wts ∈ [0, 1],

waccU + waccO = 1, wtsU + wtsO = 1, wacc + wts = 1

5.4.2.1 Elasticity Metric Weights

The single number elasticity measure shown in Equation 5.1 can be adjusted according
to the preferences of the target audience by using different weights. For example, the
accuracy weights waccU = 0.2, waccO = 0.8 allow to amplify the influence of the amount of
over-provisioned resources compared to the amount of under-provisioned resources. A
reason for doing so could be that over-provisioning leads to additional costs, which mainly
depend on the amount of over-provisioned resources. The cost for under-provisioning
in contrast does not depend that much on the amount of under-provisioned resources
but more on how long the system under-provisions. This observation can be taken into
account by using timeshare weights like: wtsU = 0.8, wtsO = 0.2. Finally, when combining
the accuracy and timeshare speed ups, the weights wacc, wts can help to prioritize different
elasticity aspects. Here, weights like wacc = 1

3 , wts = 2
3 for example would double the

importance short under- and over-provisioning periods compared to the importance of
small under- or over-provisioning amounts.

47

48 5. Resource Elasticity Metrics

5.4.2.2 Including the Jitter Metric

The jitter metric indicates whether a system tends to either be overly responsive exhibiting
many unnecessary resource de-/allocations, or to react rather sluggish and slow exhibiting
not enough allocation changes. In order to include it into the elastic speedup, deriving a
speed up for the jitter metric is desirable. This speedup can then be included in the
geometric mean in the third step describe above. In contrast to the weighted accuray and
timeshare metrics, the jitter metric can be zero even for systems with imperfect elasticity.
Computing a speed up sk jitter by dividing the jitter metric for the baseline system jitterbase
by jitter metric for the evaluated system jitterk is therefore not sensible.

A possible alternative is not to calculate the speedup for the jitter metric directly, but with
a helper method h(x):

sk jitter =
h
(
jitterbase

)
h
(
jitterk

) with ∀x : h(x) > 0

Possible options for h(x) are h(x) = 1 + x or h(x) = ex. The drawback of this approach is,
that the speedup is distorted.

5.4.3 Cost Based Aggregation

Evaluating the financial impacts of different elastic behaviors is not in focus of this thesis.
However, the presented metrics measure elasticity aspects that can be mapped to costs.
Aggregating these costs allows creating a single number measure that can be used to rank
different elastic systems or different elasticity mechanism configurations. The following
equation illustrates an exemplary cost based aggregation:

costimper f ect_elasticity =
(
accuracyO − accuracyU

)
· time_periodre f · costresource (i)

+ timeshareU · time_periodre f · costunderprovisioning (ii)

+ cost jitter(jitter) (iii)

The measure costimper f ect_elasticity evaluates the costs caused by an imperfect elastic be-
havior during a reference time period time_periodre f . These costs can be calculated by
adding (i) the costs caused by unnecessary resource allocations and (ii) the costs of under-
provisioning (i.e., violating SLOs) for a certain amount of time. Furthermore, (iii) costs
for superfluous adaptations are included in the last addend. Including these costs makes
sense when the billing granularity with respect to time is rather coarse grained. Some
providers (e.g., Amazon) bill their customers for example for five instance hours even
when the customer simply requested one instance for a three minutes five times in a row.

For comparisons between different providers, the costs caused by imperfect elasticity
costimper f ect_elasticity must be added to the absolute costs costideal_elasticity for a perfect elastic
behavior in order to allow a meaningful comparison.

While using the Benchmark Calibration, which adjusts load profiles, is important for evalu-
ating the technical aspects of elasticity, it must not be used for evaluating financial impacts
of elasticity. Comparing two systems with a load that requires up to 20 instances on one
system but up to 25 instances on another system with the help of a system specific ad-
justed load profile that induces a demand of up to 20 instances on both systems is fair
for evaluating the technical property elasticity with respect to using 20 instances. It is not
fair for evaluating the financial impact of elasticity, since the second system requires 25
instances and thus a comparison must reflect the costs for using them. Therefore, compar-
isons with respect to financial costs must be conducted with unadjusted load profiles. The
benchmark concept as well as the developed benchmarking framework are applicable for
evaluating the financial impact of elasticity by omitting the Benchmark Calibration activity.

48

6. BUNGEE - An Elasticity Benchmarking
Framework

This chapter explains how the resource elasticity benchmark concept is implemented in
BUNGEE, the benchmarking framework that has been developed in course of this thesis.
The development of BUNGEE addresses the fifth goal mentioned in Section 1.1.

BUNGEE consists of two parts:

• The benchmark harness, which runs outside of the CSUT and performs different bench-
marking tasks like calibration, measurement and metric evaluation is presented in
Section 6.1.

• The cloud-side load generation application, which utilizes resources within the CSUT is
presented in Section 6.2.

6.1 Benchmark Harness

The benchmark harness is a java application that allows to analyze a CSUT, to adjust load
profiles in a system specific manner, and to measure the resource allocations on a CSUT
while it is exposed to a load. Additionally, it supports the evaluation of elasticity metrics
by comparing resource demand with resource supply curves.

Section 6.1.1 explains the benchmark harness on architectural level and explains its de-
pendencies. The different components of the benchmark harness are then illustrated in
Sections 6.1.2 - 6.1.9.

6.1.1 Architectural Overview

In the following, the benchmark harness is explained with the help of two different views.
Firstly, an activity diagram explains the benchmarking workflow. Secondly, a package
diagram visualizes the package structure of the harness.

Activity Diagram

In the concept Chapter 4, Figure 4.2 illustrated a coarse grained benchmarking workflow.
Figure 6.1 illustrates the process of benchmarking a CSUT more detailed. For all four
activities the control flow and the object flow are shown. The names of the parameter
nodes are equal to the class/interface names of the corresponding java entities.

49

50 6. BUNGEE - An Elasticity Benchmarking Framework

B
e

n
ch

m
ar

k

El
as

ti
ci

ty
 E

va
lu

at
io

n

Sy
st

e m
 A

n
al

ys
is

R
eq

u
es

t

H
o

st

SL
O

s

In
te

n
si

ty
D

em
an

d
M

ap
p

in
g

B
e

n
ch

m
ar

k
C

al
ib

ra
ti

o
n

Lo
ad

P
ro

fi
le

A
d

ju
st

ed
Lo

ad
P

ro
fi

le

m
ax

R
es

o
u

rc
es

m
ax

In
te

n
si

ty

In
te

n
si

ty
D

em
an

d
M

ap
p

in
g

A
d

ju
st

m
en

t
Fu

n
ct

io
n

G
en

er
at

io
n

Lo
ad

 P
ro

fi
le

A
d

ju
st

m
en

t

M

e
as

u
re

m
en

t

H
o

st

D
em

an
d

Su
p

p
ly

C
o

n
ta

in
er

In
te

n
si

ty
D

em
an

d
M

ap
p

in
g

(A
d

ju
st

ed
)L

o
ad

P
ro

fi
le

R
eq

u
es

t

(E
x t

en
d

ed
)C

lo
u

d
In

fo

St
ar

t
M

o
n

it
o

ri
n

g

Ex
e

cu
te

 L
o

ad

St
o

p
 M

o
n

it
o

ri
n

g

Ex
tr

ac
t

D
em

an
d

 &
 S

u
p

p
ly

A
b

st
ra

ct
M

et
ri

c

M
et

ri
c

R
e

su
lt

 F
ile

D
em

an
d

Su
p

p
ly

C
o

n
ta

in
er

A
ct

iv
it

y:
P

ar
am

et
er

N

o
d

e
/

P
in

:
C

o
n

tr
o

l
Fl

o
w

:
O

b
je

ct
Fl

o
w

:

[1
..

*]

Sc
al

ab
ili

ty
 &

 E
ff

ic
ie

n
cy

A

n
al

ys
is

M
et

ri
c

C
o

m
p

u
ta

ti
o

n

Figure 6.1: Control and object flow between and within the benchmarking activities

50

6.1. Benchmark Harness 51

In the following, the different activities as well as their input parameters and return values
are explained.

1. System Analysis
The System Analysis evaluates the CSUT’s load processing capabilities at different
scaling stages and thereby its scaling behavior and the level of efficiency of its
underlying resources. The analysis requires the specification of a Request, a Host
and a number of ServiceLevelObjectives as input. When finished, it returns an
IntensityDemandMapping that specifies the mapping of load intensities to resource
demands. More details on the implementation about the analysis can be found in
Section 6.1.4.

2. Benchmark Calibration
During the Benchmark Calibration, a given load profile is adjusted in a system spe-
cific manner. In a first sub-activity, an AdjustmentFunction is generated. This
AdjustmentFunction is then applied on a LoadProfile in a second sub-activity.
In order to generate an (Adjusted)LoadProfile, a LoadProfile as well as an
IntensityDemandMapping of a preceding System Analysis are required. Additionally,
the parameters maxResources and maxIntensity are necessary. Implementation de-
tails about the calibration can be found in Section 6.1.5.

3. Measurement
During a Measurement run, the resource allocations on the CSUT are monitored
while the CSUT is exposed to a load varied according to an (Adjusted)Load-
Profile. Apart from the LoadProfile a Host and a Request specification are
required as input. To derive the demand, an IntensityDemandMapping is a further
requirement. Finally, the monitoring of resource allocation requires access to the
cloud management system via the CloudInfo interface. As a result, the activity
returns a DemandSupplyContainer, which contains the demand and the supply
curve. Implementation details about the load generation and about monitoring
cloud systems can be found in Section 6.1.3 and Section 6.1.7, respectively.

4. Elasticity Evaluation
The Elasticity Evaluation activity uses a DemandSupplyContainer and a set of Abs-
tractMetrics as input. It evaluates the metrics and write the results into a file.
Implementation details about the metrics can be found in Section 6.1.8.

Package Diagram

The package diagram shown in Figure 6.2 illustrates the packages in which the elasticity
benchmark harness is organized.

• Package loadprofile:
Models load profiles. More information and a class diagram can be found in Sec-
tion 6.1.2.

• Package loadgeneration:
Contains classes which control the load generation via JMeter. More information
and a class diagram can be found in Section 6.1.3.2.

• Package slo:
Contains classes for evaluating responses with respect to SLOs. More information
and a class diagram can be found in Section 6.1.3.3.

• Package analysis:
Contains classes that allow analyzing the CSUT at different scaling stages. More
information and a class diagram can be found in Section 6.1.4.

51

52 6. BUNGEE - An Elasticity Benchmarking Framework

measurement

slo
load

generation

allocation

metric

cloud analysis loadprofile

config

calibration

exampleschart utils

Figure 6.2: Package diagram of the elasticity benchmark framework

• Package calibration:
Contains classes that allow the benchmark to adjust load profiles. More information
and a class diagram can be found in Section 6.1.5.

• Package allocation:
Contains data structures for series of demand or supply allocations. More informa-
tion and a class diagram can be found in Section 6.1.6.

• Package allocation:
Contains interfaces that define the cloud information access and control options.
More information and a class diagram can be found in Section 6.1.7.

• Package metrics:
Contains classes that implement different elasticity metrics. More information and
a class diagram can be found in Section 6.1.8.

• Package measurement:
Contains the class MeasurementRunner which implements the Measurement activity.

• Package utils:
Contains utility classes mainly for date and file functions. Incoming dependencies
are not shown for the sake of clarity.

• Package config:
Contains parameter data structures such as Host or Request. Incoming dependencies
are not shown for the sake of clarity.

• Package chart:
Allows to generate graphical representations of measurements. Outgoing depen-

52

6.1. Benchmark Harness 53

dencies are not shown for the sake of clarity. More information can be found in
Section 6.1.9

• Package examples:
Contains small examples that demonstrate how the benchmarking activities System
Analysis, Calibration, Measurement and Evaluation can be triggered. Additionally,
the package contains examples which demonstrate how load profiles, mapping
functions or resource allocation curves can be illustrated using the chart package.
Outgoing dependencies are not shown for the sake of clarity.

Dependencies

To induce a varying load on a CSUT, the benchmark needs a load profile that defines
how the load intensity varies over time. The benchmark harness uses Descartes Load
Intensity Model (DLIM) [vKHK14a] instances for this purpose. In order to process the
model instances the LIMBO [vKHK14b] toolkit is used. LIMBO publicly available 1.

During analysis and during measurement runs, JMeter[Hal08] is used as a load generator.
Running the benchmark therefore requires a JMeter installation.

The benchmark harness offers different options for visualizing the measured data. For
the graph creation the java chart library JFreeChart2 is used.

Currently, CloudStack and Amazon Web Services (AWS) are supported cloud man-
agement softwares. BUNGEE therefore depends on the cloudstack-api-java3 and on the
aws-sdk-java4.

Support of other Cloud Platforms

In order to use BUNGEE for evaluating other cloud platforms the implementation of at
least the CloudInfo interface in the cloud package is required:

• Interface CloudInfo:
Implementation is required for benchmarking the platform.

• Interface ExtendedCloudInfo:
Required to support passive monitoring in addition to active monitoring (compare
Section 4.5.2).

• Interface CloudManagement: Required to support the Detailed System Analysis in ad-
dition to the Simple System Analysis (compare Section 4.4.1).

All interfaces are explained in Section 6.1.7, which explains the cloud package.

6.1.2 Load Profiles

Load profiles model the variation of load intensity over time. As illustrated in Figure 6.3,
the interface LoadProfile is used to represent a load profile within the benchmark. The
LoadProfile interface is realized by the class DlimAdapter. This class uses a DLIM
[vKHK14a] instance (the rootSequencemember of type Sequence), to store the load pro-
file. To evaluate the DLIM instance, functionality implemented in the LIMBO [vKHK14b]

1LIMBO http://se2.informatik.uni-wuerzburg.de/mediawiki-se/index.php/Tools#LIMBO:_Load_Intensity_
Modeling_Tool

2JFreeChart http://www.jfree.org/jfreechart
3cloudstack-api-java https://code.google.com/p/cloudstack-api-java
4aws-sdk-java http://aws.amazon.com/sdkforjava

53

http://se2.informatik.uni-wuerzburg.de/mediawiki-se/index.php/Tools#LIMBO:_Load_Intensity_Modeling_Tool
http://se2.informatik.uni-wuerzburg.de/mediawiki-se/index.php/Tools#LIMBO:_Load_Intensity_Modeling_Tool
http://www.jfree.org/jfreechart
https://code.google.com/p/cloudstack-api-java
http://aws.amazon.com/sdkforjava

54 6. BUNGEE - An Elasticity Benchmarking Framework

<<Interface>>

LoadProfile

+ getDuration():long

+ getIntensity(time:double):double
+ getArrivalRates():List<Tuple>

LoadProfileWithWarmUp

+ LoadProfileWithWarmUp(
 model: LoadProfile,

 warmUpInSeconds:double)

+ getMaxIntensity(): double

warmUpProfile

1

+ getDuration():long

+ getIntensity(time:double):double
+ getArrivalRates():List<Tuple>

+ getMaxIntensity(): double

LoadProfileDecorator

LoadProfileDecorator(profile: LoadProfile)

+ getDuration():long

+ getIntensity(time:double):double
+ getArrivalRates():List<Tuple>

+ getMaxIntensity(): double

1 model

AdjustedLoadProfile

+AdjustedLoadProfile(
 profile: LoadProfile,

 function:AdjustmentFunction)

+ getDuration():long

+ getIntensity(time:double):double
+ getArrivalRates():List<Tuple>

+ getMaxIntensity(): double

LoadProfileWithTimestampGeneration

+ IntensityModelWithTimestampGeneration(
 profile: LoadProfile)
+ createTimestampFile(file:File):void

DlimAdapter

+ getDuration():long

+ getIntensity(time:double):double
+ getArrivalRates():List<Tuple>

+ getMaxIntensity(): double

DlimModelFactory

- rootSequence: Sequence

+ createConstantLoad(duration: double,
 intensity: double): Dlim

- secondsPerTimeUnit: double

+ getIntensity(time:double):double

+ read(file: File,
 seondsPerTimeUnit:double):Dlim
+ save(file:File):double

<<create>>

dlim.generator

<<Interface>>

AdjustmentFunction

+ adjustIntensity(intensity: double)

Figure 6.3: Class diagram of the loadprofile package

toolkit (package: dlim.generator) is used. DLIM instances model load intensity as ar-
rival rate per time unit. The time unit itself is not stored within the model. Thus, the
DlimAdapter class has a secondsPerTimeUnitmember to store this information.

Dlim instances can be created either by reading a given *.dlim file or by using the
DlimModelFactory to dynamically create constant load profiles of a predefined inten-
sity. The first option is useful for measurement runs, while the second facilitates the
System Analysis which requires the generation of constant loads.

LoadProfiles can easily be enhanced with the help of the decorator pattern. For example,
it is possible to add a warm up period at the beginning of a profile with the help of the
LoadProfileWithWarmUp class. Furthermore, the AdjustedLoadProfile class adjusts a
given profile by applying an AdjustmentFunction. This is very helpful within the cali-
bration part of the benchmark. The LoadProfileWithTimestampGeneration class adds
functionality to create a timestamp file. The timestamp file generation uses the LIMBO
toolkit. Hereby, equal distance sampling is configured to be used as sampling method.
LIMBO supports other sampling methods, such as uniform distribution sampling, as well.
The generated timestamp files is then used as input for JMeter [Hal08], an external load
generation tool.

54

6.1. Benchmark Harness 55

6.1.3 Load Generation and Evaluation

Most load generation tools, like JMeter [Hal08], httperf [MJ98], Faban5 or Rain [BLY+10]
mainly target the execution of closed workloads. In contrast, this benchmark bases on
an open workload model. This means that requests are sent independently at fixed
points in time. Additionally, for the benchmark it is necessary to vary the frequency of
request submissions - the load intensity - over time. Faban currently offers in version
1.2 an experimental feature which allows to vary the load intensity indirectly by varying
the number of used threads. Rain lacks proper documentation and is therefore not
considered further. JMeter and httperf allow to replay webserver logs, but they do not
use the timestamps when replaying the logs. However, JMeter can be extended easily.
Therefore, the benchmark uses JMeter together with a newly developed extension: The
TimestampTimer JMeter plugin6.

The next Subsection 6.1.3.1 explains this plugin. Subsection 6.1.3.2 illustrates how the
extended version of JMeter is used within the benchmark. Finally, the Subsection 6.1.3.3
illustrates how the benchmark evaluates the SLO compliance of processed requests.

6.1.3.1 JMeter Extension: TimestampTimer Plugin

The TimestampTimer plugin allows to delay requests according to a list of timestamps
specified in a timestamp file. In order to do so, it provides a new timer element. In
contrast to already existing JMeter timers, which delay the execution of a thread for a fixed
period of time or according to a distribution, this new timer delays a thread according
to timestamps. Within this benchmark the timestamp file is created automatically from
a load profile. The plugin however can also be used for other use cases, where the
timestamp file is created differently.

Since one thread is not sufficient - except for very low intensities and short response
times - to submit all requests in time, the submission and response handling for different
requests must be assigned to different threads. As discussed in Section 4.3.3.1 different
techniques are possible for this assignment.

The dynamic assignment (Strategy 2) exhibits a greater flexibility compared to the static
assignment (Strategy 1) and was therefore implemented.

Depending on how the timer element is used within JMeter, it is possible to realize both
of the dynamic assignment strategies described in Section 4.3.3.1:

• Waiting Master Thread (Strategy 2a)
For the Waiting Master Thread variant, two thread groups are created. The first one
contains just the master thread and the timer, the other one contains the worker
threads which handle the actual requests synchronously. The master thread in
the first thread group sends requests for submissions to the second thread group
over a communication mechanism provided by JMeter. One of the worker threads
receives the request inquiry and executes the request immediately. The timer delays
the master thread in way that requests for submission are send to the second thread
group according to the submission times specified in the timestamp file.

• Waiting Worker Threads (Strategy 2b)
The Waiting Worker Threads variant requires just one thread group, which contains
the timer. The threads take timestamps from the central queue and execute the corre-
sponding requests only after being delayed by the timer according to corresponding
timestamps.

5Faban http://faban.org
6TimestampTimer http://github.com/andreaswe/JMeterTimestampTimer

55

http://faban.org
http://github.com/andreaswe/JMeterTimestampTimer

56 6. BUNGEE - An Elasticity Benchmarking Framework

The Waiting Worker Threads variant creates less overhead because no communication
between thread groups is necessary. It is therefore used in the benchmark.

The JMeter TimestampTimer plugin is publicly available on GitHub6. Besides the plugin
itself, the repository contains test plan files (*.jmx) defining JMeter test plans. These test
plans demonstrate how the timer can be used to create a Waiting Worker Threads or a
Waiting Master Thread assignment.

6.1.3.2 Automated Load Execution and Validation

General Approach

Whenever the benchmark needs to expose the CSUT to a load according to a load profile,
the benchmark first generates a timestamp file. JMeter is then started to execute the load.

AbstractResponse

requestReceiveTime: long

id: long
requestSubmitTime: long

JMeterController

+ JMeterController(jmeterProperties: Properties)

requestResponseTime: long

+ runJMeter(host: Host, request Request, timestampFile: File, responseFile: File)
‐ int getNumberOfThreadsForTimestampFile(timestamp: File, int timeout)

RunResult

+ RunResult(timestampFile: File, responseFile: File, warmUpSeconds: double)
+ read(file: File): RunResult
+ save(file: File)

JMeterResponse

‐ requestServiceTime: long

‐ requestProcStart: long

‐ requestProcEnd: long

‐ result: boolean# success: boolean

SanityChecker

+ sanityCheck(
 responses: List<JMeterResponse>):
 boolean

+ isRunCompleted(): boolean
+ passedSanityCheck(): boolean
+ passedScheduleCheck(): boolean
+ getResponses(): List<JMeterResponses>

responses *
<<use>>

‐ noGui: boolean
‐ jMeterPath: File
‐ jmxFile: File
‐ propertyFile: File

Figure 6.4: Class diagram of the loadgeneration package

Figure 6.4 illustrates the class diagram for the loadgeneration package. The class
JMeterController is responsible for executing a load according to a given timestamp
file. The request results are stored in a response file.

To reduce the overhead produced by a graphical user interface7, JMeter is started in
the non-gui mode. A test plan which contains the TimestampTimer, a prepared HTTP-
Request and a file writer to persist information about the requests is passed to the JMeter in
the form of a test plan file. Additionally, parameters which specify the CSUT target, such
as hostname and port (parameter Host) or request specific parameters, like problemSize or
requestTimeout (parameter Request), are passed as command line parameters.

7http://www.ubik-ingenierie.com/blog/jmeter_performance_tuning_tips

56

http://www.ubik-ingenierie.com/blog/jmeter_performance_tuning_tips

6.1. Benchmark Harness 57

The file writer element that is contained in the test plan, logs and writes for every request
the following data into a response file: unique identificator (UID), request submission
time, response receive time, response time (= response receive - request submission),
request success. For requests that have been received within the specified timeout, the
following additional data is parsed from the response and is logged into the response file:

• request processing start time

• request processing end time

• request service time (request processing end time - request processing start time)

• request result

• internal ip address of the responding VM

The number of threads that are created by JMeter to execute the load, is calculated with
Algorithm 1 (compare Section 4.3.3.1) in the getNumberOfThreadsForTimestampFile()
method in the JMeterController class. In initial experiments, I observed that in rare cases
requests are aborted only after exceeding the specified timeout about a factor of four. In
order reduce the likelihood that this behavior results in an inaccurate timing, JMeter
is configured to use five times more than the calculated number of required threads
according to Algorithm 1.

Request Submission and Response Evaluation

After JMeter has finished sending the requests, the benchmark uses the response file and
the timestamp file to analyze the quality of the request submission.

Since the JMeter logs the information for a request after either the corresponding response
has been received or the request timed out, the information is not ordered the same way
as in the timestamp file. Therefore, the request information is sorted by the UID.

The class RunResult holds the all information about a JMeter run: The timestamps used
for sending the requests as well as the logged request response information.

Sanity Checks

Within a first evaluation step, the following sanity checks are performed for each request
to test if the logged data is valid:

for each request i, i = i..n:
(submission time)i ≤ (response receive time)i

(processing start time)i ≤ (processing end time)i

(service time)i ≤ (response time)i

(submission time)i ≤ (processing start time)i + allowed delay
(processing end time)i ≤ (response receive time)i + allowed delay

Hereby, n is the total number of requests and allowed delay specifies the maximal allowed
deviation between the CSUT clock and the load driver clock. If one of the last two checks
fails, this is an indicator, that the clock of the load driver is not synced correctly with the
clock of the CSUT.

The sanity check is implemented in the RunResult class and can be queried with the
passedSanityCheck()method.

57

58 6. BUNGEE - An Elasticity Benchmarking Framework

Accuracy of Request Submission

In a second evaluation step, the accuracy of the request submission is evaluated as pre-
viously described in Section 4.3.3.2. The accuracy evaluation is also implemented in the
RunResult class.

6.1.3.3 Load Evaluation

In the System Analysis the CSUT is tested with different amounts of allocated resources
whether it can sustain a certain load intensity without violating predefined SLOs, as
explained in detail in Section 4.4.1. Figure 6.5 illustrates the class diagram for the slo
package, which contains classes to perform this evaluation.

<<Interface>>

ServiceLevelObjective

+ evaluate(responses: List<AbstractResponse>): boolean

ServiceLevelChecker

 + checkSLOs(
 slos: List<ServiceLevelObjective>,
 responses: List<AbstractResponse>)

ResponsetimePercentileSLO

+ ResponsetimePercentileSLO(
 percent: double, maxRespTime: int): boolean
+ evaluate(responses: List<AbstractResponse>): boolean

- percent: double
- maxRespTime: int

SuccessRateSLO

+ SuccessRateSLO(
 successPercent: double, maxRespTime: int): boolean
+ evaluate(responses: List<AbstractResponse>): boolean

- successPercent: double
- maxRespTime: int

Figure 6.5: Class diagram of the slo package

Concrete SLOs are realizations of the ServicelLevelObjective interface. For this thesis,
ResponsetimePercentileSLO and SuccessRateSLO were implemented as examples for
SLOs.

The ResponsetimePercentileSLO evaluates, if the percent-percentile for the response
time is smaller than the maximum response time maxRespTime. Hereby, percent and
maxRespTime are configurable parameters.

The SuccessRateSLO additionally considers the successful completion of requests. It eval-
uates, if at least a share of successPercent of the issued requests is answered successfully
within a given maximum response time maxRespTime.

The class ServiceLevelChecker evaluates, if a list of responses complies with a list of
SLOs.

Due to the simple interface, the benchmark can be easily extended to support other SLOs.

6.1.4 System Analysis: Evaluation of Load Processing Capabilities

Figure 6.6 shows a class diagram for the classes in the analysis package. The benchmark
offers two different ways of analyzing the load processing capabilities of a CSUT. Both
analysis functions are implemented in subclasses of the abstract SystemAnalysis class.

The SystemAnalysis class allows to specify a maximal resource amount, up to which
the system is analyzed. Furthermore, it defines the abstract function analyzeSystem(),

58

6.1. Benchmark Harness 59

SystemAnalysis

+ getMaxResources():int
+ setMaxResources(amount: int)

SimpleSystemAnalysis

+ analyzeSystem(host: Host, request: Request,
slos: List<SLO>): IntensityDemandMapping

+ analyzeSystem(host: Host, request: Request,
slos: List<SLO>): IntensityDemandMapping

DetailedSystemAnalysis

+ analyzeSystem(host: Host, request: Request,
slos: List<SLO>): IntensityDemandMapping

<<Interface>>

IntensitySearch

+ searchIntensity(host: Host, request: Request,
slos: List<SLO>): IntensityDemandMapping

BinaryIntensitySearch

+ searchIntensity(host: Host, request: Request,
slos: List<SLO>): IntensityDemandMapping

- cloudManager: CloudManagement

1intensitySearch 1intensitySearch

Figure 6.6: Class diagram for the analysis package

which must be implemented by subclasses. The return type IntensityDemandMapping
represents the mapping function demand(intensity) (compare Section 4.4.1).

Both subclasses of SystemAnalysisuse the IntensitySearch interface to analyze the load
processing capabilities of a scaling stage. As discussed in Section 4.4.1, different algo-
rithms can be used for the intensity search. The BinaryIntesitySearch class implements
Algorithm 3.

The flexibility of the design allows to add new intensity search algorithms or additional
analysis implementations, easily.

The following paragraphs explain the two different analysis implementations.

Simple System Analysis

The Simple System Analysis implemented in the SimpleSystemAnalysis class assumes
that the resource demand increases linearly with the load intensity. It analyzes the load
processing capabilities of the CSUT only for using one resource. The load processing
capabilities for using more resources is then extrapolated linearly. The resulting mapping
function demand(intensity) contains therefore always steps of equal length.

The benefit of this simplified analysis approach is that there is no need to control the
cloud programmatically. Since only the first scaling stage is analyzed, the cloud must

59

60 6. BUNGEE - An Elasticity Benchmarking Framework

not be reconfigured to use more resources. Thus, it is not necessary to use the API
of the cloud management software. This reduces the overhead for benchmarking new
cloud systems. Additionally, analyzing the CSUT at one scaling stage only, is faster and
saves costs compared to analyzing all scaling stages. However, one should be aware of the
mentioned linearity assumption when using the Simple System Analysis. If this assumption
is not true for the evaluated system, the accuracy of the analysis results deteriorates.

Detailed System Analysis

The Detailed System Analysis implemented in the DetailedSystemAnalysis class realizes
Algorithm 2. It evaluates each scaling stage separately until either adding a new resource
does not result in increased load processing capabilities, or no additional resources are
available. Furthermore, the analysis stops when the maximal resource amount specified
by setMaxResources() is reached.

The Detailed System Analysis requires control over a cloud and has therefore a reference to
a cloudManager, an instance of the CloudManagement interface. This interface is described
in Section 6.1.7.

6.1.5 Benchmark Calibration: Load Profile Adjustment

<<Interface>>

AdjustmentFunction

+ adjustIntensity(intensity: double)

AdjustmentFunctionGeneration

+ getAdjustmentFunction(mapping: IntensityDemandMapping,
 loadProfile: LoadProfile): AbstractFunction

+ getAdjustmentFunction(mapping: IntensityDemandMapping,
 maxResources: int, maxIntensity: double): AbstractFunction

PiecewiseLinearAdjustmentGenerator

+ getAdjustmentFunction(mapping: IntensityDemandMapping,
 maxResources: int, maxIntensity: double): AbstractFunction

PiecewiseLinearFunction

+ addSegment(double start, double m, double b)
+ evaluate(inut: double)

<<create>>

LoadProfileAdjustment

+ adjustLoadProfile(profile: LoadProfile, mapping: IntensityDemandMapping,
 maxResources: int, maxIntensity: double): LoadProfile

1generator

Figure 6.7: Class diagram for the calibration package

The load profile adjustment during the calibration assures, that the same resource demand
is induced on different systems even when their underlying resources have different
levels of efficiency or different scaling behaviors. Section 4.4.2 illustrated the concept
for adjusting the intensities of a load profile in a system specific manner. As described
in the mentioned section, the adjustment of a load profile for a specific system k can be
specified by an adjustment function adjustedintensityk(intensity). Formula 4.1 shows how
this function can be defined as a stepwise linear function.

60

6.1. Benchmark Harness 61

The class PiecewiseLinearAdjustmentGenerator illustrated in Figure 6.7 implements the
generation of a stepwise linear adjustment function according to Formula 4.1. Hereby, the
parameters mapping, maxResources and maxIntensity of the getAdjustmentFunction()
method correspond to demandk(intensity), nbase and maxintensitybase in Formula 4.1.

The abstract super class AdjustmentFunctionGeneration additionally defines a helper
method getAdjustmentFunction() which only needs a mapping and a loadProfile as
parameters. This method calls the three parameter version of getAdjustmentFunction()
and sets maxResources to the maximum resource amount specified in the Intensity-
DemandMapping and maxIntensity to the maximum intensity that occurs in the load
profile described by the intensityModel. This is useful, when one want to adjust a load
profile in a way, that all available resources have to be used for the intensity peaks of a
load profile.

The design allows to extend the benchmark easily with respect to new kinds of adjustment
functions and their generation.

6.1.6 Resource Allocations

Figure 6.8 shows a class diagram for the allocation package. This package contains data
structures for storing series of allocations.

The base class ResourceAllocation stores the amount of resources allocated at a specific
point in time. The abstract class AllocationSeries has a reference to a list of Resource-
Allocations. It represents an allocation curve. Allocation curves can either be demand
curves (class DemandSeries) or supply (class SupplySeries) curves. An allocation curve
stored in a SupplySeries can be supplemented with a describing name. This is useful
when different supply sources are monitored during a measurement.

The class SeriesContainer stores a demand curve and a list of supply curves. A
startMeasurement member allows to define when the measurement started (the point
in time when the warm up period ended). Thus, a SeriesContainer can cut allocation
changes which occurred within the warm up period and return only allocation changes
which occurred during the actual measurement period.

6.1.7 Cloud Information and Control

During measurement runs, the benchmark monitors the resource allocations of the CSUT.
In order to do so, the benchmark requires an interface that allows to retrieve this informa-
tion. Additionally, the DetailedSystemAnalysis class requires limited control over the
CSUT. This again requires a standardized interface that allows to abstract from concrete
cloud deployments and their cloud management software.

The cloud package, which is illustrated in Figure 6.9 depicts these interfaces and their
implementations. The interface CloudInfo is the minimum interface that must be imple-
mented in order to benchmark a cloud system. It just contains the method getNumberOf-
Resources(). This method returns the current number of resources assigned to a CSUT.
Using this method allows to monitor the resource allocations on the CSUT actively by
calling it repeatedly during the measurement (Active Monitoring, compare Section 4.5.2).
This monitoring behavior is implemented in the ResourceMonitor class.

Some cloud management systems log events about when the amount of allocated re-
sources changes. If this event log is accessible, the resource allocations during a mea-
surement run can be reproduced by taking just one absolute measurement with the
getNumberOfResources() method at the beginning of a measurement. The allocation
changes during the run itself can be parsed from the event log, when the measurement has

61

62 6. BUNGEE - An Elasticity Benchmarking Framework

ResourceAllocation

+ setDate(date: Date)

+ ResourceAllocation(date:Date, amount: int)
+ getDate(): Date

+ getCurrentAmount(): int
+ setCurrentAmount(amount: int)

DemandSeries

+ DemandSeries(allocations List<ResourceAllocation>)

‐ date: Date
‐ currentAmount: int

*allocations

+ read(file: File): DemandSeries

SupplySeries

+ SupplySeries(allocations List<ResourceAllocation>, name: String)

+ read(file: File, name: String): SupplySeries

‐ name: String

SeriesContainer

+ SeriesContainer(demand: DemandSeries, supply: List<SupplySeries>, startMeasurement: Date)

+ read(file: File): SeriesContainer

+ getDemand(): DemandSeries
+ getDemandIncludingWarmUp(): DemandSeries
+ getSupply(): SupplySeries
+ getSupplyIncludingWarmUp(): SupplySeries
+ getAllSupplies(): List<SupplySeries>
+ getAllSuppliesIncludingWarmUp(): List<SupplySeries>

+ save(file: File)
+ save(file: File)

+ save(file: File)

‐ startMeasurment: Date

AllocationSeries

*supplyList
1demand

Figure 6.8: Class diagram of the allocation package

finished (Passive Monitoring, compare Section 4.5.2). This kind of measurement requires
the implementation of the ExtendedCloudInfo interface. Since in some cases, there exist
several events for the same resource allocation the getResourceAllocations() method
returns a list of SupplySeries. A system which supports several event types can return
separate SupplySeries for every event type.

In order to support the DetailedSystemAnalysis, the CloudManagement interface must
be implemented. It allows to configure the minimum and maximum amount of resources
that the CSUT is allowed to use.

At the moment, the benchmark harness supports to benchmark cloud systems that are
based on either CloudStack or AWS. The benchmark can be extended to use other cloud
management software by implementing at least the CloudInfo interface.

6.1.7.1 CloudStack

The class CloudstackResourceInfo in the cloud.cloudstack package implements the
interface ExtendedCloudInfo and thereby allows to use the Active Monitoring technique as

62

6.1. Benchmark Harness 63

<<Interface>>

CloudManagement

+ getScalingBounds(hostName: String): Bounds
+ setScalingBounds(hostName: String, bounds: Bounds)

CloudstackManagement

<<Interface>>

CloudInfo

+ getNumberOfResources(hostName: String): int

<<Interface>>

ExtendedCloudInfo

+ getResourceAllocations(start:Date, end: Date,
 hostName: String): List<SupplySeries>

CloudstackResourceInfo

+ getResourceAllocations(start:Date, end: Date,
 hostName: String): List<SupplySeries>

+ getNumberOfResources(hostName: String): int

ResourceMonitor

+ getMonitoredSupply(): SupplySeries

+ startMonitoring(hostName: String)
+ stopMonitoring(hostName: String)

+ ResourceMonitor(cloudInfo: CloudResourceInfo)cloudInfo

1

AWSManagement

+ getNumberOfResources(hostName: String): int
+ getScalingBounds(hostName: String): Bounds
+ setScalingBounds(hostName: String, bounds: Bounds)

+ getNumberOfResources(hostName: String): int
+ getScalingBounds(hostName: String): Bounds
+ setScalingBounds(hostName: String, bounds: Bounds)

Bounds

+ getMin():int
+ getMax():int

+ Bounds(min: int, max: int)

- min: int
- max: int

Figure 6.9: Class diagram for the cloud package

well as the Passive Monitoring technique during measurement runs. The implementation
of the CloudManagement interface in the CloudstackManagement class allows to use the
Detailed System Analysis in addition to the Simple System Analysis on CloudStack based
CSUTs.

Monitoring Resource Suppply on CloudStack Clouds

Figure 6.10 illustrates how a resource allocation change is monitored differently when dif-
ferent monitoring techniques are applied and different supply event types are compared.
The topmost graph shows how the resource demand increases after one minute and de-
creases again after eleven minutes. The undermost graph illustrates how the response
time varies over time. The graphs in between show the monitored resource supply:

• The graph labeled MONITORED illustrates how the resource allocations on the
cloud system changed according to the polled monitoring data. This graph shows
the fastest reactions to the demand changes.

• The graph labeled VM_SCHEDULED illustrates how the resource allocations on the
cloud system changed according to the CloudStack events that signal the scheduling
of the creation/deletion of a VM instance.

• The graph labeled VM_COMPLETED illustrates how the resource allocations on the
cloud system changed according to the CloudStack events that signal the completion
of the creation/deletion of a VM instance.

• The graph labeled LB_RULE_ADAPTION illustrates how the resource allocations
on the cloud system changed according to the CloudStack events that signal the
adaptation of the load balancer.

63

64 6. BUNGEE - An Elasticity Benchmarking Framework

DEMAND MONITORED VM_SCHEDULED VM_COMPLETED LB_RULE_ADAPTION waiting time service time

0m0s 5m0s 10m0s 15m0s 20m0s
Time

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

R
es

p.
T

im
e[

m
s]

Figure 6.10: Resource demand (topmost graph) and different monitored CloudStack re-
source supply types

When evaluating the elasticity of the system, using different supply types leads to different
metric results. In the opinion of the author, using the LB_RULE_ADAPTION curve is most
appropriate for evaluating elasticity. A resource is only effective if the complete CSUT -
this includes the load balancer - can make use of the resource. If an instance is created or
even only scheduled, but the load balancer does not use it, the observed system behavior
does not change. The response time graph confirms this: The response times decreases
to a normal level just very shortly after the new instance was added to the load balancer.

6.1.7.2 Monitoring Resource Suppply on AWS Clouds

For AWS based clouds, the Detailed System Analysis as well as Active Monitoring is sup-
ported. The required interfaces are implemented in the AWSManagement class in the
cloud.aws package.

AWS Supply Adaptation Events

The AWS API allows to query two different system properties that can be used to monitor
the resource supply on AWS based CSUTs:

1. Number of VMs assigned to the load balancer

2. Number of VMs passing the load balancer’s health check

Experiments showed that in scale up scenarios, monitoring the resource supply by query-
ing Property 1 results in a supply curve which adapts well before the corresponding
change of the response time is observed. This means VM instances are assigned to the
load balancer before they are ready to use. Thus, the CSUT cannot make use of instances
directly after their assignment to the load balancer.

When Property 2 is queried for monitoring the resource supply, the response time changes
shortly after the supply curve adaptation. This observation for AWS based clouds is
similar to that made for CloudStack based clouds when using the LB_RULE_ADAPTION
event for monitoring the resource supply. Furthermore, monitoring the resource supply
by querying Property 2 leads to a resource supply of zero instances as soon as no instance

64

6.1. Benchmark Harness 65

passes the health check. In cases where it is known that instances are allocated, a supply
of zero instances might seem wrong firstly. However, when no instance passes the
health check, no request is forwarded to an instance by the load balancer and thus the
CSUT cannot use the instances. Hence, querying Property 2 is reasonable for elasticity
evaluations and is therefore used in BUNGEE.

6.1.8 Metrics

Metric

+ toCSV(): double

AbstractMetric(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)
evaluate(): double
shortText(): String
csvString(): String
+ result(): double
+ toString(): String

AbstractAreaDuration

AbstractAreaDuration(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)

AbstractScaleEvents

AbstractAreaDuration(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)
getScaleEvents(allocations: List<ResourceAllocation>) # getProvisioning(): Provisioning

OverprovisionAccuracy

+ OverprovisioningAccuracy(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)

evaluate(): double

shortText(): String
csvString(): String

UnderprovisioningAccuracy

+ UnderprovisioningAccuracy(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)
evaluate(): double
shortText(): String
csvString(): String

OverprovisionTimeshare

+ OverprovisioningTimeshare(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)
evaluate(): double
shortText(): String
csvString(): String

UnderprovisioningTimeshare

+ UnderprovisioningTimeshare(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)
evaluate(): double
shortText(): String
csvString(): String

Jitter

+ OverprovisioningAccuracy(demand: List<ResourceAllocation>,
 supply: List<ResourceAllocation>)

evaluate(): double

shortText(): String
csvString(): String

MetricToFileWriter

+ writeMetricsToFile(container SeriesContainer,
 metrics List<Class<AbstractMetric>>, file File)

<<use>>

Figure 6.11: Class diagram for the metric package

Chapter 5 explained different elasticity metrics. These metrics are implemented in the
metric package, which is illustrated in Figure 6.11.

All metrics inherit the abstract class Metric. It declares the protected abstract meth-
ods evaluate(), which returns the metric result, shortText(), which returns a string
describing the numbers used to calculate the metric, and csvString(), which returns
the information as shortText() formatted as CSV output. The public concrete methods
result(), toString(), and toCSV() return the result of the corresponding abstract meth-

65

66 6. BUNGEE - An Elasticity Benchmarking Framework

ods. The results are cached and thus a repeated invocation of the methods reuses the
cached results without re-executing the abstract methods again.

The abstract subclasses AbstractScaleEvents and AbstractAreaDuration provide pro-
tected helper methods (not shown in the class diagram) which can be reused within
several metric implementations.

The MetricToFileWriter class allows to evaluate the demand and the supply curve
contained in a DemandSeriesContainer with the help of a list of metrics and write the
results into a file.

6.1.9 Visualization

The benchmark harness offers different options for visualizing benchmarking input and
output data. The corresponding generator classes can be found in the chart package. For
the chart generation the chart library JFreeChart is used.

Load Profile and Induced Resource Demand

Load profiles are an important input for the benchmark. The LIMBO toolkit already
allows to visualize load profiles easily within in the eclipse development environment.
For benchmarking purposes, it is useful to visualize the resource demand that is induced
by a load according to a load profile. The ChartGenerator class is able to create a
chart that visualizes both, a load profile and the induced resource demand. As input, a
LoadProfile instance and aIntensityDemandMapping are required. Figure 6.12 illustrates
an exemplary chart.

load intensity resource demand

5h0m0s 11h0m0s 17h0m0s 23h0m0s
Time

0

100

200

300

Ar
riv

al
 R

at
e

[1
/s

]

2
4
6
8

10

R
es

ou
rc

e
Am

ou
nt

0h0m0s

Figure 6.12: Load profile for a whole day and the corresponding induced resource demand

Run Result: Accuracy of Request Submission and Response Times

Within the benchmark harness, results of load executions are stored within RunResult
objects. These objects can be persisted in a *.runresult file. The ChartGenerator class
allows to generate charts that illustrate measurement run results. As shown in Figure 6.13,
it is possible to visualize the request submission accuracy or the response times over time.

The evaluation of RunResults is further supported by an eclipse plugin. The plugin offers
a view that shows different statistics about the run and allows to generate a schedule or
a response chart.

66

6.1. Benchmark Harness 67

(a) Eclipse view for viewing RunResults

waiting time service time

0m0s 5m0s 10m0s 15m0s 20m0s
Time

0

250

500

750

1.000

R
es

p.
T

im
e

[m
s]

(b) Response Chart

Request Submission Delay

0m0s 5m0s 10m0s 15m0s 20m0s
Time

0

5

10

15

20

25

R
eq

ue
st

 D
el

ay
 [m

s]

(c) Schedule Chart (Request Submission Accuracy)

Figure 6.13: An eclipse view shows the statistics for a measurement run (a) and allows to
generate a schedule chart (b) or a response chart (c).

67

68 6. BUNGEE - An Elasticity Benchmarking Framework

Resource Allocations

Measuring elasticity means comparing resource demand and supply curves with the
help of metrics. While metrics provide numbers that describe a system, visualizations of
demand and supply curves facilitate the understanding of these numbers. Visualizations
can even help to get an intuitive understanding of the elasticity of a system. Therefore, the
benchmark allows to generate visualizations of resource allocation curves, easily. Many
examples for such visualizations can be found in Section (7.3).

6.2 Cloud-Side Load Generation

The CSUT must handle requests that are sent to it. Within the CSUT, typically a load
balancer receives requests and forwards them to VM instances that process and generate
responses for them. A load generation application accepts requests and generates load
on the CSUT’s resources. To allow elasticity benchmarking with BUNGEE, the load
generation application must be deployed on every VM instance. This section describes
the used load generation application.

6.2.1 Requirements

To ensure that the load generation application is suitable for elasticity benchmarking
purposes, it was developed according to the following functional and non-functional
requirements.

Functional Requirements:

• Processing of a request induces a demand on the CPU.

• Request parameters can be used to modify the demand size.

• The response contains information about the request service time.

Non-functional Requirements:

• The application should be platform independent to allow benchmarking in different
system environments.

• Processing of a request should utilize as few resources as possible for other resource
types.

• The application should be easily extensible to allow inducing demands on other
resource types.

• The application should be stateless. Thus, the induced resource demand should be
equal for fixed request parameters.

6.2.2 Implementation

The cloud-side load generation application is a java based HTTP server. This allows to
easily deploy it on any platform with a support for java. The application uses Simple8

(version 5.1.6) as a lightweight HTTP server framework.

Figure 6.14 shows a class diagram for the cloud-side load generation application. Its main
class is the WebServer class. Whenever a request is received, the Simple framework calls
the method handle() of the WebServer class. The parameters request and response give
access to the request and its parameters and allow to specify and send a response. In order

8http://www.simpleframework.org

68

http://www.simpleframework.org

6.2. Cloud-Side Load Generation 69

WebServer

- executor: Executor

+ WebServer(size: int, port: int)

<<Interface>>

LoadProcessor

+ process(Query query): long

+ handle(request: Request, response: Response)

CpuLoadProcessor

- fibonacci(n:int): long
+ process(Query query): long

RequestTask

+ run()

<<Interface>>

java.lang.Runnable

+ run()

<<create>>

org.simpleframework

+ RequestTask(request: Request,
response: Response)

1loadProcessor

Figure 6.14: Class diagram for the cloud-side load generation application

to be able to process requests concurrently, the actual processing is done by instances of
the RequestTask class.

For every request the WebServer creates a RequestTask object and assigns it to a thread
pool (executor), which then calls the run() method of the RequestTask with an own
thread. RequestTask calls the process()method of an LoadProcessor instance to induce
a resource demand. After the processing is done, RequestTask creates a response which
contains the following information:

• processing start time

• processing end time

• request service time (processing end time - processing start time)

• result returned by the process()method

• ip of the virtual machine

The response is sent using the response object that was passed by the Simple framework
in the handle() call.

A sequence diagram that illustrates the handling of a request within the load generation
application as described above is shown in Figure 6.15.

For this thesis, CPULoadProcessor is a sample class, which induces a demand on the
CPU by computing the n-th element of the fibonacci series. n can be specified by a size
parameter in the HTTP request query. As discussed in Section 4.3.1, the computation is
done in iterative manner not recursive manner in order to minimize memory consump-
tion. Furthermore, result caching and java compiler optimizations are avoided by adding
random numbers within each calculation step. This randomization of the computation
was previously used in elasticity benchmarking experiments for thread pools [Her11].

The load processing application can be extended easily for other resource types, such as
memory resources, by implementing the LoadProcessor interface.

69

70 6. BUNGEE - An Elasticity Benchmarking Framework

Response
new

WebServer Executor

Request
Task

new (request,response)

execute(task) run()

LoadProcessor
new

SimpleHttp

process()

Request
newhttp request

sendResponse()
http response

handle(request,response)

Figure 6.15: Request processing within the cloud-side load generation application

6.3 Conclusion

This chapter explained the benchmarking framework implementation. The architecture
and functionality of the harness as well as of the cloud-side load generation applica-
tion was discussed. Extensibility allows to support other resource types, further cloud
management software, or addition of new metrics as part of future work.

70

7. Evaluation

This chapter evaluates the System Analysis and the used metrics and thus addresses the
sixth goal mentioned in Section 1.1.

The general experiment setup used for the evaluation of the benchmark on a private
cloud is explained in Section 7.1. The System Analysis is then evaluated in Section 7.2. It
is followed by the evaluation of the metrics in Section 7.3. Section 7.4 demonstrates the
benchmarking capabilities for a realistic load profile and a realistic number of resources
on the private cloud as well as on a public cloud.

7.1 Experiment Setup

This section describes the experiment setup that is used for the evaluation. The test
cloud system is a private cloud that is capable of scaling virtual machines horizontally.
Thus, the resource type for the test system is virtual machines i.e., container resources.
As discussed in 4.1, this thesis focuses on CPU-bound resources. Therefore, the rather
complex behavior of a container resource is abstracted by using a CPU-bound load. The
following subsections explain the cloud setup in detail.

7.1.1 Private Cloud Deployment

Figure 7.1 illustrates the experiment setup that is used for the evaluation. It consists of
three nodes: The infrastructure node, the management node, and the load driver and
benchmark node. The first two nodes form the CSUT that is benchmarked by the third
node.

The infrastructure node provides fully virtualized resources via a hypervisor. In this
experiment setup, the infrastructure node has a Quad CPU AMD Opteron 6174 with 48
cores at 2.2 GHz and 256 GB RAM. On this hardware, XenServer 6.2 is running as a
hypervisor. The management of cloud infrastructure services on top of the hypervisor is
managed by a cloud management software running on the management node.

The cloud management software and the load balancer are deployed on the management
node. Both run in separate VMs on top of another XenServer 6.2 as hypervisor. Since the
management node only runs two VMs, less powerful hardware is used: An Intel Core i7
860 with 8 cores at 2.8 GHz and 8 GB RAM. For this experiment setup, CloudStack 4.2
is used as cloud management software. CloudStack is installed on a CentOS 6.5 guest

71

72 7. Evaluation

Management

Xen Server

C
lo

u
d

St
ac

k

Load Balancer

N
et

sc
al

e
r

Guest VMs

Xen Server

C
en

tO
S

C
en

tO
S

C
en

tO
S

NIC NIC

Figure 7.1: Experiment Setup

virtual machine. The load balancer virtual machine runs Citrix Netscaler 10.1 VPX 1000 as
software load balancer. Since CloudStack supports Netscaler as an external load balancer,
load balancing can be configured within CloudStack.

The load driver and benchmark node runs the benchmark harness and the load driver.
Both are java based and can therefore run on any system with java support. For this
experiment setup the load driver and benchmark node runs on a Windows Vista Desktop
PC with a Dell Precision T3400 (4 x 2.5 GHz) and 8 GB RAM.

The three nodes are physically connected over a 1 GBit ethernet network.

Clock synchronization is ensured by using the Network Time Protocol (NTP). The NTP
daemons of all nodes are configured to sync with a Stratum 3 NTP server located in the
same network.

7.1.2 Elastic Cloud Service Configuration

This subsection describes the basic configuration of the test system for the evaluation. The
Sections 7.2 and 7.3, which evaluate the calibration and the metrics, use the parameters
that are described here and mention parameters explicitly only when they are changed
for a particular evaluation experiment.

Virtual Machine Setup

The basic virtual machine template for virtual machines that are deployed on the infra-
structure node by CloudStack bases on Cent OS 5.6 as operating system with java runtime
environment and Simple Network Management Protocol (SNMP) installed. Java is nec-
essary to run the cloud-side load generation application described in Section 6.2, SNMP
provides the elasticity mechanism access to resource utilization information. The VM
template is configured to start the load generation application on every start up. Thus, it
is available without any interaction as soon as the template is deployed and booted.

72

7.1. Experiment Setup 73

CloudStack Configuration

CloudStack offers two different options for the network configuration: Basic and Advanced
Network Setup. While the second option offers features like separating different traffic types
such as management traffic, guest traffic, and public traffic physically or via VLANs, only
the Basic Network Setup allows to configure auto-scaling. Thus, CloudStack is configured
to use the Basic Network Setup which means that all traffic types share the same network.

For the experiments, four different service offerings, which define how much virtualized
resources should be assigned to a virtual machine, are used. All offerings provide 1 GB
RAM and just local storage, since the load is CPU-bound. The assigned virtual CPUs are
set to run at 2.2 GHz for three of the offerings. The smallest service offering is configured
to use just one CPU (Offering A), a second offering uses two CPUs (Offering B), and a
third offering uses four CPUs (Offering C). A fourth service offering uses one virtual CPU
that is set to run at 1024 MHz (Offering D). If not stated otherwise, Offering A is used.

Elasticity Parameters

CloudStack allows to configure a rule based elasticity mechanism. This section explains
the different parameters that influence the behavior of the elasticity mechanism.

Table 7.1 shows an overview about the parameters. The column Default shows the stan-
dard values for the evaluation experiments. When a parameter is changed for a specific
evaluation experiment, this is mentioned in the description of this evaluation.

The parameters minInstances and maxInstances specify how many resources should be
allocated at minimum and at maximum, respectively. The de-/allocation of new VMs is
triggered by specific rules. The rules base on conditions that are evaluated frequently. The
parameter evalInterval specifies this frequency. When the number of VMs has changed,
it may take some time until the new configuration takes effect. Therefore, the quietTime
allows to specify a period of time for which the scale up/down rules are not evaluated
after a change. If a VM is deallocated, it will not handle new connections any more. Still,
there may be old connections which have not been processed completely. CloudStack
allows the VM to process and close these old connections within in a certain period of
time. This period is determined by the destroyVmGracePer parameter.

For both scaling directions, four additional parameters define when the de-/allocation of
a virtual machine is triggered. The parameter condTrueDurUp/Down defines how long a
condition has to be true in order to trigger the de-/allocation of a VM. The condition itself
is expressed by the parameters counterUp/Down, operatorUp/Down and thresholdUp/Down.
CounterUp/Down describes the quality measure that is compared with the threshold. Pos-
sible measures are User CPU utilization, CPU Idle time, or response time for example.
The operatorUp/Down parameter defines if the thresholdUp/Down parameter is an upper or
lower threshold. Finally, the thresholdUp/Down defines the threshold itself.

Health Check Parameters

CloudStack allows to configure a health check additionally to basic elasticity parameters
mentioned in the last paragraph. A health check determines, if a VM instance is considered
as healthy. The load balancer forwards requests only to healthy instances. If an instance
is unhealthy, the allocation of a substitute instance can be triggered.

Table 7.2 illustrates the parameters for health checks. As for the elasticity parameter table,
the column Default shows the standard values for evaluation experiments.

The parameter pingPath specifies to which address health check requests are sent. A health
check request is considered as successful, if the instance answers the request within time

73

74 7. Evaluation

Name Default Description

General

minInstances 1 minimum number of VM instances
maxInstances 2 maximum number of VM instances
evalInterval 5s frequency at which the conditions for the

scale up down rules are evaluated
quietTime 300s period for which the policy is not eval-

uated after the number of instances
changed

destroyVmGracePer 30s time allowed for existing connections to
get closed before a VM is destroyed

Scale
up

condTrueDurUp 30s duration for which the condition has to
be true before a scale up is triggered

counterUp User CPU quality measure which is compared with
thresholdUp

operatorUp GT operator which compares counterUp and
thresholdUp. Values: GT (greater then),
LT (less then)

thresholdUp 90% threshold for for counterUp

Scale
down

condTrueDurDown 30s duration for which the condition has to
be true a before scale down is triggered

counterDown User CPU quality measure which is compared with
thresholdDown

operatorDown LT operator which compares counterDown
and thresholdDown. Values: GT (greater
then), LT (less then)

thresholdDown 50% threshold for for counterDown

Table 7.1: Cloudstack elasticity parameters

Name Default Description

pingPath /?size=1 address which is queried to check the instance
health

healthyResponseTimeout 1s period of time within that a response is expected
from healthy instances

healthCheckInterval 5s time between two consecutive health checks
healthyThreshold 1 number of subsequent health checks request

successes before instance is declared healthy
unhealthyThreshold 4 number of subsequent health checks request

failures before instance is declared unhealthy

Table 7.2: Cloudstack health check parameters

74

7.1. Experiment Setup 75

defined by the healthyResponseTimeout parameter. The parameters healthyThreshold and
unhealthyThreshold define the number of subsequent health check request successes and
failures respectively before an instance is declared as healthy or unhealthy.

The selected default values tend to declare instances healthy early and unhealthy late.
These values were chosen in order to prevent unnecessary allocation of new instance
for the evaluation. However, in a real world scenario a more conservative health check
(healthyThreshold = 2, unhealthyThreshold = 1) would be more appropriate in most cases.

7.1.3 Benchmark Harness Configuration

The benchmark harness offers several configuration options that allow to configure it
according to the means of the targeted domain. Table 7.3 shows the different parameters
and the default values which where used for this evaluation. The following paragraph
explains the different parameters.

Name Default

size 50000
requestTimeout 1000ms
SLO 95% of all requests must be processed successfully within a

maximum response time of 500ms.
warmupcalibration 180s
warmupmeasurement 300s

Table 7.3: Benchmark harness parameters

Amount of Work per Request

The amount of work which is executed within each request is defined by a size parameter,
which is send with each request. It is set to 50000 for the evaluation. This means each
request issues a randomized calculation of the 50000th element of the fibonacci series
(compare Section 4.3.1).

Service Level Objective and Request Timeout

During the calibration phase, the benchmark needs a service level objective in order to
perform the System Analysis. For the evaluation the following service level objective was
used: SLO:
“95% of all requests must be processed successfully within a maximum response time of
500ms.”
Additionally the benchmark has a requestTimeout parameter. This parameter defines,
how long the benchmark waits for a response before the connection is aborted. For this
evaluation requestTimeout is set to 1000ms.

Warm up Times and Calibration Duration

When a cloud system is exposed to a load it may behave different at the beginning due to
some initialization overhead. Therefore, the benchmark allows to define warm up periods
for the calibration and the measurement phase. During warm up periods, the benchmark
sends request to the cloud system, but no measurements are taken. The load intensity for
the warm up requests is always the first intensity that occurs in the used load profile. The
warm up period warmupcalibration for the calibration precedes every measurement within
the System Analysis. For this evaluation, it was set to 180 seconds. The warm up period
warmupmeasurement precedes the every benchmark measurement run. The warmupmeasurement
is set to 300 seconds for this evaluation.

75

76 7. Evaluation

7.1.4 Evaluation Automatization

In order to facilitate the evaluation, the different experiments for the calibration and the
metric evaluation are designed to run automatically. For every experiment an appropriate
cloud setup is created and configured programmatically using the CloudStack API before
the actual experiment starts. When CloudStack reports that the setup was created success-
fully, the evaluation mechanism waits ten more minutes to allow the system to initialize
properly. After this time period, the warm up period begins. When the measurements
are finished, the cloud setup is removed again. This approach ensures that measurements
are taken under equal conditions.

7.2 Analysis Evaluation
Two different activities precede the actual elasticity measurement: The System Analysis
and the Benchmark Calibration. The latter depends on the correctness of the System Analysis.
The System Analysis is therefore evaluated with respect to two different aspects:

• Is the result of the System Analysis reproducible on the test system? (RQ 6.1)

• What is the deviation between the results of Detailed System Analysis and the results
of Simple System Analysis, which assumes a linearly increasing resource demand?
(RQ 6.2)

7.2.1 Reproducibility

This subsection tests the following hypothesis:

Hypothesis 1 Under the assumption that the analysis result follows a normal distribution, the
error of the System Analysis for the first scaling stage is smaller than 5% on a confidence level of
95%.

The reproducibility of the System Analysis is analyzed for three different system con-
figurations that are different with respect to the processing efficiency of the underlying
resources. To obtain different levels of efficiency for resource instances (VMs), CloudStack
is configured to use service offerings that either assign one (Offering A), two (Offering B),
or four (Offering C) virtual CPUs to the created VMs. The evaluation is conducted for
every configuration separately.

Let Xi ∈ N(µ, σ) be the samples of the result of the analysis and n be the number of samples.
The sample mean X can be expressed as X =

∑
Xi

n . The sample standard deviation S can

be expressed as S =
∑

(Xi−X)
2

n−1 .

To show:

P(c1 ≤ µ ≤ c2) ≤ 1 − α
with (7.1)
c1 = 0.95 ∗ X̄, c2 = 1.05 ∗ X̄, α = 0.05

It can be shown [Man64] that T =
[X−µ]

√
n

S has a t-distribution with (n − 1) d.f.

It follows:

P(clow ≤ µ ≤ chigh) ≤ 1 − α

with

clow = X − t1−α/2;n−1 ∗ S/
√

n

chigh = X + t1−α/2;n−1 ∗ S/
√

n

76

7.2. Analysis Evaluation 77

where t1−α/2;n−1 is the upper (1 − α
2) critical point of the t distr. with n-1 d.f.

To prove claim 7.1, it will be shown that

clow = X − t1−α/2;n−1 ∗ S/
√

n ≥ 0.95 ∗ X̄ = c1 (7.2)

chigh = X − t1−α/2;n−1 ∗ S/
√

n ≤ 1.05 ∗ X̄ = c2

holds true for a set of n scaling analysis samples.

Off. Analysis Samples [req./sec.] X S c1 clow chigh c2

A 35 35 35 35 35 35 35 35 35 35 35.0 0.00 33.25 35.00 35.00 36.75
B 55 57 56 56 56 56 58 55 57 56 56.2 0.92 53.39 55.54 56.86 59.01
C 97 101 100 100 97 99 98 101 99 101 99.3 1.57 94.34 98.18 100.42 104.27

Table 7.4: Results of the reproducibility evaluation for the System Analysis

Table 7.4 shows the result of the System Analysis for the first scaling stage for n = 10
measurement samples and three different system configurations. For all configurations
the equations 7.2 are true. Thus, it is not possible to reject Hypothesis 1.

7.2.2 Linearity Assumption

The Simple System Analysis only analyzes the load processing capabilities of the first scaling
stage. It then assumes, that the resource demand increases linearly with the load intensity
and therefore creates a mapping with steps of equal length, like illustrated in Figure 7.2.
For the system depicted in Figure 7.2, only the load processing capability - here 25 - for one
resource was determined by the Simple System Analysis. The load processing capabilities
for two, three and four resources - here 50, 75, and 100 - are extrapolated based on the
linearity assumption. Due to some overhead, e.g., overhead in the load balancer when

Figure 7.2: System with linear increasing resource demand

four resources are used, it may be that the real load processing capability does not equal
the one extrapolated based the linearity assumption. This evaluation illustrates how big
the error of not measuring the load processing capabilities for more than one resources is
on the used test system.

77

78 7. Evaluation

Hypothesis 2 The test system’s resource demand scales linearly with the load intensity in a scale
out scenario.

It is notable that this hypothesis is not about a property of the benchmark but about a
property of the test system.

To test the hypothesis for a given system configuration, two measurements are taken.
First, the Simple System Analysis is used to get the load processing capability iunscaled
for one resource. Then, system is scaled manually to use n resources. Now, the load
processing capability iscaled for the scaled system is determined. In the next step, iscaled is
compared with the extrapolated intensity iextrapolated for n resources. Hereby, iextrapolated is
calculated as iextrapolated = n ∗ iunscaled. Using this numbers, the absolute deviation devabs and
the relative deviation devrel for the test system are:

devabs = iextrapolated − iscaled

devrel =
devabs

iscaled

This analysis has been conducted for two different system configurations that are different
with respect to the levels of efficiency of the underlying resources. To obtain different
levels of efficiency for resource instances (VMs), CloudStack has been configured to use
service offerings which either assign one (Offering A) or two (Offering B) virtual CPUs to
the created VMs.

The result of this evaluation is shown Table 7.5 for Offering A and in Table 7.6 for Offering B
respectively.

For Offering A, the maximum intensity iscaled was analyzed for all system configurations
from n = 1..18 resources. The result is shown in Table 7.5.

n
iunscaled

[req./sec.]
iextrapolated
[req./sec.]

iscaled
[req./sec.]

devabs
[req./sec.]

devrel
[%]

2 35 70 70 0 0.0
3 35 105 99 6 6.1
4 35 140 140 0 0.0
5 35 175 169 6 3.6
6 35 210 199 11 5.5
7 35 245 239 6 2.5
8 35 280 284 -4 -1.4
9 35 315 320 -5 -1.6

10 35 350 339 11 3.2
11 35 385 359 26 7.2
12 35 420 399 21 5.3
13 35 455 462 -7 -1.5
14 35 490 479 11 2.3
15 35 525 519 6 1.2
16 35 560 564 -4 -0.01
17 35 595 598 -3 -0.01
18 35 630 633 -3 -0.01

Table 7.5: Linearity analysis for Offering A

78

7.2. Analysis Evaluation 79

Within this experiment, the measured deviation from the linearity assumption is always
below 10%. Since the accuracy of measurement itself is limited (95% confidence for
relative accuracy of ±5%, compare Section 7.2.1), it can be assumed that the measured
deviation is mainly due to an inaccurate measurement.

For the first twelve resource scaling stages, the linearity analysis has been conducted
three times. It is notable that these measurements have generated the same small de-
viations from the linearity assumption consistently. For six resources for example, all
three measurements have returned 199 as measured maximum intensity iscaled. Since the
extrapolated maximum intensity iextrapolated for six resources is 210, this means a relative
deviation devrel of 5.5%. This observation contradicts the assumption that the measured
deviations from the linearity assumption are mainly due to an inaccurate measurement.
It rather indicates that the deviations from the linearity assumption are mainly system
specific.

For Offering B, the maximum intensity iscaled has been analyzed for all system configuration
from n = 1..22 resources. For all scaling stages, maximum intensity iscaled has been
measured three times. Table 7.5 shows the averaged results.

n
iunscaled

[req./sec.]
iextrapolated
[req./sec.]

iscaled
[req./sec.]

devabs
[req./sec.]

devrel
[%]

2 58 116 115.7 0.3 0.3
3 58 174 225.7 4.0 2.4
4 58 232 225.7 6.3 2.8
5 58 290 282.0 8.0 2.8
6 58 348 336.3 11.7 3.5
7 58 406 390.3 15.7 4.0
8 58 464 449.0 15.0 3.3
9 58 522 503.3 18.7 3.7

10 58 580 559.3 20.7 3.7
11 58 638 613.3 24.7 4.0
12 58 696 670.3 25.7 3.8
13 58 754 718.0 36.0 5.0
14 58 812 773.0 39.0 5.0
15 58 870 829.0 41.0 4.9
16 58 928 881.3 46.7 5.3
17 58 986 923.3 53.7 5.8
18 58 1044 1003.3 40.7 4.1
19 58 1102 1044.7 57.3 5.5
20 58 1160 1099.7 60.3 5.5
21 58 1218 1154.0 64.0 5.5
22 58 1276 1202.3 73.7 6.1

Table 7.6: Linearity analysis for Offering B
(iscaled is averaged over three independent analysis runs)

As for Offering A, the deviation from the linearity assumption is below 10% for all
analyzed scaling stages. Furthermore, the deviation tends to increase slowly with the
number of used resources. A possible explanation for this increasing deviation is overhead
within the hypervisor or the load balancer. Note that for the largest scale out scenario
92% of the underlying hardware resources of the test system have been used.

79

80 7. Evaluation

Hypothesis 2 holds for the tested scale out scenarios to a limited extend. Although the
deviation from the linearity assumption is always below 10%, small deviations have
been observed consistently. If possible, the usage of the Detailed System Analysis should
therefore be preferred for new systems.

7.2.3 Discussion

The evaluation of the System Analysis demonstrated the reproducibility of its results for
three system configurations. Within a second evaluation, it was shown that for scale-
outs of up to 22 resources the linearity assumption holds for the test system to a limited
extend. Constant small deviations from the linearity assumption have been observed for
different scaling stages, consistently. The usage of the Detailed System Analysis is therefore
preferred.

During the evaluation period, several updates were installed on the hypervisor. The
complete reproducibility evaluation and the evaluation of the linearity assumption for
Offering A were conducted before, the linearity evaluation for Offering B has been con-
ducted after the installation of hypervisor updates. An additional analysis for Offering
A after the installation of updates on the hypervisor has not shown the deviations illus-
trated in Table 7.5 anymore. This change in the observed scaling behavior signifies that
it is important to reanalyze the scaling behavior after any direct or indirect change of the
tested system.

7.3 Metric Evaluation

This section evaluates, if the accuracy and timing metrics shown in Chapter 5 allow to rank
systems of different degrees of resource elasticity on an ordinal scale and thereby answers
RQ 6.3. Every metric is evaluated with the help of a simple load profile which induces
demand changes that are appropriate for evaluating the elasticity aspect measured by the
respective metric. The metrics are then evaluated for systems that exhibit different degrees
of elasticity. If the metrics reflect the different degrees of elasticity with a correct ranking
according to the evaluated aspect, the ordinal character of the metrics is demonstrated. In
order to induce system behaviors that exhibit different degrees of elasticity, the parameters
of the elasticity mechanism of the test system are varied.

For comprehensibility reasons, the load profiles illustrated in this section are unadjusted
load profiles. In the illustrations load intensity 100 is the maximum intensity one resource
can withstand. However, in the calibration step the real intensity is adjusted in a way that
the resource demand on the test system equals the resource demand in the illustrations.

In the following the evaluation for each metric is explained.

7.3.1 Under-provision Accuracy: accuracyU

• Hypothesis

Hypothesis 3 The metric accuracyU allows to rank systems with different degrees of elas-
ticity on an ordinal scale.

• Load Profile

The under-provision accuracy metric is evaluated with the load profile illustrated
in Figure 7.3. The load profile starts with an intensity that is just a little bit below
the maximum intensity for two instances. After five minutes, the intensity changes
stepwise - every five minutes - to lower load intensities. However, the last intensity

80

7.3. Metric Evaluation 81

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time waiting time service time waiting time service time

0m0s 5m0s 10m0s 15m0s 20m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es

p.
T

im
e

[m
s]

0

1.000

0

1.000

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 7.3: Evaluation of the accuracyU metric. Load profile (top), induced resource de-
mand (second graph) and measured resource supply and response times for
increasing thresholdDown values (A: 55%, B: 65%, C: 75%, D: 85%).

is still high enough to require two resources. A system with a low degree of elasticity
may deallocate the second resource because of the shrinking demand although it is
still needed. Thus, such a system lacks in accuracy.

• Different Degrees of Elasticity
The degree of elasticity of the test system is varied by changing the thresholdDown
parameter. For increasing values of this parameter the system tends to deprovision
resources to early, which leads to lower degrees of elasticity. The accuracyU metric
is evaluated for the following thresholdDown values: 55% (Configuration A), 65%
(Configuration B), 75% (Configuration C) and 85% (Configuration D).

• Results
Figure 7.3 shows the elasticity behaviors for different values of thresholdDown. It
can be seen that due to lower degrees of elasticity for increasing thresholdDown
values, the amount of under-provisioned resources increases. This is reflected by
the metric results shown in Table 7.7. For decreasing degrees of elasticity, that means
for increasing values of thresholdDown, the accuracyU metric increases. Thus, the
accuracyU allows to rank elastic systems on an ordinal scale as stated in Hypothesis 3.

81

82 7. Evaluation

thresholdDown [%] 55 65 75 85
accuracyU [resource units] 0.145 0.302 0.371 0.603

Table 7.7: Measurement results for the accuracyU metric

• Remarks
Although the systems deprovision the second resource to early, they reallocate it
again after a while. This behavior is due to the fact, that for every arrival rate above
100, the CPU load is very high if just one resource is used. Thus, the scale up rule
triggers the allocation of a new resource shortly after each deallocation.

7.3.2 Over-provision Accuracy: accuracyO

• Hypothesis

Hypothesis 4 The metric accuracyO allows to rank systems with different degrees of elas-
ticity on an ordinal scale.

• Load Profile

0m0s 2m0s 4m0s 6m0s 8m0s 10m0s 12m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es

p.
 T

im
e

 [m
s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 7.4: Evaluation of the accuracyO metric. Load profile (top), induced resource de-
mand (second graph) and measured resource supply and response times for
decreasing thresholdUp values (A: 80%, B: 60%, C: 40%, D: 30%).

82

7.3. Metric Evaluation 83

The over-provision accuracy metric is evaluated with the load profile illustrated
in Figure 7.4. The load profile starts with 30% of the maximum intensity that one
instance can handle. After one minute, the intensity changes stepwise - every four
minutes with 20% increments - to 90% load intensity. A system with a low degree of
elasticity will allocate a second resource instance when the CPU utilization increases
although it is not needed.

• Different Degrees of Elasticity
The degree of elasticity of the test system is varied by changing the thresholdUp
for the scale up rule. For decreasing values of this parameter the system tends to
provision resources to early, which leads to lower degrees of elasticity. The accuracyO
metric is evaluated for the following thresholdUp values: 80% (Configuration A), 60%
(Configuration B), 40% (Configuration C) and 30% (Configuration D).

• Results
Figure 7.4 shows the elasticity behaviors for different values of thresholdUp. It can
be seen that due to lower degrees of elasticity for decreasing thresholdUp values,
the amount of over-provisioned resources increases. This is reflected by the metric
results shown in Table 7.8. For decreasing degrees of elasticity, that means for
decreasing values of thresholdUp, the accuracyO metric increases. Thus, the accuracyO
allows to rank elastic systems on an ordinal scale as stated in Hypothesis 4.

thresholdUp [%] 80 60 40 30
accuracyU [resource units] 0 0.094 0.435 0.717

Table 7.8: Measurement results for the accuracyO metric

7.3.3 Under-provision Timeshare: timeshareU

• Hypothesis

Hypothesis 5 The metric timeshareU allows to rank systems with different degrees of
elasticity on an ordinal scale.

• Load Profile
The under-provision timeshare metric is evaluated using a simple step load profile,
illustrated in Figure 7.5. The load profile starts with a constant load intensity ilow
which can easily handled with one resource instance. After one minute, the intensity
changes to a higher load intensity ihigh for which two resource instances are necessary
for four minutes. The load profile is calibrated in a way, that intensity ilow is half of
the maximum intensity the test system can withstand using one resource and ilow is
175% of the maximum intensity the test system can withstand using one resource.
Thus, with the correct amount of resources the system should be able to handle the
load easily, for any point in time.

• Different Degrees of Elasticity
For the evaluation, the degree of elasticity of the test system is changed by modifying
the condTrueDurUp parameter. With increasing values for this parameter the system
reacts delayed, which leads to lower degrees of elasticity. The accuracyU metric
is evaluated for the following condTrueDurUp values: 5s (Configuration A), 10s
(Configuration B), 30s (Configuration C) and 60s (Configuration D).

• Results
Figure 7.5 shows the elasticity behaviors for different values of the condTrueDurUp

83

84 7. Evaluation

0m0s 2m0s 4m0s 6m0s 8m0s 10m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

D
ur

at
io

n
[m

s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 7.5: Evaluation of the timeshareU metric. Load profile (top), induced resource
demand (second graph) and measured resource supply and response times
for increasing condTrueDurUp values (A: 5s, B: 10s, C: 30s, D: 60s).

parameter. It can be seen that due to lower degrees of elasticity for increasing
condTrueDurUp values, the timeshare where the system under-provisions increases.
This is reflected by the metric results shown in Table 7.9. For decreasing degrees
of elasticity, that means for increasing condTrueDurUp values, the timeshareU metric
increases. Thus, the timeshareU allows to rank elastic systems on an ordinal scale as
stated in Hypothesis 5.

condTrueDurUp [s] 5 10 30 60
timeshareU [%] 25.1 26.0 29.3 34.3

Table 7.9: Measurement results for the timeshareU metric

7.3.4 Timeshare Ratio: timeshareO

• Hypothesis

Hypothesis 6 The metric timeshareO allows to rank systems with different degrees of
elasticity on an ordinal scale.

84

7.3. Metric Evaluation 85

• Load Profile

0m0s 2m0s 4m0s 6m0s 8m0s 10m0s
Time

0

100

200
A

rr
iv

al
 R

at
e

[1
/s

]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es

p.
 T

im
e

[m
s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 7.6: Evaluation of the timeshareO metric. Load profile (top), induced resource de-
mand (second graph) and measured resource supply and response times for
increasing condTrueDurDown values (A: 5s, B: 10s, C: 30s, D: 60s).

Similar to the evaluation of the under-provision timeshare, the over-provision time-
share metric is evaluated using a simple step load profile, illustrated in Figure 7.6.
The load profile starts with a constant load intensity ihigh which can easily be han-
dled with two resource instances. After one minute, the intensity changes to a lower
load intensity ilow for which just one resource instance is enough for four minutes.
The load profile is calibrated in a way, that intensity ihigh is 175% of the maximum
intensity the test system can withstand using one resource and ilow is 50% of the
maximum intensity the test system can withstand using one resource. Thus, with
the correct amount of resources the system should be able to handle the load easily,
for any point in time.

• Different Degrees of Elasticity
The degree of elasticity of the test system is changed the same way as it was done
for the under-provisioning timeshare evaluation.

• Results
Figure 7.6 shows the elasticity behaviors for different values of the condTrueDurDown

85

86 7. Evaluation

parameter. It can be seen that due to lower degrees of elasticity for increas-
ing condTrueDurDown values, the timeshare where the system over-provisions in-
creases. This is reflected by the metric results shown in Table 7.10. For decreas-
ing degrees of elasticity, that means for increasing condTrueDurDown values, the
timeshareO metric increases. Thus, the timeshareO allows to rank elastic systems on
an ordinal scale as stated in Hypothesis 6.

condTrueDurDown[s] 5 10 30 60
timeshareO [%] 14.3 15.0 18.4 23.3

Table 7.10: Measurement results for the timeshareO metric

7.3.5 Jitter Metric: jitter

The jitter metric evaluates whether a system exhibits imperfect elasticity because it makes
to many or to few adaptations of the resource supply. In both cases the absolute value
of the metric increases for decreasing degrees of elasticity. However, for the first case the
sign of the metric should be positive in contrast for the letter case negative. To facilitate
the evaluation, both behaviors are evaluated separately.

7.3.5.1 Positive Jitter Evaluation - Superfluous Adaptations

• Hypothesis

Hypothesis 7a The metric jitter allows to rank systems with - due to superfluous resource
adaptations - different degrees of elasticity on an ordinal scale.

• Load Profile
The load profile used for the first evaluation step is a constant load profile illustrated
in Figure 7.7. The load profile is calibrated in a way that the intensity is 90% of
the maximum intensity for one resource. Since the resource is utilized at a high
level, rule based elasticity mechanisms tend allocate another instance, to be able
to handle a possibly increasing load. As soon as the resource is provisioned the
average resource utilization drops and - depending on the configuration - elasticity
mechanisms may deallocate the superfluous resource again. Thus, this load profile
tries to provoke unnecessary allocations and deallocations. A system with high
degree of elasticity will not do unnecessary de-/allocations or will just do a few of
them.

• Different Degrees of Elasticity
For the evaluation, the thresholds [thresholdDown, thresholdUp] are set to: [40,50].
With these thresholds the elasticity mechanism tends to allocate and deallocate
a second resource. Furthermore, the quietTime is set to 30s, to allow faster re-
actions. The degree of elasticity of the test system is changed by modifying the
condTrueDurUp/Down parameter for both, the scale up and the scale down rule. For
decreasing values of these parameters, the system reacts overly responsive, which
leads to lower degrees of elasticity (to many unnecessary allocations). The jitter
metric is evaluated for the following condTrueDurUp/Down values: 120s (Configu-
ration A), 60s (Configuration B), 30s (Configuration Cc), 5s (Configuration D).

• Results
Figure 7.7 shows the elasticity behaviors for different values of the condTrueDur-
Up/Down parameter. It can be seen that due to decreasing degrees of elasticity

86

7.3. Metric Evaluation 87

0m0s 5m0s 10m0s 15m0s 20m0s 25m0s 30m0s
Time

0

50

100

150

200

Ar
riv

al
 R

at
e

[1
/s

]

1

2

1

2

1

2

R
es

ou
rc

e
Am

ou
nt

1
2
3

0

1.000

0

1.000

R
es

p.
Ti

m
e

[m
s]

0

1.000

load intensity demand supply Config A supply Config B supply Config C

waiting time service time Config A service time Config B service time Config C

Figure 7.7: Evaluation of the jitter metric for superfluous adaptations. Load profile (top),
induced resource demand (second graph) and measured resource supply and
response times for decreasing condTrueDurUp/Down values (A: 120s, B: 60s, C:
30s, D: 5s).

for decreasing condTrueDurUp/Down values, the amount of unnecessary resource
de-/allocation events increases. This is reflected by the metric results shown in
Table 7.11. For decreasing degrees of elasticity elasticity, that means for decreasing
condTrueDur values, the jitter metric increases. Thus, the jitter metric allows to rank
elastic systems whose imperfect elasticity is due to superfluous adaptations on an
ordinal scale as stated in Hypothesis 7a.

• Remarks
When the smallest condTrueDurUp/Down is used (Configuration D), the system
provisions a third resource in some cases although maxInstances is set to two. One
explanation for this behavior is, that although a second instance is started before, the
quiettime plus the condTrueDurUp was not enough time to allow the system to take
advantage of the second instance and therefore a substitute instance is allocated.

87

88 7. Evaluation

condTrueDurUp/Down [s] 120 60 30 5
jitter

[#adap.
min

]
0.233 0.300 0.333 0.433

Table 7.11: Measurement results for the jitter metric (positive jitter).

Shortly after the creation of the third instance the system takes advantage of the
second instance which results in a fast deallocation. This behavior of creating
superfluous instances is reflected by the jitter metric.

7.3.5.2 Negative Jitter Evaluation - Missing Adaptations

• Hypothesis

Hypothesis 7b The metric jitter allows to rank systems with - due to missing adaptations
- different elasticity on an ordinal scale.

• Load Profile
The load profile used for the second evaluation step is illustrated in Figure 7.8. The
load profile changes between two intensities ilow and ihigh in a repeated manner.
Hereby, the ∆t time for which the intensity is constant is seven minutes at the
beginning. After every two intensity changes ∆t is decrease by 15%. Like in the
load profile for the timeshare evaluation, the load profile is calibrated in a way,
that intensity ilow is half of the maximum intensity the test system can withstand
using one resource and ihigh is 175% of the maximum intensity the test system can
withstand using one resource. Thus, with the correct amount of resources the system
should be able to handle the load easily, for any point in time. A system with a
high degree of elasticity will be able to follow all the demand changes. In contrast,
a system with a low degree of elasticity will only be able to follow the first few
demand changes.

• Different Degrees of Elasticity
As in the first jitter evaluation, the quietTime is set to 30s, to allow faster reac-
tions. The degree of elasticity of the test system is changed by modifying the
condTrueDurUp/Down parameter for both, the scale up rule and the scale down
rule. For increasing values of this parameter, the system reacts delayed leading
to decreasing degrees of elasticity. The jitter metric is evaluated for the following
values: 5s (Configuration A), 30s (Configuration B) 60s (Configuration C) and 120s
(Configuration D).

• Results

condTrueDurUp/Down [s] 5 30 60 120
jitter [#adap.

min] -0.093 -0.107 -0.107 -0.133

Table 7.12: Measurement results for the jitter metric (negative jitter)

Figure 7.8 shows the elasticity behaviors for different values of the condTrueDur-
Up/Down parameter. It can be seen that due to decreasing degrees of elasticity for
increasing condTrueDurUp/Down values, the number of demand changes which the
system is able to follow decreases. This is reflected by the metric results shown in Ta-
ble 7.12. For decreasing degrees of elasticity, that means for increasing condTrueDur-
Up/Down, the absolute value of the jitter metric increases. Thus, the jitter metric
allows to rank elastic systems whose imperfect elasticity is due to missing adapta-
tions on an ordinal scale as stated in Hypothesis 7b.

88

7.3. Metric Evaluation 89

0m0s 15m0s 30m0s 45m0s 1h0m0s 1h15m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es
p.
Ti
m
e

[m
s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 7.8: Evaluation of the jitter metric for missing adaptations. Load profile (top),
induced resource demand (second graph) and measured resource supply and
response times for increasing condTrueDurUp/Down values (A: 5s, B: 30s, C:
60s, D: 120s).

• Remarks
Although the time between two adaptations is smaller for the Configuration B than
for Configuration C, both systems do the same amount of adaptations within the
measurement period. Thus, the elasticity with respect to missing adaptations is
equal for both measurements. This is reflected by the jitter metric.

7.3.6 Discussion

The evaluation of the elasticity metrics accuracyU, accuracyO, timeshareU, timeshareO and
jitter showed that these metrics allow to rank resource elastic systems on an ordinal scale.
Comparing the evaluation of different metrics, it can be seen that some elasticity parame-
ters have different effects on different elasticity aspects. For example, increasing the values
for the condTrueDurUp/Down parameter values leads to lower degrees of elasticity in sit-
uations where the demand changes over time. Therefore, timeshareU, timeshareO increase
with increasing condTrueDurUp/Down parameter values in the evaluation experiments.
In contrast, the negative jitter evaluation shows that increasing the condTrueDurUp/Down
parameter values can lead to a higher degree of elasticity in cases where the demand does
not change over time, because the amount of superfluous allocations is reduced. Thus,

89

90 7. Evaluation

these experiments demonstrated that a configuration of a rule based elasticity mechanism
which is superior to other configurations for a given load profile must not be the best
configuration for other load profiles.

7.4 Case Study with a Realistic Load Profile

The preceding section evaluated the elasticity metrics with very simple artificial load
profiles and only two scaling stages. This section demonstrates the benchmarking capa-
bilities for a realistic load profile and a realistic number of resources on a private cloud as
well as on a public cloud.

7.4.1 Private Cloud - CloudStack

This subsection demonstrates the benchmarking capabilities for different configurations
of the private cloud test system described in Section 7.1.1.

7.4.1.1 Load Profile

The load profile used for the case study is illustrated in Figure 7.9(c). It is derived from a
real intensity trace that has previously been used in [vK14, HHKA14]. The trace features
the amount of CICS, IMS, and OPEN transactions on an IBM z196 Mainframe during
February 2011 with a quarter-hourly resolution.

In order to obtain a representative load profile for a work day, the LIMBO toolkit has been
used to extract a DLIM model for the first five days of the trace with the Simple Model
Instance Extraction Process [vK14]. The result is illustrated in Figure 7.9(a). An evaluation
of the model extraction process for this trace can be found in [vK14]. In a second step, the
number of seasonal periods has been set to one. Thus, the model represents only one day
but still contains data from five days. Additionally, the modeled peaks are removed from
the DLIM model (Figure 7.9(b)).

To reduce the experimentation time the load profile has been compacted from 24 hours
to 6 hours. Thus, the load intensity within the model increases by a factor of four
(Figure 7.9(c)).

7.4.1.2 Calibration

This case study showcases the elasticity evaluation of the test system (compare Section 7.1)
using up to ten VMs as resources. Thus, the System Analysis must be conducted for ten
resources. The evaluation in Section 7.2.2 showed that the linearity assumption for the
test system is roughly true for up to ten resources. However, the length of steps within
the intensity demand curve varied to some extend. To be able to account better for
this irregular scaling behavior, the Detailed System Analysis has been used. Figure 7.10
illustrates the derived mapping function demand(intensity). Apart from some very small
deviations, the result is equal to the results derived within the evaluation of the linearity
assumption (Section 7.2.2, Table 7.5). Within the adjustment step, the load profile is
adjusted to require ten the resources for the profiles maximum intensity. The resulting
adjusted load profile is shown in Figure 7.9(d).

The load intensity within this load profile varies between two and 339 requests per second.
The timestamp file created within the measurement process contains about 2.7 million
timestamps.

90

7.4. Case Study with a Realistic Load Profile 91

IBM_Transactions_weekdays_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

IBM_Transactions_weekdays_S-MIEP_Trendlength1_Noise_ignored IBM_Transactions_weekdays_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525

time

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000
A

rr
iv

a
l
R

a
te

(a) Original and modeled intensity [requests / 15 min] trace [vK14]

load intensity

-1h0m0s 5h0m0s 11h0m0s 17h0m0s 23h0m0s
Time

0

25

50

A
rr

iv
al

 R
at

e
[1

/s
]

(b) Load profile [requests / sec.] for a single day without peaks

load intensity

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

(c) Compacted load profile [requests / sec.]: 24h -> 6h

load intensity

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

100

200

300

A
rr

iv
al

 R
at

e
[1

/s
]

(d) Compacted load profile [requests / sec.] adjusted for the test system

Figure 7.9: Load profile for one day derived from a real five day transaction trace

7.4.1.3 Elasticity Rule Parameter Configurations

The resource elasticity of the test system is evaluated for different elasticity rule parameter
settings:

Configuration A serves as a baseline configuration for elasticity comparisons. Due to a big

91

92 7. Evaluation

mapping function

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
Load Intensity

0
1
2
3
4
5
6
7
8
9

10

R
es

ou
rc

e
A

m
ou

nt

Figure 7.10: Mapping function demand(intensity) derived with the Detailed System Analysis

Config. quietTime
condTrue-

DurUp
condTrue-
DurDown

thresh-
oldUp

thresh-
oldDown

A 240s 120s 120s 90% 10%
B 240s 30s 30s 90% 50%
C 240s 30s 30s 90% 80%
D 120s 30s 30s 65% 50%
E 60s 30s 30s 65% 40%
F 120s 30s 30s 65% 10%

Table 7.13: Different elasticity parameter configurations for CloudStack

quietTime and high condTrueDurUp/Down values, it reacts rather sluggish. The high/low
thresholdUp/Down values provoke bad accuracy, additionally.

Configuration B uses smaller condTrueDurUp/Down values and an increased thresholdDown
in order to induce earlier scale downs.

Configuration C uses a further increased thresholdDown in order to induce even earlier
scale downs and therefore better accuracy for over-provisioning cases.

Configuration D provokes earlier scale ups by using an decreased quietTime and a de-
creased thresholdUp.

Configuration E tries to provoke even earlier scale ups and at the same time later scale
down times by using a further decreased quietTime and a decreased thresholdUp value.

Configuration F induces the same scale up behavior as Configuration D, but very late
scale downs similar to Configuration A.

7.4.1.4 Elasticity Measurements

Visualization of Demand, Supply, and Response Time

The Figures 7.11 and 7.12 show the resource demand curve and the measured resource
supply curve for the six different elasticity rule Configurations A-F. These curves give a
visual impression of the different elastic behaviors. Under each resource allocation graph
a response time graph shows how the response times vary during the measurement runs.
It allows to estimate the amount of SLO violations visually.

92

7.4. Case Study with a Realistic Load Profile 93

demand supply waiting time service time

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

(a) Configuration A: quietTime: 240s, condTrueDurUp/Down: 120s, thresholdUp: 90%, thresholdDown: 10%
Baseline Configuration: Slow resource increase, very slow resource decrease

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(b) Configuration B: quietTime: 240s, condTrueDurUp/Down: 30s, thresholdUp: 90%, thresholdDown: 50%
Slow resource increase, faster resource decrease than Configuration A

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(c) Configuration C: quietTime: 240s, condTrueDurUp/Down: 30s, thresholdUp: 90%, thresholdDown: 80%
Slow resource increase, faster resource decrease than Configuration B

Figure 7.11: Elastic behavior for different elasticity rule parameter settings on
CloudStack (1)

93

94 7. Evaluation

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(a) Configuration D: quietTime: 120s, condTrueDurUp/Down: 30s, thresholdUp: 65%, thresholdDown: 50%
Faster resource increase than Configurations A-C, reasonable resource decrease

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(b) Configuration E: quietTime: 60s, condTrueDurUp/Down: 30s, thresholdUp: 65%, thresholdDown: 40%
Faster resource increase than Configurations A-D, reasonable resource decrease, few SLO violations

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(c) Configuration F: quietTime: 120s, condTrueDurUp/Down: 30s, thresholdUp: 65%, thresholdDown: 10%
Resource increase as in Configuration D, slow resource decrease.

Figure 7.12: Elastic behavior for different elasticity rule parameter settings on
CloudStack (2)

94

7.4. Case Study with a Realistic Load Profile 95

Metric Result Discussion

Table 7.14 summarizes the metric results for the different elasticity rule parameter config-
urations. The metric values allow to quantify the different elastic behaviors.

Parameter
Configuration

accuracyO
[res. units]

accuracyU
[res. units]

timeshareO
[%]

timeshareU
[%]

jitter[#adap.
min

]
A 2.425 0.264 60.1 11.7 -0.067
B 0.664 0.224 40.6 10.6 -0.056
C 0.219 0.383 15.4 23.4 0.006
D 0.815 0.080 48.7 6.5 -0.028
E 1.184 0.006 56.0 0.6 -0.061
F 2.423 0.067 66.1 4.8 -0.067

Table 7.14: Metric results for the evaluated configurations on CloudStack

Due to a decreased condTrueDurUp/Down parameter value for Configuration B compared
to Configuration A, the timeshareU and the accuracyU metrics decrease (improve) slightly.
The increased thresholdDown for Configuration B has a more significant impact: The
CSUT scales down earlier and as a result the timeshareO and especially the accuracyO
metric improve considerably.

Configuration C leads, compared to Configurations A and B, to faster scale downs. Thus,
the accuracyO and timeshareO metrics improve further. Since many of the scale downs
occur to early, the accuracyU and timeshareU metrics get worse. In contrast to the other
configurations, the jitter metric is positive for Configuration C. This means the elasticity
parameters settings result in unnecessary de-/allocations within the measurement run.
The other configurations lead to an elastic behavior with less frequent supply adaptations.

The Configurations D and E make the CSUT scale up earlier than the previous configu-
rations. At the same time scale downs occur later than for Configurations B and C. This
behavior with very little under-provisioning is reflected by very low (good) accuracyU
and timeshareU metric values. Otherwise, the over-provisioning occurs more often and to
a greater extend and result in a worse accuracyO and timeshareO metric.

Submission Accuracy Evaluation

Parameter Percentile for submission delay [ms]
Configuration 95% 98%

A 1 2
B 1 2
C 1 3
D 1 1
E 1 2
F 1 1

Table 7.15: Percentiles for the delay between scheduled and real request submission

A fair elasticity comparison requires that the resource demand triggered on the test system
is the same for every measurement run. This means requests should be send on time as
defined by the timestamp file. Table 7.15 illustrates the submission accuracy for the five
measurement runs. It can be seen that up to the 98%-percentile the delay between the
scheduled and the real request submission is less than or equal to three milliseconds.

95

96 7. Evaluation

7.4.1.5 Aggregated Elasticity Measure

Section 5.4 explained how a group of different systems or configurations can be compared
with the help of an elasticity measure that aggregates the elasticity submetrics. This
subsection demonstrates the application of an speed up based aggregation as described
in Section 5.4.2.

As a baseline, Configuration A is used. With the help of Formula 5.1 the four metrics
accuracyO, accuracyU, timeshareO and timeshareu are aggregated to an aggregated elastic
speedup measure. The elastic speedup metric depends on the weights waccU , waccO , wtsU ,
wtsO , wacc and wts, which are all set to 0.5 in a first evaluation step. This results in an
equal weighting of the aspects accuracy and timing for both, under-provisioning and
over-provisioning scenarios. The resulting elastic speedup for Configurations A-F as well
as some intermediate results are illustrated in Table 7.16.

Parameter
Configuration

accuracy
weighted
[res. units]

timeshare
weighted

[%]

accuracy
speedup

timeshare
speedup

elastic
speedup

SLO
violations

[%]

C 0.301 19.4 4.467 1.851 2.875 41.2
B 0.444 25.6 3.028 1.402 2.061 17.8
D 0.448 27.6 3.004 1.301 1.977 8.4
E 0.595 28.3 2.260 1.269 1.693 0.7
F 1.245 35.5 1.080 1.013 1.046 7.6
A 1.345 35.9 1.000 1.000 1.000 20.3

Table 7.16: Compute the elastic speedup (Formula 5.1) for weights:
waccU = waccO = wtsU = wtsO = wacc = wts = 0.5

According to the aggregated metric, Configuration C offers the best elasticity. It is followed
by Configurations B, D, E, F, and A. Additionally to the metric results, Table 7.16 contains
a column named SLO violations. This column measures the share of requests that could
not be processed successfully or have a response time of more than 500ms. With the used
SLO defined in Section 7.1.3, for a system with perfect elasticity, the share of those requests
should be at most 5%. Although Configuration C offers the best elasticity according to
the aggregated metric, it also has highest share of long response times. This fact seems
counterintuitive first, but can be explained by the characteristics of the elastic behavior:
Although the test system is able to reduce the amount of over-provisioned resources as
well as the timeshare of over-provisioning significantly by using Configuration C, it also
under-provisions more resources and for a higher timeshare compared to using other
configurations. To some extend the under-provisioning is due to the reactive nature of a
rule based system. A combination with proactive approaches may reduce the amount of
under-provisioning as well as the SLO violations share.

As discussed in Subsection 5.4.2.1, the weights can be used to account for different
preferences when comparing the elasticity of different CSUTs. Table 7.17 shows the
results for the aggregated elasticity measure elastic speedup when using the weights
waccU = 0.2,waccO = 0.8,wtsU = 0.2,wtsO = 0.8,wacc = 0.2,wts = 0.8. These weights increase
the importance of the accuracyO metric compared to the accuracyU metric. At the same
time, they increase the importance of the timeshareU metric compared to the timeshareO
metric. This reflects the fact that additional costs due to over-provisioning mainly depend
on the amount of over-provisioned resources. The costs for under-provisioning in con-
trast, mainly depend on the timeshare within that the number of provided resources is

96

7.4. Case Study with a Realistic Load Profile 97

Parameter
Configuration

accuracy
weighted
[res. units]

timeshare
weighted

[%]

accuracy
speedup

timeshare
speedup

elastic
speedup

SLO
violations

[%]

E 0.948 11.7 2.101 1.830 1.882 0.7
D 0.668 14.9 2.983 1.431 1.658 8.4
B 0.576 16.6 3.460 1.288 1.569 17.8
C 0.252 21.8 7.914 0.981 1.489 41.2
F 1.952 17.1 1.021 1.253 1.203 7.6
A 1.993 21.4 1.000 1.000 1.000 20.3

Table 7.17: Compute the elastic speedup (Formula 5.1) for weights:
waccU = 0.2,waccO = 0.8,wtsU = 0.8,wtsO = 0.2,wacc = 0.2,wts = 0.8

not sufficient. Furthermore, the weights reflect that the aggregated timeshare metric (that
mainly penalties under-provisioning) is more important than the aggregated accuracy
metric (that mainly penalties over-provisioning).

According to these weights, Configuration E provides the best elasticity, followed by
Configurations D, B, C, F and A. Now, the configuration with the best elasticity also offers
the fewest share of requests with overly long response times (column SLO violations). Still
there is no linear correlation between elasticity and the share of requests with response
times exceeding 500ms, but this is due to the still wanted influence of over-provisioning.

7.4.1.6 Different Levels of Efficiency of Underlying Resources

The load profile adjustment becomes particularly important when systems are compared
that use resources with different levels of efficiency. This subsection demonstrates the
impact of using or not using the load profile adjustment. In order to compare resources
with different levels of efficiency, different service offerings are used.

The preceding six hour experiments used a service offering - Offering A - that assigns one
virtual CPU running at 2200 MHz to a VM. The following additional experiments use
Offering B that assigns one virtual CPU running at 1024 MHz to a VM and Offering D
that assigns two virtual CPU running at 2200 MHz to a VM.

Before running measurements, the test system is configured to use service Offering B or
Offering D respectively. To allow calibrating the benchmark, the Detailed System Analysis
is used to retrieve the mapping function demand(intensity) for Offering B and D.

Figure 7.13(a) shows how the test system behaves when it is configured to use Offering
B, but the load profile is adjusted for Offering A. Since Offering D uses a more powerful
VMs, the system requires less instances and the elastic behavior looks better compared to
using Offering A (Figure 7.12(c)).

In Figure 7.13(b), the test system is exposed to the calibrated load profile that was correctly
adjusted for service Offering B. Although the used resources are more efficient for Offering
B compared to Offering A, the demand changes are now induced at the same points in
time. Comparing the elastic behavior when Offering A is used to the behavior when
Offering F is used is easier now.

Figure 7.14 demonstrates a similar effect for the use of the less powerful Offering D.
When the load profile is not adjusted according to the analysis results for Offering D
(Figure 7.14(a)), the system requires more instances and the elastic behavior looks worse
compared to using Offering A (Figure 7.12(c)).

97

98 7. Evaluation

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

100

200

300
A

rr
iv

al
 R

at
e

[1
/s

]

2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

(a) System using Offering B exposed to load intensity profile adjusted for Offering A. Demand curve is not
equal to the demand curve for Offering A (Figures 7.11,7.12)

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

250

500

A
rr

iv
al

 R
at

e
[1

/s
]

2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

(b) System using Offering B exposed to load intensity profile adjusted for Offering D. Demand curve is equal
to the demand curve for Offering A (Figures 7.11,7.12)

Figure 7.13: Not adjusting the load profile system specific leads to a elasticity behavior
that cannot be compared easily with other elasticity measurements (1).

98

7.4. Case Study with a Realistic Load Profile 99

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

100

200

300
A

rr
iv

al
 R

at
e

[1
/s

]

5

10

15

20

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

(a) System using Offering D exposed to load intensity profile adjusted for Offering A. Demand curve is not
equal to the demand curve for Offering A (Figures 7.11,7.12)

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

50

100

150

A
rr

iv
al

 R
at

e
[1

/s
]

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

(b) System using Offering D exposed to load intensity profile adjusted for Offering D. Demand curve is equal
to the demand curve for Offering A (Figures 7.11,7.12)

Figure 7.14: Not adjusting the load profile system specific leads to a elasticity behavior
that cannot be compared easily with other elasticity measurements (2).

99

100 7. Evaluation

When the load profile is correctly adjusted in contrast (Figure 7.13(b)), the same resource
demand changes are induced at the same point in time as for Offering A (Figure 7.12(c))
and for Offering B (Figure 7.14(b)).

Table 7.18 shows the different elasticity submetrics as well as the overall elastic speedup
metric for elasticity parameter Configuration F and different combinations of unadjusted
and correctly adjusted load profiles for the Offerings A, B and D. As a reference, the first
row shows the metric values for Offering A with an correctly adjusted load profile.

Parameter Config. /
Offering /

Adjusted for Off.

accuracyO
[res. units]

accuracyU
[res. units]

timeshareO
[%]

timeshareU
[%]

jitter[#adap.
min

] elastic
speedup

F / A / A 2,423 0.067 66.1 4.8 -0.067 1.046
F / B / A 1.811 0.001 63.8 0.1 -0.033 1.291
F / B / B 2.508 0.061 67.1 4.5 -0.044 1.025
F / D / A 4.190 1.154 53.5 21.0 -0.139 0.696
F / D / D 1.770 0.076 52.2 5.7 -0.067 1.344

Table 7.18: Metric results for offerings A, B & D with (white background) and without
(lightgrey background) adapted load profile. Not adapting the load profile to
the service offering shows significantly changed elasticity metrics.
Elastic speedup (Formula 5.1) for weights:
waccU = waccO = wtsU = wtsO = wacc = wts = 0.5

The second/fourth row shows the metric values for using Offering B/D, but keeping the
load profile adjusted for Offering A. The third/fifth row in contrast shows the metric
values for an correctly adjusted load profile.

When the same load profile is used for comparing the behavior for Offering A to that
for Offering B, all metrics exhibit better results for Offering B. In contrast, if the properly
adjusted load profile is used, the metrics for Offering B are almost equal to those for
Offering A.

A similar effect can be observed when comparing the results for Offering D using a load
profile adjusted for Offering A with using a load profile correctly adjusted for Offering
D. However, the deviation of the metric results between Offering A and D for correctly
adjusted load profiles are bigger than those between Offering A and B with correctly
adjusted load profiles. This indicates that CloudStack seems to be able to match the
resource demand better for the smallest service Offering D compared to the bigger service
Offerings A and B. Without adjusting the load profile the metric values would indicate
the opposite effect.

7.4.2 Public Cloud - Amazon Web Services

This subsection demonstrates how the benchmark can be used to evaluate different elas-
ticity parameter configurations of the Amazon Elastic Compute Cloud (EC2) IaaS service.
EC2 is one of the central products of Amazon’s cloud computing platform Amazon Web
Services (AWS).

7.4.2.1 Setup

The configuration of the benchmark harness stays identical to the one described in Sec-
tion 7.1.3. The next paragraphs describe the configuration of the public cloud, which is
similar to the private cloud, but has some additional configuration options.

100

7.4. Case Study with a Realistic Load Profile 101

Elasticity Mechanism

The AWS platform offers customers the option to build clouds consisting of a group (Auto
Scaling Group) of VMs and scale them horizontally according to a rule based elasticity
strategy. The elasticity mechanism can be configured by the customer and offers the same
parameters as the one offered by CloudStack. In addition, AWS allows to create rules that
trigger the concurrent de-/allocation of multiple instances. In contrast to CloudStack, the
minimum time for the condTrueDurUp/Down parameter is 60s for the AWS rules. Similar
to CloudStack, Amazon allows to configure a load balancer that distributes incoming load
to the instances in the Auto Scaling Group.

Instance Type

AWS offers various instance types that are designed to meet the specific requirements
of its customers. Besides general purpose instances, instances optimized for memory,
storage, or processing are available at different sizes. For the case study, the instance
type m1.small has been chosen. This general purpose instance type offers one virtual CPU
with a processing power equivalent to an 1.0-1.2 GHz 2007 Opteron processor and 1.7 GB
RAM.

Regions

Different Regions within which instances and load balancers can be located, allow cus-
tomers to create clouds geographically close to where they expect their customers. Since,
the load driver and benchmark node is located in europe, the region EU (Ireland) has been
chosen for the case study in order to keep the network latency small.

Health Check Parameters

AWS allows to configure the health check for the load balancer with the same pa-
rameters as CloudStack does. AWS restricts the minimum values for the parameters
healthyThreshold and unhealthyThreshold to two and the minimum value for the healthyRe-
sponseTimeout to two seconds. It is therefore not possible to use the same health check
parameters that have been used for the private cloud evaluations. The used health check
parameters for the case study on AWS are shown in Table 7.19.

Name Default Description

pingPath /?size=1 address which is queried to check the instance
health

healthyResponseTimeout 2s period of time within that a response is expected
from healthy instances

healthCheckInterval 5s time between two consecutive health checks
healthyThreshold 2 number of subsequent health checks successes

before instance is declared healthy
unhealthyThreshold 2 number of subsequent health checks failures be-

fore instance is declared unhealthy

Table 7.19: AWS health check parameters

7.4.2.2 Load Profile

In order to allow comparability, the same load profile as for the private cloud case study
has been used. Within the calibration, it is adjusted according to the load processing
capabilities of the underlying resources.

101

102 7. Evaluation

7.4.2.3 Calibration

As for the private cloud case study, the public AWS cloud is configured to use ten resources
at maximum. The cloud is analyzed using the Detailed System Analysis. In order to
evaluate how reproducible the analysis is for a public cloud, the analysis is done eight
times. Table 7.20 shows the analysis results.

used
resources

max intensity
(averaged)

[req./sec.]

max deviation
from averaged

intensity [%]

deviation of the
linearity

assumption [%]

1 70.9 4.1
2 142.8 3.3 -0.7
3 215.1 2.4 -1.16
4 287.6 4.4 -1.43
5 360.4 4.3 -1.66
6 433.8 2.0 -1.96
7 599.6 2.5 -0.70
8 560.8 5.8 1.11
9 595.7 6.8 7.08

10 690.3 6.8 2.68

Table 7.20: Detailed System Analysis results for AWS Offering m1.small

The second column shows the maximum intensity that the system could withstand with-
out violating the SLO for one up to ten resources. The presented results are averaged
results for a total of eight measurements. The third column contains the maximum de-
viation from the averaged result that was observed during the measurements. It can be
seen that the deviation is below 10% but tends to increase with the number of resources.
The third column shows the deviation of the linearity assumption from the averaged
intensities for using two resources up to using ten resources. The linearity assumption
presumes that the resource demand is increasing linearly with the load intensity. Except
for nine resources the deviation from the linearity assumption is always below 3%. Since
the analysis results deviate up to 6.8% when nine resources are used, it can be assumed
that the increased deviation from the linearity assumption is mainly due to measurement
inaccuracy.

The load profile is therefore calibrated with a mapping function demand(intensity) that
assumes a maximum load intensity of 71 requests per second for one resource and a
linearly increased intensity for two or more resources. The load intensity within the
calibrated load profile varies between five and 710 requests per second. The timestamp
file created within the measurement process contains about 5.6 million timestamps.

7.4.2.4 Elasticity Rule Parameter Configurations

The resource elasticity of the AWS cloud is evaluated for elasticity rule parameter settings
illustrated in Table 7.21.

The two new parameters instAdd and instRem define the number of instances that are
triggered to be allocated or respectively deallocated concurrently by the corresponding
elasticity rule.

Configuration G uses a small thresholdDown parameter. This leads to late scaled downs
and induces a scaling behavior with a significant amount of over-provisioning.

102

7.4. Case Study with a Realistic Load Profile 103

Config.
quiet-
Time

condTrue-
DurUp

condTrue-
DurDown

thresh-
oldUp

thresh-
oldDown

instAdd instRem

G 120s 60s 60s 50% 30% 1 1
H 120s 60s 60s 65% 50% 1 1
I 60s 60s 60s 65% 40% 1 1
J 60s 60s 60s 80% 50% 1 1
K 60s 60s 60s 80% 50% 3 1

Table 7.21: Different elasticity parameter configurations for AWS

Configuration H is very similar to Configuration D used for CloudStack. Compared to
Configuration G, it induces earlier resource increases but later resource decreases.

Configuration I is very similar to Configuration E used for CloudStack. A smaller quietTime
induces faster reactions to demand changes compared to Configurations G and H.

Configuration J tries to provoke late scale ups by using a higher thresholdUp compared to
Configurations G-I.

Configuration K triggers the allocation of three instances for every scale up and tries to
compensate the high thresholdUp this way.

7.4.2.5 Elasticity Measurements

Visualization of Demand, Supply and Response Time

The Figures 7.15 and 7.16 show the resource demand curve and the measured resource
supply curve for the five different elasticity rule configurations G-K. These curves give a
visual impression of the different elastic behaviors. Under each resource allocation graph
a response time graph shows how the response times vary during the measurement runs.
It allows to estimate the amount of SLO violations visually.

The response time graphs show higher and more variable response times for AWS com-
pared to CloudStack. Possible reasons are a higher performance variability on the public
cloud as well as network delays.

While comparing the graphs for the Configurations G-K, the graph for Configuration J
stands out immediately. The resource supply jumps between one and zero resources very
often instead of scaling up to ten resources. Since the thresholdUp parameter was set to
80% and the condTrueDurUp parameter was set to 60s for this configuration, the observed
behavior means that the average CPU utilization was greater than 80% for more than one
minute only in a few times. One explanation for this observation is the health check of
the AWS load balancer: Whenever an instance is marked unhealthy because it does not
respond to requests fast enough, no requests are forwarded to the instance anymore until
the instance is able to answer requests fast enough again. During this period of time,
the CPU utilization of the instance is low and thus the average CPU utilization decreases
below 80% and as result the elasticity mechanism does not trigger a scale up.

Metric Result Discussion

Table 7.22 extends Table 7.14 and shows the metric results for both, the configurations
evaluated on the private CloudStack cloud and those evaluated on the AWS cloud.

Among the AWS Configurations G-K, Configuration G uses the lowest thresholdDown
value. As a result, Configuration G has the worst accuracyO metric within this group.

103

104 7. Evaluation

load intensity demand supply waiting time service time

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

250

500
A

rr
iv

al
 R

at
e

[1
/s

]

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

(a) Configuration G: quietTime: 120s, condTrueDurUp/Down: 60s, thresholdUp: 50%, thresholdDown: 30%,
instAdd/Rem: 1
Late resource decreases, due to small thresholdDown

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

250

500

A
rr

iv
al

 R
at

e
[1

/s
]

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

(b) Configuration H: quietTime: 120s, condTrueDurUp/Down: 60s, thresholdUp: 65%, thresholdDown: 50%,
instAdd/Rem: 1
Later resource increase, earlier resource decrease compared to Configuration G, similar parameters as in
Configuration D

Figure 7.15: Elastic behavior for different elasticity rule parameter settings on AWS (1)

104

7.4. Case Study with a Realistic Load Profile 105

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(a) Configuration I: quietTime: 60s, condTrueDurUp/Down: 60s, thresholdUp: 65%, thresholdDown: 40%,
instAdd/Rem: 1
Faster resource in- and decrease compared to Configurations G & H, similar parameters as in Configuration E

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(b) Configuration J: quietTime: 60s, condTrueDurUp/Down: 60s, thresholdUp: 80%, thresholdDown: 50%,
instAdd/Rem: 1
High scale up threshold, scale up rule is not triggered as expected, lots of under-provisioning

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

(c) Configuration K: quietTime: 120s, condTrueDurUp/Down: 60s, thresholdUp: 80%, thresholdDown: 50%,
instAdd: 3, instRem: 1
Scale up adds three instances at a time, almost no SLO violations

Figure 7.16: Elastic behavior for different elasticity rule parameter settings on AWS (2)
105

106 7. Evaluation

Configuration I uses the second lowest thresholdDown value which also leads to the second
worst accuracyO metric.

Parameter
Configuration

accuracyO
[res. units]

accuracyU
[res. units]

timeshareO
[%]

timeshareU
[%]

jitter[#adap.
min

]
A 2.425 0.264 60.1 11.7 -0.067
B 0.664 0.224 40.6 10.6 -0.056
C 0.219 0.383 15.4 23.4 0.006
D 0.815 0.080 48.7 6.5 -0.028
E 1.184 0.006 56.0 0.6 -0.061
F 2.423 0.067 66.1 4.8 -0.067

G 1.985 0.137 60.1 6.4 -0.025
H 1.053 0.180 51.9 8.1 -0.033
I 1.442 0.049 57.6 4.7 -0.017
J 0.049 2.984 3.9 57.5 0.644
K 1.340 0.019 61.6 1.4 0.000

Table 7.22: Metric results for all evaluated configurations on CloudStack (A-F)
and on AWS (G-K)

Configuration H scales up later and down earlier than Configuration G. This behavior
leads to slightly worse accuracyU and timeshareU metrics and a significantly improved
accuracyO metric for Configuration G. The timeshareO metric improves slightly, too.

Due to a decreased quietTime for Configuration I compared to Configurations G and H,
the AWS cloud can scale up resources faster and therefore improve the accuracyU and
the timeshareU metric. An thresholdDown value between those of Configurations G and
H leads for Configuration I to accuracyO and timeshareO metrics values better than for
Configuration G but worse than for Configuration H.

The bad accuracyU metric for Configuration J is a result of the massive under-provisioning
that occurs during the measurement period. The frequent jumps between a resource
supply of one and zero resources is reflected in a comparably high jitter metric.

The last Configuration K exhibits very good results for the accuracyU and timeshareU
metrics. These are a result of the large scale ups that can compensate sharp demand
increases very well. However, those large scale ups are not always appropriate and lead
to unnecessary over-provisioning in some cases. Therefore, the accuracyO and timeshareO
metrics are worse than for Configuration H, although both have a similar scale down
behavior. At the beginning and at the end of the measurement period, the test system
shows superfluous adaptations when Configuration K is used. In the middle section in
contrast, the system uses ten resources for a long period of time and does not follow
the resource demand adaptations. Since the superfluous and the missing adaptations
of the resource supply compensate each other, the jitter metric evaluates to zero. This
compensation of superfluous and missing supply adaptations is unwanted and the jitter
metric should therefore be improved as part of future work.

7.4.2.6 Aggregated Elasticity Measure

The Tables 7.23 and 7.24 show the parameter configurations for CloudStack and AWS
ordered by the elastic speedup metric that aggregates the elasticity submetrics according to
Formula 5.1.

106

7.4. Case Study with a Realistic Load Profile 107

Parameter
Configuration

accuracy
weighted
[res. units]

timeshare
weighted

[%]

accuracy
speedup

timeshare
speedup

elastic
speedup

SLO
violations

[%]

C 0.301 19.4 4.467 1.851 2.875 41.2
B 0.444 25.6 3.028 1.402 2.061 17.8
D 0.448 27.6 3.004 1.301 1.977 8.4
E 0.595 28.3 2.260 1.269 1.693 0.7
H 0.617 30.0 2.181 1.197 1.615 9.1
K 0.680 31.5 1.979 1.140 1.502 2.5
I 0.746 31.2 1.803 1.152 1.442 5.0
G 1.061 33.3 1.267 1.080 1.170 7.8
F 1.245 35.5 1.080 1.013 1.046 7.6
J 1.517 30.7 0.887 1.169 1.018 93.2
A 1.345 35.9 1.000 1.000 1.000 20.3

Table 7.23: Elastic speedup (Formula 5.1) for all configurations and equal weights:
waccU = waccO = wtsU = wtsO = wacc = wts = 0.5

Its notable that Configuration J, which does not scale up as expected, has still a slightly
better elastic speedup metric than the baseline Configuration A when the accuracy and
timing metrics are weighted equally for both, over-provisioning and under-provisioning
scenarios (Table 7.23). This is due to the fact that for Configuration J the bad accuracyU
metric is compensated by a good accuracyO metric.

The weights used in Table 7.24 stress the importance of a good timeshareU metric. There-
fore, Configuration J is ranked at the last position in Table 7.24. Its notable that Config-
uration K, which scales up three resources at a time, is ranked at position three. This
indicates that triggering the allocation of several instances at a time can compensate a
slow reaction to fast demand changes quite well.

7.4.3 Discussion

This section used a realistic load profile to evaluate different elasticity rule parameter con-
figurations on a private and a public cloud. The different elasticity metrics have been ag-
gregated to a single elasticity measure. Hereby, the influence of different preferences that
result in different weights for aggregating the metrics, was demonstrated. Furthermore,
the importance of adjusting load profiles according to the load processing capabilities of a
system was demonstrated. Additionally, the usage of realistic load profiles showed addi-
tionally the difficulty of configuring elasticity mechanisms that use a rule based elasticity
strategy and do not or at least seldom violate SLOs without over-provisioning resources
most over the time.

107

108 7. Evaluation

Parameter
Configuration

accuracy
weighted
[res. units]

timeshare
weighted

[%]

accuracy
speedup

timeshare
speedup

elastic
speedup

SLO
violations

[%]

E 0.948 11.7 2.101 1.830 1.882 0.7
D 0.668 14.9 2.983 1.431 1.658 8.4
K 1.076 13.4 1.852 1.591 1.640 2.5
B 0.576 16.6 3,460 1.288 1.569 17.8
C 0.252 21.8 7.914 0.981 1.489 41.2
I 1.163 15.3 1.713 1.399 1.457 5.0
H 0.878 16.9 2.269 1.268 1.425 9.1
G 1.615 17.1 1.234 1.247 1.245 7.8
F 1.952 17.1 1.021 1.253 1.203 7.6
A 1.993 21.4 1.000 1.000 1.000 20.3
J 0.636 46.8 3.133 0.457 0.672 93.2

Table 7.24: Elastic speedup (Formula 5.1) for all configurations and weights:
waccU = 0.2,waccO = 0.8,wtsU = 0.8,wtsO = 0.2,wacc = 0.2,wts = 0.8

108

8. Future Work

In course of this thesis a concept as well as a basic framework for benchmarking resource
elasticity has been developed. The approach allows to measure different aspects of
elasticity separately and accounts for different levels of efficiency of underlying resources
and different scaling behaviors of systems. Beyond the scope of this thesis, the approach
can be further extended and evaluated as described in the following sections.

8.1 Further Evaluations
For the experiments within this thesis, the benchmarking framework has been configured
to use equal distance sampling when creating timestamp files for a given load profile. The
impact of other sampling methods such as uniform distribution sampling on calibration
and/or measurement results can be evaluated as part of future work.

A further step towards load profiles that reflect the load intensity in real cloud appli-
cations better bases on adding noise onto the modeled load intensity. The impact of
adding/removing noise from a load profile is a starting point for future evaluations.

8.2 Extensions of the Benchmark
The current implementation of the benchmarking framework is capable of inducing re-
source demands on the CPU. In order to allow resource elasticity benchmarking for other
resource types such as memory, disk storage or networking resources, the server-side load
processing component has to be extended as described in Section 6.2.2.

Within this approach, requests always trigger constant resource demands on a single
resource. In a realistic cloud scenario, different requests can trigger resource demands of
different sizes. Furthermore, requests trigger demands on several resources. This can be
taken into account by extending the benchmark concept as follows:

• Workloads which consist of different requests can be modeled with a set of load
profiles. Every load profile models the load intensity for a single request type.
The resource demand induced by the request mix can then be described with a
multiparameter demand function: demand(intensity_request1, ..., intensity_requestn).

• A request that triggers demands on several resources can be modeled with separate
demand functions for every resource: demandCPU(intensity), demandMEM(intensity),
demandIO(intensity).

109

110 8. Future Work

Additionally, both approaches can be combined.

Another possible extension is to use closed or partially open workloads instead of open
workloads. When a closed workload model is used, the load intensity characterizes the
number of users instead of the of the arrival rate.

Currently, the benchmark supports horizontal scaling as scaling method. Given that the
cloud management software supports vertical scaling, this scaling method can also be
evaluated with the presented approach. Evaluating the resource elasticity of systems
that use horizontal and vertical scaling at the same time adds additional complexity.
The amount of work a system is able to handle can be different depending on how
much horizontal or vertical scaling is used, even when the total amount of resources is
equal. Two VMs with each two CPUs do not necessarily have the same load processing
capabilities as one VM with four CPUs. Thus, it is difficult to derive an unambiguous
resource demand.

At the moment, the benchmarking framework allows to compare the resource elasticity
of different CSUTs or different resource elasticity parameter configurations of one CSUT
provided that CloudStack or AWS is used as cloud management software. Extending the
benchmark in order to support other cloud management softwares is part of future work.
The benchmark design allows such extensions easily.

For small scale elasticity measurements, using a single load driver is enough for generating
the load. However, for large scale elasticity measurements, the capabilities of a single
machine may not be sufficient for generating the necessary loads. JMeter supports the
distributed generation of loads. Thus, extending the TimestampTimer Plugin to support
distributed load generation would allow large scale elasticity measurements.

Section 5.4.3 sketched the use of the benchmarking concept for evaluating the financial
impacts of resource elasticity. Possible future research directions include a refined analysis
of the financial aspects of elasticity as well as a thorough investigation of the links between
the elasticity evaluation from a technical perspective and the evaluation from a business
oriented perspective.

8.3 Other Considerations

It is not in scope of this thesis to define a set of representative load profiles for an industry
standardized benchmark. Nevertheless, a load profile has been selected that exhibits a
number of important characteristics and can therefore be suggested to be included in a
set of representative load profiles.

In order to make elasticity measurements cheap, the duration of measurement runs should
be limited as far as possible. However, when a realistic load profile is compacted, the
demand curve is compacted, too. This makes it more difficult to allocate resources
on time. At some point, the CSUT is not able to allocate resources on demand at all and
elasticity comparisons are not possible anymore. Thus, investigations towards how much
experiment compression is sensible are valuable for future work.

110

9. Conclusion

Today’s cloud infrastructure platforms often provide auto-scaling features that enable
the dynamic allocation of resources over time according to a varying demand. An elas-
ticity benchmark helps to analyze this elastic behavior and allows to compare different
cloud platforms. Furthermore, a benchmark can make the influence of different elasticity
mechanism parameter configurations visible and allows researchers to compare newly
developed elasticity strategies to existing ones.

As a basis for the development of a new benchmark, this thesis has discussed the meaning
of elasticity in the cloud context and has differentiated it from the related terms efficiency
and scalability. In a second step, existing approaches for evaluating resource elasticity
have been analyzed with respect to their focus, strengths and weaknesses. Many of these
approaches focus on measuring the financial impact of different degrees of elasticity for
a cloud customer. While this perspective may be valid in some scenarios, it mixes up
the evaluation of the technical property elasticity and the business model of the provider.
Other approaches analyze the technical aspects of elasticity only to a limited extend or
do not account for different levels of efficiency of underlying resources when evaluating
elasticity.

The benchmarking concept that has been developed in course of this thesis as a third
step, allows together with a set of refined elasticity metrics the evaluation of the technical
property resource elasticity and takes explicitly into account the scaling behavior and the
efficiency of underlying resources of the benchmarked system. This has been achieved
by partitioning the process of benchmarking into System, Calibration, Measurement and
Evaluation activities. Within a System Analysis, the benchmark evaluates the scaling be-
havior and the efficiency of the underlying resources. The result is used during the
Benchmark Calibration which adjusts a given load profile in a way that the same resource
demand changes are induced on all compared systems independently of their underlying
hardware performances. During the Measurement, the cloud system under test (CSUT)
is exposed to a load varying according to the adjusted load profile. The final Elasticity
Evaluation compares the monitored variations of the resource allocations with the induced
resource demand utilizing a set of metrics specifically designed to capture the elasticity
aspects accuracy and timing.

In a further step, the concept has been implemented in an benchmarking framework
called BUNGEE. The framework allows to use realistic load profiles as input and auto-
mates the different activities of the benchmarking process. Load profiles can be modeled

111

112 9. Conclusion

or be parsed from existing traces using the LIMBO toolkit developed by V. Kistowski
[vKHK14b]. Currently, BUNGEE supports to evaluate the resource elasticity of horizon-
tally scaling clouds based on CloudStack or Amazon Web Services (AWS).

An evaluation of the resource elasticity metrics has demonstrated their ability to rank
elastic systems on an ordinal scale. In addition, the reproducibility of the benchmark
calibration has been positively evaluated on a private CloudStack based cloud. A case
study conducted on the private cloud as well as on an AWS based cloud has demonstrated
the applicability of the benchmark for realistic scenarios. Within the case study, eleven
elasticity rule configurations and four instance types with different levels of efficiency
have been evaluated.

112

Bibliography

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud
Computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online].
Available: http://doi.acm.org/10.1145/1721654.1721672

[ASLM13] R. F. Almeida, F. R. Sousa, S. Lifschitz, and J. C. Machado, “On
Defining Metrics for Elasticity of Cloud Databases,” in Proceedings
of the 28th Brazilian Symposium on Databases, 2013. [Online]. Available:
http://sbbd2013.cin.ufpe.br/Proceedings/artigos/sbbd_shp_12.html

[BBD+14] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi, C. Ghezzi,
and S. Krstić, “Towards the Formalization of Properties of Cloud-
based Elastic Systems,” in Proceedings of the 6th International Workshop
on Principles of Engineering Service-Oriented and Cloud Systems, ser. PESOS
2014. New York, NY, USA: ACM, 2014, pp. 38–47. [Online]. Available:
http://doi.acm.org/10.1145/2593793.2593798

[BKKL09] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the
Weather Tomorrow?: Towards a Benchmark for the Cloud,” in Proceedings
of the Second International Workshop on Testing Database Systems, ser. DBTest
’09. New York, NY, USA: ACM, 2009, pp. 9:1–9:6. [Online]. Available:
http://doi.acm.org/10.1145/1594156.1594168

[BLY+10] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A.
Patterson, “Rain: A Workload Generation Toolkit for Cloud Computing
Applications,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2010-14, Feb 2010. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html

[Bre12] P. C. Brebner, “Is your Cloud Elastic Enough? Performance Modeling
the Elasticity of Infrastructure as a Service (IaaS) Cloud Applications,”
in Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’12. New York, NY, USA: ACM, 2012, pp. 263–266.
[Online]. Available: http://doi.acm.org/10.1145/2188286.2188334

[CCB+12] D. Chandler, N. Coskun, S. Baset, E. Nahum, S. R. M. Khandker,
T. Daly, N. W. I. Paul, L. Barton, M. Wagner, R. Hariharan,
and Y. seng Chao, “Report on Cloud Computing to the OSG
Steering Committee,” Tech. Rep., Apr. 2012. [Online]. Available:
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf

[CGS13] E. F. Coutinho, D. G. Gomes, and J. N. d. Souza, “An Analysis of Elasticity in
Cloud Computing Environments Based on Allocation Time and Resources,”
in Cloud Computing and Communications (LatinCloud), 2nd IEEE Latin American
Conference on, Dec 2013, pp. 7–12.

113

http://doi.acm.org/10.1145/1721654.1721672
http://sbbd2013.cin.ufpe.br/Proceedings/artigos/sbbd_shp_12.html
http://doi.acm.org/10.1145/2593793.2593798
http://doi.acm.org/10.1145/1594156.1594168
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html
http://doi.acm.org/10.1145/2188286.2188334
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf

114 Bibliography

[CW09] A. C. Chiang and K. Wainwright, Fundamental Methods of Mathematical Eco-
nomics, 4th ed. McGraw-Hill, 2009.

[DMRT11] T. Dory, B. Mejías, P. V. Roy, and N.-L. Tran, “Measuring Elasticity for
Cloud Databases,” in Proceedings of the The Second International Conference
on Cloud Computing, GRIDs, and Virtualization, 2011. [Online]. Available:
http://www.info.ucl.ac.be/~pvr/CC2011elasticityCRfinal.pdf

[DRW06] L. Duboc, D. S. Rosenblum, and T. Wicks, “A Framework for
Modelling and Analysis of Software Systems Scalability,” in Proceedings
of the 28th international conference on Software engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 949–952. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134460

[FAS+12] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the Cloud: What It Should, Can, and Cannot Be,”
in Selected Topics in Performance Evaluation and Benchmarking, ser. Lecture
Notes in Computer Science, R. Nambiar and M. Poess, Eds. Springer
Berlin Heidelberg, 2012, vol. 7755, pp. 173–188. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36727-4_12

[FHA99] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces Principles, Patterns, and
Practice, ser. Java series. Addison-Wesley, 1999.

[FW86] P. J. Fleming and J. J. Wallace, “How Not to Lie with Statistics: The Correct
Way to Summarize Benchmark Results,” Commun. ACM, vol. 29, no. 3, pp.
218–221, Mar. 1986. [Online]. Available: http://doi.acm.org/10.1145/5666.5673

[GB12] G. Galante and L. C. E. d. Bona, “A Survey on Cloud Computing
Elasticity,” in Proceedings of the 2012 IEEE/ACM Fifth International Conference
on Utility and Cloud Computing, ser. UCC ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 263–270. [Online]. Available:
http://dx.doi.org/10.1109/UCC.2012.30

[Hal08] E. H. Halili, Apache JMeter: A Practical Beginner’s Guide to Automated Testing
and performance measurement for your websites. Packt Publishing Ltd, 2008.

[Her11] N. R. Herbst, “Quantifying the Impact of Configuration Space for Elasticity
Benchmarking,” Study Thesis, Karlsruhe Institute of Technology (KIT),
Am Fasanengarten 5, 76131 Karlsruhe, Germany, 2011. [Online]. Available:
http://sdqweb.ipd.kit.edu/publications/pdfs/Herbst2011a.pdf

[HHKA14] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive Workload
Classification and Forecasting for Proactive Resource Provisioning,”
Concurrency and Computation: Practice and Experience, pp. n/a–n/a, 2014.
[Online]. Available: http://dx.doi.org/10.1002/cpe.3224

[HKR13] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing:
What it is, and What it is Not (Short Paper),” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC 2013). USENIX,
June 2013. [Online]. Available: https://www.usenix.org/conference/icac13/
elasticity-cloud-computing-what-it-and-what-it-not

[Hup09] K. Huppler, “Performance Evaluation and Benchmarking,” R. Nambiar
and M. Poess, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch.
The Art of Building a Good Benchmark, pp. 18–30. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10424-4_3

114

http://www.info.ucl.ac.be/~pvr/CC2011elasticityCRfinal.pdf
http://doi.acm.org/10.1145/1134285.1134460
http://dx.doi.org/10.1007/978-3-642-36727-4_12
http://doi.acm.org/10.1145/5666.5673
http://dx.doi.org/10.1109/UCC.2012.30
http://sdqweb.ipd.kit.edu/publications/pdfs/Herbst2011a.pdf
http://dx.doi.org/10.1002/cpe.3224
https://www.usenix.org/conference/icac13/elasticity-cloud-computing-what-it-and-what-it-not
https://www.usenix.org/conference/icac13/elasticity-cloud-computing-what-it-and-what-it-not
http://dx.doi.org/10.1007/978-3-642-10424-4_3

Bibliography 115

[Hup12] K. Huppler, “Benchmarking with Your Head in the Cloud,” in Topics in
Performance Evaluation, Measurement and Characterization, ser. Lecture Notes
in Computer Science, R. Nambiar and M. Poess, Eds. Springer
Berlin Heidelberg, 2012, vol. 7144, pp. 97–110. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32627-1_7

[ILFL12] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a Consumer
Can Measure Elasticity for Cloud Platforms,” in Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ser. ICPE
’12. New York, NY, USA: ACM, 2012, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/2188286.2188301

[Ins13] C. A. Insitute, “Cloud Solutions Best Practices: 2013 Benchmark Study:
Results and Analysis from the Cloud Accounting Institute,” 2013. [Online].
Available: http://learn.amllp.com/2013-cloud-benchmark-study

[JS14] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey and
Research Challenges,” Journal of Network and Systems Management, pp. 1–53,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10922-014-9307-7

[KHvKR11] M. Kuperberg, N. R. Herbst, J. G. von Kistowski, and R. Reussner,
“Defining and Quantifying Elasticity of Resources in Cloud Computing and
Scalable Platforms,” Karlsruhe Institute of Technology (KIT), Tech. Rep.,
2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000023476

[LOZC12] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a Catalogue of Metrics for
Evaluating Commercial Cloud Services,” in Grid Computing (GRID), 2012
ACM/IEEE 13th International Conference on, Sept 2012, pp. 164–173. [Online].
Available: http://dx.doi.org/10.1109/Grid.2012.15

[LYKZ10] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing Public
Cloud Providers,” in Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, ser. IMC ’10. New York, NY, USA: ACM, 2010, pp.
1–14. [Online]. Available: http://doi.acm.org/10.1145/1879141.1879143

[Mah36] P. C. Mahalanobis, “On the Generalized Distance in Statistics,” in Proceedings
National Institute of Science, India, vol. 2, no. 1, Apr. 1936, pp. 49–55. [Online].
Available: http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_
1/20006193_49.pdf

[Man64] J. Mandel, The Statistical Analysis of Experimental Data. Dover, 1964.

[MCTD13] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “MELA: Monitoring
and Analyzing Elasticity of Cloud Services,” in Cloud Computing Technology
and Science (CloudCom), 2013 IEEE 5th International Conference on, vol. 1, Dec
2013, pp. 80–87. [Online]. Available: http://dx.doi.org/10.1109/CloudCom.
2013.18

[MG11] P. M. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Gaithersburg, MD, United States, Tech. Rep., 2011. [Online]. Available:
http://csrc.nist.gov/publications/PubsSPs.html#800-145

[MJ98] D. Mosberger and T. Jin, “Httperf - a Tool for Measuring Web Server
Performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 31–37,
Dec. 1998. [Online]. Available: http://doi.acm.org/10.1145/306225.306235

115

http://dx.doi.org/10.1007/978-3-642-32627-1_7
http://doi.acm.org/10.1145/2188286.2188301
http://learn.amllp.com/2013-cloud-benchmark-study
http://dx.doi.org/10.1007/s10922-014-9307-7
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
http://dx.doi.org/10.1109/Grid.2012.15
http://doi.acm.org/10.1145/1879141.1879143
http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20006193_49.pdf
http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20006193_49.pdf
http://dx.doi.org/10.1109/CloudCom.2013.18
http://dx.doi.org/10.1109/CloudCom.2013.18
http://csrc.nist.gov/publications/PubsSPs.html#800-145
http://doi.acm.org/10.1145/306225.306235

116 Bibliography

[OED14a] “Efficient — Oxford English Dictionary Online,” 2014, (accessed July 9,
2014). [Online]. Available: http://www.oxforddictionaries.com/definition/
english/efficient

[OED14b] “Elasticity — Oxford English Dictionary Online,” 2014, (accessed July 9,
2014). [Online]. Available: http://www.oxforddictionaries.com/definition/
english/elasticity

[RR10] T. Rauber and G. Rünger, Parallel Programming - for Multicore and Cluster
Systems. Springer, 2010.

[SA12] D. Shawky and A. Ali, “Defining a Measure of Cloud Computing Elasticity,”
in Systems and Computer Science (ICSCS), 2012 1st International Conference on,
Aug 2012, pp. 1–5. [Online]. Available: http://dx.doi.org/10.1109/IConSCS.
2012.6502449

[SC07] S. Salvador and P. Chan, “Toward Accurate Dynamic Time Warping in Linear
Time and Space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580, Oct. 2007.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1367985.1367993

[SMC+08] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu, “Cutting
Corners: Workbench Automation for Server Benchmarking,” in USENIX
2008 Annual Technical Conference on Annual Technical Conference, ser. ATC’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 241–254. [Online].
Available: http://dl.acm.org/citation.cfm?id=1404014.1404032

[SSSS11] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware Elasticity
Provisioning System for the Cloud,” in Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, June 2011, pp. 559–570.
[Online]. Available: http://dx.doi.org/10.1109/ICDCS.2011.59

[ST09] M. Salehie and L. Tahvildari, “Self-adaptive Software: Landscape and
Research Challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, May 2009. [Online]. Available: http://doi.acm.org/10.1145/
1516533.1516538

[Sul12] B. Suleiman, “Elasticity Economics of Cloud-Based Applications,”
in Proceedings of the 2012 IEEE Ninth International Conference on Services
Computing, ser. SCC ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 694–695. [Online]. Available: http://dx.doi.org/10.1109/SCC.2012.65

[SV13] B. Suleiman and S. Venugopal, “Modeling Performance of Elasticity Rules
for Cloud-Based Applications,” in Enterprise Distributed Object Computing
Conference (EDOC), 2013 17th IEEE International, Sept 2013, pp. 201–206.
[Online]. Available: http://dx.doi.org/10.1109/EDOC.2013.31

[SWHB06] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Versus
Closed: A Cautionary Tale,” in Proceedings of the 3rd Conference on Networked
Systems Design & Implementation - Volume 3, ser. NSDI’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 18–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267680.1267698

[TTP14] C. Tinnefeld, D. Taschik, and H. Plattner, “Quantifying the Elasticity of
a Database Management System,” in DBKDA 2014, The Sixth International
Conference on Advances in Databases, Knowledge, and Data Applications, 2014,
pp. 125–131. [Online]. Available: http://www.thinkmind.org/index.php?
view=article&articleid=dbkda_2014_5_30_50076

116

http://www.oxforddictionaries.com/definition/english/efficient
http://www.oxforddictionaries.com/definition/english/efficient
http://www.oxforddictionaries.com/definition/english/elasticity
http://www.oxforddictionaries.com/definition/english/elasticity
http://dx.doi.org/10.1109/IConSCS.2012.6502449
http://dx.doi.org/10.1109/IConSCS.2012.6502449
http://dl.acm.org/citation.cfm?id=1367985.1367993
http://dl.acm.org/citation.cfm?id=1404014.1404032
http://dx.doi.org/10.1109/ICDCS.2011.59
http://doi.acm.org/10.1145/1516533.1516538
http://doi.acm.org/10.1145/1516533.1516538
http://dx.doi.org/10.1109/SCC.2012.65
http://dx.doi.org/10.1109/EDOC.2013.31
http://dl.acm.org/citation.cfm?id=1267680.1267698
http://www.thinkmind.org/index.php?view=article&articleid=dbkda_2014_5_30_50076
http://www.thinkmind.org/index.php?view=article&articleid=dbkda_2014_5_30_50076

Bibliography 117

[vK14] J. G. von Kistowski, “Modeling Variations in Load Intensity Profiles,”
Master Thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten
5, 76131 Karlsruhe, Germany, 2014. [Online]. Available: http:
//sdqweb.ipd.kit.edu/publications/pdfs/Kistowski2014.pdf

[vKHK14a] J. G. von Kistowski, N. R. Herbst, and S. Kounev, “Modeling Variations in
Load Intensity over Time,” in Proceedings of the 3rd International Workshop on
Large-Scale Testing (LT 2014), co-located with the 5th ACM/SPEC International
Conference on Performance Engineering (ICPE 2014). ACM, March 2014.
[Online]. Available: http://dx.doi.org/10.1145/2577036.2577037

[vKHK14b] J. G. von Kistowski, N. R. Herbst, and S. Kounev, “LIMBO:
A Tool For Modeling Variable Load Intensities (Demo Paper),”
in Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014). ACM, March 2014. [Online]. Available: http:
//dx.doi.org/10.1145/2568088.2576092

[vSVdZS98] M. van Steen, S. Van der Zijden, and H. J. Sips, “Software Engineering
for Scalable Distributed Applications,” in Computer Software and Applications
Conference, 1998. COMPSAC ’98. Proceedings., 1998, pp. 285–292. [Online].
Available: http://dx.doi.org/10.1109/CMPSAC.1998.716669

[Wei11] J. Weinman, “Time is Money: The Value of “On-Demand”,” 2011, (accessed
July 9, 2014). [Online]. Available: http://www.joeweinman.com/resources/
Joe_Weinman_Time_Is_Money.pdf

[WHGK14] A. Weber, N. R. Herbst, H. Groenda, and S. Kounev, “Towards a Resource
Elasticity Benchmark for Cloud Environments,” in Proceedings of the 2nd In-
ternational Workshop on Hot Topics in Cloud Service Scalability (HotTopiCS 2014),
co-located with the 5th ACM/SPEC International Conference on Performance Engi-
neering (ICPE 2014). ACM, March 2014. [Online]. Available: http://sdq.ipd.
kit.edu/research/publications/#WeHeGrKo2014-HotTopicsWS-ElaBench

117

http://sdqweb.ipd.kit.edu/publications/pdfs/Kistowski2014.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/Kistowski2014.pdf
http://dx.doi.org/10.1145/2577036.2577037
http://dx.doi.org/10.1145/2568088.2576092
http://dx.doi.org/10.1145/2568088.2576092
http://dx.doi.org/10.1109/CMPSAC.1998.716669
http://www.joeweinman.com/resources/Joe_Weinman_Time_Is_Money.pdf
http://www.joeweinman.com/resources/Joe_Weinman_Time_Is_Money.pdf
http://sdq.ipd.kit.edu/research/publications/#WeHeGrKo2014-HotTopicsWS-ElaBench
http://sdq.ipd.kit.edu/research/publications/#WeHeGrKo2014-HotTopicsWS-ElaBench

List of Figures

2.1 Blueprint architecture of a resource elastic system 5
2.2 Resource scaling allows clouds to comply with predefined service levels . 8
2.3 Different degrees of elasticity due to different elasticity mechanisms 10
2.4 Ideal elasticity . 13
2.5 Systems with imperfect accuracy . 13
2.6 Systems with imperfect timing . 14
2.7 Taxonomies for (a) self-adaptive systems and (b) elastic systems 15

4.1 Blueprint for the CSUT and the benchmark controller 26
4.2 Activity diagram for the benchmark work flow 27
4.3 Alternative ways for using the Thread Pool Pattern 29
4.4 Different resource demands for equal load profiles 31
4.5 The result of a System Analysis: The mapping function demand(intensity) . 32
4.6 Different mapping functions . 35
4.7 Resource demand induced by an unadjusted load profile 35
4.8 Mapping function and resource demand on a baseline system 36
4.9 Induced resource demand for system specific adjusted load profiles 37

5.1 Measuring accuracy: red/blue areas indicate under-/over-provisioning . . 40
5.2 Measuring timing: Ai/Bi: Time spent in under-/over-provisioned state . . 42
5.3 Different elastic behaviors produce equal results for accuracy and timeshare 43
5.4 Concurrent de-/allocation of resources should not influence the jitter metric 43
5.5 Nontrivial matching of demand and heavily delayed supply changes . . . 44

6.1 Control and object flow between and within the benchmarking activities . 50
6.2 Package diagram of the elasticity benchmark framework 52
6.3 Class diagram of the loadprofile package 54
6.4 Class diagram of the loadgeneration package 56
6.5 Class diagram of the slo package . 58
6.6 Class diagram for the analysis package . 59
6.7 Class diagram for the calibration package 60
6.8 Class diagram of the allocation package 62
6.9 Class diagram for the cloud package . 63
6.10 Resource demand and different monitored CloudStack resource supply types 64
6.11 Class diagram for the metric package . 65
6.12 Load profile for a whole day and the corresponding induced resource demand 66
6.13 Eclipse view for visualizing response times and request submission accuracy 67
6.14 Class diagram for the cloud-side load generation application 69
6.15 Request processing within the cloud-side load generation application . . . 70

7.1 Experiment Setup . 72
7.2 System with linear increasing resource demand 77

119

120 List of Figures

7.3 Evaluation of the accuracyU metric . 81
7.4 Evaluation of the accuracyO metric . 82
7.5 Evaluation of the timeshareU metric . 84
7.6 Evaluation of the timeshareO metric . 85
7.7 Evaluation of the jitter metric for superfluous adaptations 87
7.8 Evaluation of the jitter metric for missing adaptations 89
7.9 Load profile for one day derived from a real five day transaction trace . . 91
7.10 Mapping function demand(intensity) derived with the Detailed System Analysis 92
7.11 Elastic behavior for different elasticity rule parameter settings on CS (1) . 93
7.12 Elastic behavior for different elasticity rule parameter settings on CS (2) . 94
7.13 Effects of not adjusting the load profile (1) 98
7.14 Effects of not adjusting the load profile (2) 99
7.15 Elastic behavior for different elasticity rule parameter settings on AWS (1) 104
7.16 Elastic behavior for different elasticity rule parameter settings on AWS (2) 105

120

List of Tables

7.1 Cloudstack elasticity parameters . 74
7.2 Cloudstack health check parameters . 74
7.3 Benchmark harness parameters . 75
7.4 Results of the reproducibility evaluation for the System Analysis 77
7.5 Linearity analysis for Offering A . 78
7.6 Linearity analysis for Offering B . 79
7.7 Measurement results for the accuracyU metric 82
7.8 Measurement results for the accuracyO metric 83
7.9 Measurement results for the timeshareU metric 84
7.10 Measurement results for the timeshareO metric 86
7.11 Measurement results for the jitter metric (positive jitter). 88
7.12 Measurement results for the jitter metric (negative jitter) 88
7.13 Different elasticity parameter configurations for CloudStack 92
7.14 Metric results for the evaluated configurations on CloudStack 95
7.15 Percentiles for the delay between scheduled and real request submission . 95
7.16 Compute the unweighted elastic speedup . 96
7.17 Compute the weighted elastic speedup . 97
7.18 Metric results for offerings A, B & D with and without adapted load profile 100
7.19 AWS health check parameters . 101
7.20 Detailed System Analysis results for AWS Offering m1.small 102
7.21 Different elasticity parameter configurations for AWS 103
7.22 Metric results for all evaluated configurations 106
7.23 Unweighted elastic speedup for all evaluated configurations 107
7.24 Weighted elastic speedup for all evaluated configurations 108

121

Glossary

Cloud Management Server Manages the elastic infrastructure of a cloud. It typically
consists of a monitoring system, a reconfiguration management and an elasticity
mechanism. The functionality is implemented in within a cloud management soft-
ware. 6, 121, 123

Cloud Management Software Software deployed on a cloud management server in or-
der to control the elastic infrastructure of a cloud. 6, 53, 61, 71, 110, 121, 123

Cloud System Under Test Cloud system that is analyzed by an elasticity benchmark.
It consists of the cloud management server, the load balancer and the scalable
infrastructure. 3, 6, 111, 121, 123

CPU Central Processing Unit. 8, 9, 12, 21, 26, 28, 38, 68, 69, 71, 73, 76, 78, 82, 83, 97, 101,
109, 110, 121

CSUT cloud system under test. 3, 6, 25–28, 32, 34, 37, 39, 41, 45, 49, 51, 53, 56–65, 68, 71,
95, 96, 110, 111, 119, 121

Descartes Load Intensity Model Meta-Model allowing the definition of varying load
intensities through combination of piece-wise mathematical functions. 53, 121, 123

DLIM Descartes Load Intensity Model. 53, 54, 90, 121, 124

DTW dynamic time warping. 20, 44, 45, 121

Dynamic Time Warping Algorithm for calculating the distance between multi-dimensional
series. See [SC07]. 20, 45, 121, 123

Elasticity Mechanism Component of an elastic cloud that triggers the de-/allocation of
resources according to an elasticity strategy. 2, 6, 10, 11, 14, 19, 48, 72, 101, 103, 107,
111, 121

Elasticity Strategy Defines the process of de-/allocating resources in order to match a
varying demand as close as possible. 6, 11, 14, 16, 39, 44, 101, 107, 111, 121, 123

GPU Graphics Processing Unit. 8, 121

Health Check Defines when a VM instance is considered as healthy. Typically, the in-
stance has to answer a given number of subsequent requests successfully to be
considered as healthy. Load balancers usually forward requests only to healthy in-
stances. With an auto-scaling mechanism in place, unhealthy instances are often
replace by substitute instances. 64, 65, 73, 75, 101, 103, 121

IaaS Infrastructure as a Service. 2, 3, 5, 14, 25, 26, 100, 121

123

124 Glossary

Infrastructure As A Service Cloud providers offer basic resources, such as processing,
storage or network to their customers on demand. The customer has control over
the operating system but not over underlying resources [MG11]. 2, 25, 121, 123

LIMBO Eclipse-based tooling platform for editing of DLIM instances. 28, 53, 54, 66, 90,
112, 121

Load Balancer Distributes incoming load to available instances. Different scheduling
strategies such as round robin, least connections, and least response time can be
applied for distributing the load. 6, 32, 34, 63–65, 68, 71–73, 77, 101, 103, 121, 123

Load Profile Describes the variation of load intensity over time. 3, 22, 26, 28, 31, 36, 51,
53, 66, 75, 90, 107, 111, 119, 121

NTP Network Time Protocol. 72, 121

PaaS Platform as a Service. 14, 25, 121

Platform As A Service Cloud providers offer a computing platform that allows the cus-
tomer to deploy applications created using programming languages, libraries ser-
vices and tools supported by the provider. The customer has no control over the
operating system or over underlying resources [MG11]. 25, 121, 124

Resource Elasticity Degree to which a system is able to adapt to load changes by provi-
sioning and deprovisioning in an autonomic manner, such that in each point in time
the available resources match the current demand as closely as possible [HKR13].
2, 11, 12, 20, 25, 27, 80, 91, 102, 109, 110, 112, 121

SaaS Software as a Service. 25, 121

Service Level Agreement Agreement between provider and customers that specifies
which service is provided at what quality. Contains several service level objectives.
8, 121, 124

Service Level Objective Specifies a measurable quality criteria of a service. Typical
quality criteria for cloud services are response time, availability or throughput. SLOs
are normally specified with the help of probabilities or probability distributions.
Example: “95% of all response times are smaller than one second”. 8, 121, 124

SLA service level agreement. 8, 121

SLO service level objective. 8, 10, 12, 13, 20, 32, 34, 48, 51, 55, 58, 92, 96, 102, 103, 107, 121

SNMP Simple Network Management Protocol. 72, 121

Software As A Service Cloud providers offer applications to their customers. The cus-
tomer has no control over the applications, apart from limited application specific
settings, the operating system or over underlying resources [MG11]. 25, 121, 124

TimestampTimer JMeter plugin that allows to send requests according to a timestamp
file. 55, 56, 121

VM virtual machine. 3, 5, 6, 8, 9, 12, 20, 26, 38, 57, 63, 64, 68, 71–74, 76, 78, 90, 97, 101, 110,
121, 123

124

	Acknowledgements
	Zusammenfassung
	Abstract
	Publications and Talks
	Contents
	1 Introduction
	1.1 Goals and Research Questions
	1.2 Thesis Structure

	2 Foundations
	2.1 Elastic Cloud System Architecture
	2.2 Terms and Differentiation
	2.2.1 Efficiency
	2.2.2 Scalability
	2.2.3 Elasticity
	2.2.4 Relation and Differentiation

	2.3 Resource Elasticity
	2.3.1 Definition
	2.3.2 Prerequisites
	2.3.3 Core Aspects
	2.3.4 Strategies

	2.4 Benchmark Requirements

	3 Related Work
	3.1 Early Elasticity Measurement Ideas and Approaches
	3.2 Elasticity Models and Simulating Elastic Behavior
	3.3 Business Perspective Approaches
	3.4 Elasticity of Cloud Databases
	3.5 Conclusions

	4 Resource Elasticity Benchmark Concept
	4.1 Limitations of Scope
	4.2 Benchmark Overview
	4.3 Workload Modeling and Generation
	4.3.1 Worktype
	4.3.2 Load Profile Modeling
	4.3.3 Load Generation

	4.4 Analysis and Calibration
	4.4.1 System Analysis
	4.4.2 Benchmark Calibration

	4.5 Measurement: Demand and Supply Extraction
	4.5.1 Resource Demand
	4.5.2 Resource Supply

	5 Resource Elasticity Metrics
	5.1 Accuracy
	5.2 Timing
	5.2.1 Under- / Over-provision Timeshare
	5.2.2 Jitter

	5.3 Considered but Rejected Metrics
	5.3.1 Delay
	5.3.2 Dynamic Time Warping Distance

	5.4 Compare Different Systems Using Metrics
	5.4.1 Distance Based Aggregation
	5.4.2 Speedup Based Aggregation
	5.4.3 Cost Based Aggregation

	6 BUNGEE - An Elasticity Benchmarking Framework
	6.1 Benchmark Harness
	6.1.1 Architectural Overview
	6.1.2 Load Profiles
	6.1.3 Load Generation and Evaluation
	6.1.4 System Analysis: Evaluation of Load Processing Capabilities
	6.1.5 Benchmark Calibration: Load Profile Adjustment
	6.1.6 Resource Allocations
	6.1.7 Cloud Information and Control
	6.1.8 Metrics
	6.1.9 Visualization

	6.2 Cloud-Side Load Generation
	6.2.1 Requirements
	6.2.2 Implementation

	6.3 Conclusion

	7 Evaluation
	7.1 Experiment Setup
	7.1.1 Private Cloud Deployment
	7.1.2 Elastic Cloud Service Configuration
	7.1.3 Benchmark Harness Configuration
	7.1.4 Evaluation Automatization

	7.2 Analysis Evaluation
	7.2.1 Reproducibility
	7.2.2 Linearity Assumption
	7.2.3 Discussion

	7.3 Metric Evaluation
	7.3.1 Under-provision Accuracy: accuracyU
	7.3.2 Over-provision Accuracy: accuracyO
	7.3.3 Under-provision Timeshare: timeshareU
	7.3.4 Timeshare Ratio: timeshareO
	7.3.5 Jitter Metric: jitter
	7.3.6 Discussion

	7.4 Case Study with a Realistic Load Profile
	7.4.1 Private Cloud - CloudStack
	7.4.2 Public Cloud - Amazon Web Services
	7.4.3 Discussion

	8 Future Work
	8.1 Further Evaluations
	8.2 Extensions of the Benchmark
	8.3 Other Considerations

	9 Conclusion
	Bibliography
	List of Figures
	List of Tables
	Glossary

