
Model-Driven Consistency Preservation in AutomationML

Sofia Ananieva1 and Erik Burger2 and Christian Stier1

Abstract— Over the last decade, standards such as Automa-
tionML have emerged to support interoperability between
tools along the engineering chain of Industrial Automation
Systems. AutomationML incorporates various standards for
different engineering domains, and defines common interfaces
between them. Evolution is an integral part of the lifecycle of
an Industrial Automation System. Thus, the AutomationML
model of a system is subject to numerous changes. Such
changes may lead to inconsistencies between the modeling
artifacts from each engineering domain. Today, the propagation
of changes from the models of one engineering domain to
the other affected domains is still mostly a manual process.
The process requires high effort and is error prone. In this
paper, we reason on different kinds of consistency constraints
and propose the Vitruvius framework to enable automated
consistency preservation within AutomationML.

I. INTRODUCTION

The engineering of Automated Production Systems (aPS)
spans multiple disciplines, such as mechanical, electrical, and
software engineering. During the different lifecycle phases
of an aPS, engineers use several tools to create individual
data models that describe the same engineering concepts.
AutomationML or AML (Automation Markup Language) [5]
is a standardized XML-based language that provides ex-
change of engineering data with a focus on plant engineering
exchange. With the growing size of systems, the models
created in AutomationML can also become very large and
complex. Thus, the evolution of these models introduces
possible inconsistencies, since a change that is applied to
one part of the model can affect possibly many other parts.

The AML standard defines a variety of consistency con-
straints regarding, for instance, attribute values and ref-
erencing mechanisms of AML objects. The definition of
these constraints, the detection of inconsistencies and their
automated repair pose a major challenge for the application
of AML. Often, these consistency checks are carried out
manually, which is a costly and error-prone process for large
systems.

In this paper, we present and categorize different kinds
of consistency constraints in AML 20̇ and reason about the
consistency rigor of the imposed constraints. We present
concrete tool support using the model-driven Vitruvius ap-
proach to automatically repair inconsistency within AML and
control consistency rigor based on user interaction.

1Sofia Ananieva and Christian Stier are with the Department of Software
Engineering, FZI Research Center for Information Technology, Karlsruhe,
Germany ananieva@fzi.de, stier@fzi.de

2Erik Burger is with the Chair for Software Design and Quality, Karlsruhe
Institute of Technology, Karlsruhe, Germany burger@kit.edu

II. FOUNDATIONS

In this section, we provide the necessary background for
this paper which comprises an introduction to model-driven
software development, the main principles of AML, and
the VITRUVIUS framework to preserve consistency in view-
based software development.

A. AutomationML in a Nutshell

AutomationML or AML (Automation Markup Lan-
guage) [5] is an open XML-based standard for describing
Industrial Automation Systems. It aims at the efficient ex-
change of engineering data from different domains, e.g.,
mechanical-, software-, and electrical engineering leading
to reduced time and cost. The XML-based CAEX standard
is a central part of AML. CAEX supports the definition
of a common plant super structure and common interfaces
following IEC 62424 [6]. Additionally, CAEX references
external information that describe the geometry and kine-
matics of plant components following COLLADA 1.4.1 and
1.5.0 [4] and their behavior following PLCOpen XML 2.0
and 2.0.1 [12]. CAEX subdivides the plant engineering
information into four basic viewpoints. The Role Class
Library (RCL) contains Role Classes (RC) that represent
specific roles, e.g., a motor or a robot. Such roles allow for
specifying vendor-independent requirements or the definition
of attributes for an AML object. The explicit linking of
AML object with roles enables automatic interpretation by
an engineering tool. The Interface Class Library (ICL)
defines all required interfaces to describe a plant model. The
ICL contains Interface Classes (IC) that specify interfaces
between the objects in an AML model. An example of this is
an interface type that links the AML object hierachy with an
external 3D description of a robot. The System Unit Class
Library (SUCL) represents vendor specific AML libraries.
It contains System Unit Classes (SUC), each describing
a physical or logical object that can be matched with a
particular RC defining its properties. The Instance Hierarchy
(IH) comprises individual plant objects, i.e., Internal Ele-
ments (IE), in a hierarchical structure and, hence, defines the
equipment for a specific plant. The internal elements contain
references to all previously mentioned viewpoints.

A special property of CAEX is that it follows a prototype-
based paradigm. In object-oriented programming languages
like Java and C++, objects instantiate statically defined
classes. Prototypes are dynamically typed. For instance, IEs
can either be created from scratch or instantiated from
existing prototypical classes, i.e., SUCs. The instantiated ele-
ments represent clones of the respective prototypes retaining
all properties of the prototypical elements.

+fileName:String

+schemaVersion:String=2.15

CAEXFile

+iD:String

+name:String

CAEXObject

+unit:String

+defaultValue:String

+value:String

Attribute

SystemUnitClass

Lib (SUCL)

Instance

Hierarchy (ICH)

RoleClassLib

(RCL)

InterfaceClass

Lib (ICL)

SystemUnit

Class (SUC)

InternalElement

(IE)

RoleClass

(RC)

InterfaceClass

(IC)

+refRoleClassPath:String

SupportedRole

Class (SRC)

+refBaseRoleClassPath:String

RoleRequirements

* * **

* * * *

0..11

0..1
baseClass

*

*

*

attribute

*

externalInterface

Fig. 1: An excerpt of the CAEX metamodel.

B. Model-Driven Software Development

Model-Driven Software Development (MDSD) [14] con-
siders models as first-class engineering artefacts that formally
represent a particular application domain. On those models,
MDSD enables the usage of automated techniques, e.g.,
transformation of a model into executable code, or model
validation. This differs from model-based development ap-
proaches, where such models may be used for documen-
tation purposes only. Metamodels play a central role in
MDSD as they capture a formal description of the model
and define its elements and their relations. As outlined by
Stahl et al. [14], a metamodel defines four artifacts: the
abstract syntax represents the basic structure of notation
elements and their relationships. The concrete syntax defines
the notation of the modeling languages, e.g., a textual or
graphical representation. The static semantics deals with the
well-formedness of a model by specifying constraints over
attributes and associations defined in the metamodel. Such
constraints must always be satisfied, e.g., the static semantics
in Java is concerned with an assignment of unique names
for class attributes and operations. The Object Constraint
Language (OCL) [16] is a formal language that is used to add
static semantic constraints to a metamodel. Last but not least,
dynamic semantics defines what happens upon execution of
single model elements, e.g., invoking operations. A model
which conforms to a metamodel is called an instance of
that metamodel. Many model-driven applications are built
upon the Eclipse Modeling Framework (EMF) [15]. EMF
provides an in-build import mechanism for XML schemes
like the XML schema definition of CAEX. EMF can generate
a metamodel from the XML schema which complies with it.
Figure 1 provides an overview of the CAEX metamodel.
It covers the central objects of the CAEX standard, e.g.,
SUCL, IH, RCL and the ICL along with their relationships.
The structural description of the metamodel is comparable
to a UML class diagram. The conversion from XML to a
metamodel enables the application of existing MDSD tooling
to AML models.

C. The VITRUVIUS Framework

The VITRUVIUS framework is a model-driven approach
for view-based software development [11, 9, 10]. Views,
which are based on metamodels describing different aspects
of the entire systems, form the central concept of the
approach. These views often share common or dependent
information, e.g., redundancies between the views. Views
that share information need to be kept consistent to support
the evolution of the system. To prevent inconsistencies,
VITRUVIUS follows the idea of the Orthographic Software
Modeling (OSM) which introduces a Single Underlying
Model (SUM) [1]. The SUM is a monolithic model that
comprises information of the entire software to avoid redun-
dant representations of the same information. A user can
access and evolve the system solely through views. The
SUM conforms to an appropriate metamodel, the Single
Underlying Metamodel (SUMM). To reuse tool support for
existing metamodels and refrain from difficulties of main-
taining a monolithic metamodel, VITRUVIUS extends the
idea of the SUMM by a virtual component: instead of one
metamodel, the Virtual Single Underlying Metamodel (V-
SUMM) consists of multiple existing metamodels that are
interlinked through consistency preservation specifications.
The Virtual Single Underlying Model (V-SUM) instantiates
the V-SUMM, that consists of individual models representing
different aspects of the system, e.g., the hierarchical plant
structure, geometry,- and behavior description. Additionally,
consistency specifications may be defined not only between
different metamodels, but also within a single metamodel,
e.g., the CAEX metamodel. To preserve consistency, views
report all changes to the framework. The framework prop-
agates the changes according to the consistency preserva-
tion specifications within the V-SUMM. For example, the
changed name of a prototypical class leads to a reference
update of the cloning class(es).
Furthermore, user interaction may be required to preserve
consistency. This is the case if the user intent can not be
unambiguously derived from an observed model change. For
example, adding an IE to a CAEX model may represent
a clone of another IE, of a SUC or not be a clone at
all. To correctly preserve consistency, VITRUVIUS provides
the possibility to define user interactions within consistency
preservation specifications.

III. RUNNING EXAMPLE

In this section, we provide a running example of an
CAEX 21̇5 model that is used throughout the paper for
demonstration purposes of the developed approach.

Figure 2 illustrates an excerpt of a CAEX model that
represents a simple manufacturing system. The IH Man-
ufacturing System consists of a single electric screwdriver
which, according to its required role class Energy, acts
as a tool within the manufacturing system. The SUCL
Lib Of Common Tools comprises a predefined library for
a screwdriver object with two attributes: the Revolution
Per Minute (RPM) and the torque of a screwdriver. Each
attribute has a measuring unit, a default value and an

:RCL

‐ name: Manufacturing‐
RoleClasses

:RC

‐ name: Tool
‐ RefBaseClassPath:
BaseRoleClassLib@
AMLBaseRoleClassLib/
AMLBaseRole

:IH

‐ name: Manufacturing‐
System

:IE

‐ name: ElectricScrewdriver
‐ RefBaseSystemUnitPath:
LibOfCommonTools/Electric‐
Screwdriver

:SUCL

‐ name: LibOfCommonTools

:SUC

‐ name: Screwdriver

:Attribute

‐ name: RPM
‐ unit: 1/min
‐ defaultValue: 1900

:Attribute

‐ name: Torque
‐ unit: Nm
‐ defaultValue: 50

:Attribute

‐ name: RPM
‐ unit: 1/min
‐ defaultValue: 1900
‐ value: 1920

:Attribute

‐ name: Torque
‐ unit: Nm
‐ defaultValue: 50
‐ value: 48

:RR

‐ name: Energy
‐ RefBaseRoleClassPath:
ManufacturingRole‐
Classes/Tool

1

1

Fig. 2: The CAEX model of a small manifacturing system.

actual value. The attribute RefBaseSystemUnitPath of the
IE ElectricScrewdriver defines the path to the prototypical
SUC Screwdriver. The ElectricScrewdriver instantiates the
Screwdriver and adopts its both attributes RPM and torque by
additionally specifying the concrete values of both attributes.
The motivating example will be used through this paper
to illustrate different kinds of consistency constraints and
demonstrate how consistency preservation specification can
be enforced. Next, we will present an exemplary overview
of consistency constraints of the CAEX model induced by
the AutomationML standard.

IV. CONSISTENCY CONSTRAINTS IN AML

The AML and the subsumed CAEX standard define a
series of consistency specifications that must be complied
with when using AML [5, 6]. The publicly accessible AML
Whitepapers [17] combine the respective consistency speci-
fications. In this section, we present an excerpt of extracted
consistency constraints from the defined consistency spec-
ifications and propose their categorization into static and
dynamic constraints.

A. Static Consistency Constraints

A static consistency constraint is a model invariant, i.e., a
condition that must hold true for the model at any point
in time. Generally, the fulfillment of such a consistency
constraint can be ensured by properties of a metamodel, e.g.,
the static semantics and abstract syntax (see Subsection II-
B). Nevertheless, the static semantics of the generated CAEX
metamodel only covers a subset of the identified constraints.
This is, in essence, due to the limited expressiveness of the
XML schema constraints compared to the static semantics of
a metamodel. XML schema constraints are limited to gener-
ally define acceptable values for XML elements or attributes,
but are, for example, not able to define value restrictions on a
particular subset of elements, e.g., the CAEX tag name shall
only be unique within a particular hierarchy level. Note that
we refrain from manually changing the generated metamodel
in order to preserve compatibility of the metamodel to the

XML specification. The lack of full compliance to the AML
standard additionally provides flexibility of possible tool
functionality, e.g., regarding different consistency rigors (see
V-B). In the following, we present an exemplary excerpt of
the static consistency constraints in Table I.

Nr. Consistency Constraint

#1 The CAEX root element CAEXFile of each AML top level
document shall have the CAEX child element Additional-
Information.

#2 Each AML document shall provide information about the
tool which has written the AML document.

#3 The CAEX tag name shall identify all AML classes (RCs,
ICs, SUCs) and be unique within the hierarchy level of
the corresponding class.

#4 The CAEX tag ID shall identify all AML object instances
(e.g., IEs). The identifier shall be a universal unique
identifier (UUID) according to ISO/IEC 9834-8.

#5 Once created, a UUID shall never change over the life time
of the corresponding project within all participating tools.

#6 References shall contain the full path to the referred class
object.

#7 Cross-inheritance (e.g., an SUC inherits from an IC or an
IE inherits from a SUC) is not allowed.

#8 All AML objects shall be associated directly or indirectly
(via other AML objects) with the role class Automation-
MLBaseRole.

TABLE I: Overview of exemplary static consistency con-
straints in AML.

The first constraint (#1) represents a static constraint on
the structure of a CAEX model. The abstract syntax of the
CAEX metamodel generally and, including this case, meets
such structural requirements. Here, the attribute Additional-
Information can always be created as a child element of the
CAEX root element CAEXFile. The second constraint #2
requires to provide information about the tool which was
used to create the CAEX model. The CAEX attribute source-
DocumentInformation comprises this information. The static
semantics of the CAEX metamodel specifies that the attribute
has to occur at least one time within the CAEX model.
The integrated validation framework of EMF checks the
fulfillment of such static constraints and, hence, provides a
validation error message if the respective attribute is missing.
However, it does not check if the contained information
uniquely identifies the tool. The remaining constraints (#4,
#5, #6, #7, #8) deal with constraints for the identification and
the referencing of CAEX objects. None of the constraints is
ensured by the static semantics of the CAEX metamodel
formalized in the CAEX schema. The listed constraints rep-
resent a illustrative subset of the extracted static consistency
constraints.

B. Dynamic Consistency Constraints

A dynamic consistency constraint mainly relates to the
prototype-based paradigm of AML: clone objects, e.g., IEs,
instantiate a particular prototype object (i.e., SUCs, IEs).
An AML object may represent either a clone or a prototype
object or both during existence. Dynamic consistency con-
straints cannot be ensured by the properties of the CAEX

metamodel. Instead, the support of such constraints has to
be provided by model validation or consistency management
frameworks. Table II presents an excerpt of the extracted
dynamic constraints.

Nr. Consistency Constraint

#1 If the prototype of a clone changes, this does not require
a change of the mirror object characteristics. The update
of mirror objects is a possible tool functionality.

#2 Changes in RCs shall be automatically reflected in refer-
encing elements.

#3 The derived class inherits all attributes and features of the
parent class.

#4 If an instance supports only one role, it shall be specified
using the CAEX attribute RefBaseRoleClassPath of the
RoleRequirement instead of using the SupportedRoleClass.

TABLE II: Overview of exemplary dynamic consistency
constraints in AML.

The first constraint (#1) deals with prototype-clone-
relations within AML. It leaves the consistency rigor be-
tween clones and prototypes to a possible tool functionality.
Since the clone element copies the respective prototypical
element including its properties during instantiation (see II-
A), changes of the prototype may lead to changes of the clone
enabling a full compliance between clones and prototypes.
The second constraint (#2) represents a specific subset of
the prototype-clone-relations. Unlike the previous constraint,
all RC specifications shall be copied to IEs that refer the
RC utilizing the CAEX attribute RefBaseRoleClassPath in
their corresponding RoleRequirement. Specifications of RCs
may be, for instance, the name of the RC or its attributes.
The third constraint (#3) represents a dynamic consistency
constraint regarding inheritance relations. Unlike possible
consistency rigor levels between prototypes and clones,
consistency between derived attributes and the respective
parent attributes is not only desired but necessary during the
evolution of the parent object.

V. VITRUVIUS FOR AML

In this section, we first explain how the VITRUVIUS
approach can generally be applied to preserve consistency
within the CAEX model. Especially, we focus on the im-
plementation of dynamic consistency constraints as these
are rarely supported by existing AML tooling and how to
support compliance between prototypes and clones. Second,
we reason on possible user interaction to decide on the
consistency rigor between prototypes and clones.

A. Consistency Preservation in AML

So far, we have explained the VITRUVIUS framework and
proposed the categorization of consistency constraints within
CAEX according to their static and dynamic property. To
explain how the model-driven consistency preservation of
the VITRUVIUS framework can be applied within the CAEX
model, we answer two main questions while referring to the
running example presented in Section III:

1) How to detect and repair inconsistencies within CAEX?
2) How to create a CAEX model in the VITRUVIUS

framework?

1) Detecting and repairing inconsistencies: Generally
speaking, the VITRUVIUS framework monitors changes of
models that instantiate particular metamodels and propagates
those changes to other dependent models based on predefined
consistency preservations. In contrast, consistency preserva-
tion of CAEX requires to apply the consistency preservation
mechanisms of VITRUVIUS within one particular model, i.e.,
the CAEX model. Since consistency specifications usually
define dependent or redundant information between different
metamodels, the consistency specifications for CAEX define
such information within the CAEX metamodel. Listing 1
represents a simplified consistency rule that will update the
reference of a clone to a prototype if the name of the
prototype changes.

1 reaction PrototypeNameChanged {
2 after attribute replaced at CAEX::SystemUnitClass

[name]
3 call {
4 if((affectedEObject instanceof InternalElement)

) return;
5 correctCloneReference(affectedEObject)
6 }
7 }
8 routine correctCloneReference(CAEX::SystemUnitClass

suClass) {
9 match {

10 val clones = retrieve many CAEX::
InternalElement

11 corresponding to suClass
12 }
13 action {
14 for(clone : clones) {
15 update clone {
16 clone.refBaseSystemUnitPath = CAEX.

updatePath(suClass)
17 }
18 }
19 }
20 }

Listing 1: Reaction to the change of a prototype name.

VITRUVIUS utilizes the specifically developed Reactions
Language [11] to preserve consistency by updating a model
instance after a particular model change performed by a user.
Line 1–3 represents the trigger step that defines a consistency
breaking change, and, therefore, requires an appropriate
reaction to repair the consistency. In this case, the occurred
change affects the name of a prototype represented by a
SUC (e.g., the Screwdriver). Line 5–17 involves the Reaction
routine that comprises consistency repair actions. Within
the match step (line 7–10), elements that correspond to the
element of the changed model are retrieved, e.g., the respec-
tive IEs representing the clones of the prototype (e.g., the
ElectricScrewdriver). Next, a repair action is implemented to
update the reference of the corresponding clone, particularly
the CAEX path attribute RefBaseSystemUnitPath (line 11–
15). Note, that a correspondence between a clone and a

prototype has to be defined beforehand in another reaction
to later retrieve the corresponding clones of a prototype.
Using the Reactions Language, both static and dynamic
consistency constraints can be defined along with respective
repair routines. We provide a prototypical implementation
of selected consistency constraints in the publicly available
VITRUVIUS repository1.

2) Creating the model: The EMF editor can be used
to define CAEX models in a tree-based view. The editor
supports the creation and deletion of model elements as well
as modifications of the model structure via drag and drop.
Furthermore, properties of model elements can be modified.
The VITRUVIUS framework monitors the EMF editor for any
kind of change that can be performed by a user on the CAEX
model. If the occurred change corresponds with a consistency
breaking change defined in a consistency specification, a
respective routine is executed to restore the consistency of
the CAEX model and updates the model respectively.

B. User Interaction regarding Consistency Rigor

Consistency preservation is not always a fully automated
process. User input will be required to appropriately prop-
agate information, if several options exist. In CAEX, this
especially applies to dynamic consistency constraints regard-
ing prototype-clone relations. As proposed by Berardinelli et
al. [2], different levels of consistency rigor may be desired
by a user:

• L0: Uncontrolled compliance occurs when a clone rep-
resents the exact same copy of a prototype only at the
moment of instantiation. Afterwards, the clone evolves
independently from the prototype.

• L1: Substantial compliance is stricter than the previous
level and allows clones to extend, restrict or redefine
attribute definitions of their respective prototype.

• L2: Full compliance is the strictest level where a clone
remains the exact same copy of a prototype during the
lifetime of the prototypical object.

In addition to the above mentioned levels, we propose
the L3: partial compliance which allows a particular subset
of clones to be either uncontrolled, substantial, or fully
compliant to the prototype. Table III presents an excerpt
of changes that can be performed a prototypical object and
respective user decision options regarding the consistency
rigor. The first change concerns the name of the prototypical
object. Considering our running example, the SUC name
Screwdriver may be changed to AutomatedScrewdriverSys-
tem. The user may decide whether to update references of all
clones (L2), of specific clones (L3) or of no clones (L0). In
case of L2, the VITRUVIUS framework updates the reference
attribute RefBaseSystemUnitPath of the clone to LibOfCom-
monTools/AutomatedScrewdriverSystem. The second change
deals with the deletion of a prototypical object, i.e., the SUC
Screwdriver. The user may either decide to delete all clones
(the ElectricScrewdriver) or to create a new prototype in

1https://github.com/vitruv-tools/Vitruv-Applications-
PlantEngineering

Prototype
Change Type

User Interaction Options

Name change
Update of all clone’s reference
Update of specific clones
Leave as is

Deletion

Delete all clones
Create new prototype
Delete specific clones
Leave as is

Attribute
change

Update of all clones
Update of specific clones
Leave as is

TABLE III: Overview of dynamic consistency constraints in
AML.

order to preserve full compliance (L2), delete specific clones
(L3) or not react to the change at all (L0). The third change
concerns all possible changes of the prototype‘s attributes
which can be the addition of an attribute, its deletion or the
change of an attribute value. For instance, the Screwdriver
may receive a new attribute defining its mass. Again, the user
may decide whether to update all clones (L2) with the new
attribute, update only specific clones (L3) or refrain from
consistency preservation completely (L0). Note, that we are
currently focusing on change propagation to clones based on
performed changes on prototypes.

VI. RELATED WORK

In this section, we focus on related work that targets
the dynamic and static consistency preservation in Automa-
tionML. Closely related to our work, Berardinelli et al. [2]
focus on model-driven consistency preservation between
prototypes and clones in AML and propose different lev-
els of consistency rigor (see: V-B). Similiar to our work,
the approach detects and repairs inconsistencies between
prototypes and clones by updating inconsistent clones. Ad-
ditionally, user interaction mechanisms are provided, i.e.,
annotation of inconsistent clones with warning messages that
provide additional information to reason about the occurred
inconsistency. Similiarly, VITRUVIUS provides information
about the occured inconsistency and, additionally, performs a
consistency repair operation based on the user’s decision. As
another significant difference, Berardinelli et al. utilize the
Eclipse Validation Language (EVL) [7] to define consistency
constraints for the different consistency levels. EVL, how-
ever, follows a state-based approach to determine changes
that can lead to inconsistencies while VITRUVIUS follows the
delta-based approach [3]. While the first approach determines
the performed changes by comparing two versions of a
model, the latter approach describes performed changes as a
sequence of atomic edit operations. State-based consistency
preservation approaches like the approach by Berardinelli are
less challenging to apply since consistency constraints can
be checked at arbitrary times for different model versions.
Change information, however, cannot be derived unam-
biguously from discrete states. Our change-driven approach
avoids this issue by enforcing consistency immediately after

https://github.com/vitruv-tools/Vitruv-Applications-PlantEngineering
https://github.com/vitruv-tools/Vitruv-Applications-PlantEngineering

a change occurs. Kovalenko et al. [8] compare semantic
web technologies and model-driven software engineering
(i.e., EVL and OCL) to provide reasoning capabilities like
constraint checking, data querying and data integration in
AML. Additionally, the authors propose an AML ontology
that reflects CAEX structures utilizing the Web Ontology
Language (OWL) to support data analysis activities. The pub-
licly available AML Analyzer [13] comprises the developed
AML ontology and allows the above mentioned reasoning
capabilities based on semantic web technologies. Although
both OCL and OWL enable the definition of consistency
constraints along with custom user messages and advanced
reasoning capabilities, they provide no possibility to repair
inconsistencies automatically or semi-automatically based on
user decisions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to detect
and repair inconsistencies in systems modelled with Au-
tomationML (AML). Therefore, we have extracted consis-
tency constraints from the publicly accessible AML Whitepa-
pers [17] that subsume the respective consistency spec-
ifications. We have classified the consistency constraints
according to their static and dynamic properties. While the
first constraint type represents invariants that must hold at
any point in time, the latter constraint type mainly relate to
the prototype-based paradigm of AML. We have explained
how the VITRUVIUS framework can be used to preserve
both types of consistency constraints automatically, taking
user decisions into account which are especially useful in
order to control the consistency rigor of dynamic consistency
constraints.

As future work, we plan to compare our implementation
of the consistency rules in VITRUVIUS with other imple-
mentations of the same rule set in other languages, e.g., the
Epsilon Validation Language (EVL, [7]). The goal of such
an evaluation will be to show that the rules can be expressed
more efficiently in Vitruvius than in other languages or plat-
forms. Furthermore, we will apply our approach within the
INTEGRATE project2 to ensure the consistency of a CAEX
model in a collaborative working environment. As part of
the project, we will also extend the inter-model consistency
relations to further metamodels involved in AML, such as
Collada and PLCOpen.

ACKNOWLEDGMENT
This work was partially funded by the Federal Ministry of

Economy and Energy (BMWi), following a decision of the
German Bundestag in context of the INTEGRATE project
(grant agreement 01MA17001B).

REFERENCES

[1] C. Atkinson, D. Stoll, and P. Bostan. 2010. Orthographic
Software Modeling: A Practical Approach to View-Based
Development. In: Evaluation of Novel Approaches to Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 206–219.

2http://www.integrate.ovgu.de

[2] L. Berardinelli, S. Biffl, E. Maetzler, T. Mayerhofer, and
M. Wimmer. 2015. Model-based co-evolution of production
systems and their libraries with AutomationML. In: 2015
IEEE 20th Conference on Emerging Technologies Factory
Automation (ETFA), pp. 1–8.

[3] E. J. Burger. 2013. Flexible Views for View-based Model-
driven Development. In: Proceedings of the 18th International
Doctoral Symposium on Components and Architecture. Van-
couver, British Columbia, Canada: ACM, pp. 25–30.

[4] Digital Asset and FX Exchange Schema. 2004.
https://collada.org. COLLADA.

[5] IEC 62714 – Engineering data exchange format for use in
industrial automation systems engineering – AutomationML.
N.d. www.iec.ch. 2014.

[6] International Electrotechnical Commission: IEC 62424 – Rep-
resentation of process control engineering – Requests in P&I
diagrams and data exchange between P&ID tools and PCE-
CAE tools. 2008. www.iec.ch.

[7] D. Kolovos, L. Rose, R. Paige, and A. Garcia-Dominguez.
2010. The Epsilon Book. Eclipse.

[8] O. Kovalenko, M. Wimmer, M. Sabou, A. Lüder, F. J. Ekapu-
tra, and S. Biffl. 2015. Modeling AutomationML: Semantic
Web technologies vs. Model-Driven Engineering. In: 2015
IEEE 20th Conference on Emerging Technologies Factory
Automation (ETFA), pp. 1–4.

[9] M. E. Kramer. 2014. Synchronizing Heterogeneous Models in
a View-Centric Engineering Approach. In: Software Engineer-
ing 2014 – Fachtagung des GI-Fachbereichs Softwaretechnik.
Vol. 227. Doctoral Symposium. Kiel, Germany: Gesellschaft
für Informatik e.V. (GI), pp. 233–236.

[10] M. E. Kramer, E. Burger, and M. Langhammer. 2013.
View-centric Engineering with Synchronized Heterogeneous
Models. In: Proceedings of the 1st Workshop on View-
Based, Aspect-Oriented and Orthographic Software Mod-
elling. Montpellier, France: ACM, 5:1–5:6.

[11] M. E. Kramer. 2017. Specification Languages for Preserving
Consistency between Models of Different Languages. PhD
thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology
(KIT). 278 pp. URL: http://nbn-resolving.org/urn:nbn:
de:swb:90-692845.

[12] PLCopen for efficiency in automation. 1992.
https://plcopen.org. PLCopen.

[13] M. Sabou, F. Ekaputra, O. Kovalenko, and S. Biffl. 2016. Sup-
porting the engineering of cyber-physical production systems
with the AutomationML analyzer. In: 2016 1st International
Workshop on Cyber-Physical Production Systems (CPPS),
pp. 1–8.

[14] T. Stahl, M. Voelter, and K. Czarnecki. 2006. Model-Driven
Software Development: Technology, Engineering, Manage-
ment. John Wiley & Sons.

[15] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
2009. EMF: Eclipse Modeling Framework 2.0. 2nd. Addison-
Wesley Professional.

[16] J. Warmer and A. Kleppe. 2003. The Object Constraint
Language: Getting Your Models Ready for MDA. 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

[17] Whitepaper AutomationML Part 1 – Architecture and general
requirements. 2014. AutomationML consortium. URL: https:
/ / www . automationml . org / o . red / uploads / dateien /
1485867599-AML_Whitepaper_Architecture_V2.0.0.zip.

http://www.integrate.ovgu.de
http://nbn-resolving.org/urn:nbn:de:swb:90-692845
http://nbn-resolving.org/urn:nbn:de:swb:90-692845
https://www.automationml.org/o.red/uploads/dateien/1485867599-AML_Whitepaper_Architecture_V2.0.0.zip
https://www.automationml.org/o.red/uploads/dateien/1485867599-AML_Whitepaper_Architecture_V2.0.0.zip
https://www.automationml.org/o.red/uploads/dateien/1485867599-AML_Whitepaper_Architecture_V2.0.0.zip

	Introduction
	Foundations
	AutomationML in a Nutshell
	Model-Driven Software Development
	The Vitruvius Framework

	Running Example
	Consistency Constraints in AML
	Static Consistency Constraints
	Dynamic Consistency Constraints

	Vitruvius for AML
	Consistency Preservation in AML
	User Interaction regarding Consistency Rigor

	Related Work
	Conclusion and Future Work

