
The Impact of Software Component Adaptors on
Quality of Service Properties

Steffen Becker and Ralf H. Reussner
becker@informatik.uni-oldenburg.de

reussner@informatik.uni-oldenburg.de

Software Engineering Group, University of Oldenburg
OFFIS, Escherweg 2, D-26121 Oldenburg, Germany

Abstract. Component adaptors often are used to bridge gaps between
the functional requirements of a component and the functional specifica-
tion of another one supposed to provide the needed services. As bridging
functional mismatches is necessary, the use of adaptors is often unavoid-
able. This emphasises the relevance of a drawback of adaptor usage: The
alteration of Quality of Service properties of the adapted component.
That is especially nasty, if the original QoS properties of the component
have been a major criteria for the choice of the respective component.
Therefore, we give an overview of examples of the problem and highlight
some approaches how to cope with it.

1 Introduction

A major aspect of component based software engineering is the composition
of applications by glueing together pre-produced components. Nowadays one
often has to struggle with problems associated to applying components, e.g., the
selection, assessment and inclusion of existing components. Even if we assume
for a moment that these problems had been solved, we realise that there is little
knowledge on how to build a component by composing several other components.
One is able to specify the functional behaviour of the composed component but
often only speculations on the non-functional aspects of the behaviour can be
given, even by experienced developers.

If there were information on the composed component gained from the at-
tributes of the components and the glue-code, used to make them work together,
then a prediction on the non-functional attributes of the whole would be possi-
ble. Those attributes can be retrieved for example from QML [1] specifications
of the investigated components. However, QML’s support for modelling compo-
sitional structures is bad. Therefore it seems to be necessary to enhance QML by
parametrisation, e.g., by introducing parametric contracts [2]. A similar intro-
duction of parametrisation for functional aspects can be found in [3]. But even if
not looking at compositional structures, QML has the drawback of not consid-
ering external influences of the component’s environment, e.g., it is impossible
to specify a constant performance if nothing is known about the hardware on
with the component is deployed later.

We aim at gaining insights in the way composed components work by inves-
tigating a special class of compositions called adaptors [4]. Adaptors are used to
change the interaction between two components in order to make them interop-
erate with each other (see figure 1).

A Adaptor B

Bridge Interoperability

Problem

Change QoS

in a predictable way

Fig. 1. Impact of Adaptors on QoS

Several classes of interoperability problems can be identified [5]. For some of
these classes there are quite some common solutions, i.e., adaptors solving the
interoperability issues. Using information from the analysis of these common
adaptors can lead to a prediction model of the QoS properties of the composed
components.

The position stated here is to investigate common adaptor solutions and to re-
search the adaptor’s impact on several QoS properties of the adapted component.
To be more specific, let’s assume that for a given component interface with ser-
vices s1, ..., sn the QoS properties are named si::pi. For example, s1::pservice time
specifies the service time of service s1. An side effect of an adaptor can now be
seen in its to change of that property. We aim at determining a function fadpi

giving the property value pi after deploying the adaptor. So we search for a fadpi

which fulfils the equation

ad1::pi = fadpi
(sext1 ::pi, ..., sextm ::pi)

where sext1 , ..., sextm are the required services of the adaptor needed to provide
service ad1 at its interface.

Additionally, we propose a deeper research of the inter-dependencies between
these QoS attributes. For example increasing the performance of a certain adap-
tor often results in a decrease in the maintainability of the respective code (see
the following section).

The statement is organised as follows. After this short introduction we cast
some light on the inter-dependencies mentioned before. Afterwards some exam-
ples are presented showing the expected results of the quality analysis. After
highlighting related work we conclude with a short summary of this statement
and future work in this area.

Component

service A

 property service time

 property reliability

 property memory consumption

 ...

service B

 property service time

 ...

Adaptor

service A’

 property service time’

 property reliability’

 property memory consumption’

 ...

service B’

 property service time’

 ...

2 Inter-Dependencies of Quality of Service Properties

Obviously, there are inter-dependencies between the Quality of Service proper-
ties of software artefacts. E.g., many code-refactorings lower the performance but
maintainability is obviously increased. There is no exception to software com-
ponents from this rule of thumb. It holds for intra-component changes as well
as for changes done to a component by the application of external adaptation
mechanisms like the insertion of component adaptors.

Considering practical problems where adaptors are used, one often thinks
of adaptors changing the signature part of a component’s interface - either by
changing or renaming existing methods or by adding some additional methods
needed by the client components. Usually these adaptors downgrade most of
the QoS attributes in order to reach functional interoperability. For example
an adaptor transforming record like data structures to a XML based notation
imposes a performance decrease wrt. the time and memory used.

But this is only one possible application of adaptors - but probably the most
common one. Consider introducing encryption on a communication channel. You
can install a secure channel by adding an encrypting adaptor on the sender side
and a decrypting adaptor on the receiver side. Functionality is the same as when
using unencrypted channels but the quality aspect of security has been increased.
But again, the increase of the security on the communication channel imposes a
performance disadvantage as the de- respectively encryption routines use CPU
time and memory to do their calculations.

It seems to be always the same schema: increasing one attribute and decreas-
ing performance. But that is not true in all cases. Imagine an adaptor replicating
a software component to several host machines and then dispatching calls to the
replicated components instead of calling the non-replicated component directly.
A small amount of CPU time is consumed by the adaptor to do its internal
dispatching but overall the performance is expected to increase as the load is
shared by different CPUs hosting the service. Additionally, the reliability can
also be increased by this scenario as a single machine crashing is not leading

to a denial-of-service. But consider that the system still denies services if the
machine hosting the adaptor fails. It is quite easy to imagine a lot of possible
combinations - but there are only a few approaches trying to predict the Quality
of Service of those combinations. Especially for project manager this informa-
tion is crucial because the different QoS capabilities should be judged against
the costs implied by the selection of a certain design.

Ongoing case studies at our group investigate those interdependencies from
an empirical point of view and from a formal modelling viewpoint. We are look-
ing at the impact of signature adaptation mainly with respect to performance,
maintainability and reuseability. The idea is to use interface information spec-
ified in more detail than just simple signature lists. Crucial for this study is
the usage of a mapping between the names, parameters and their types, excep-
tions, etc. in order to match the requires-interface with the provides-interface of
a service offering component.

Another study aims at using protocol and concurrency information in order
to build concurrency adaptors which are used when concurrent calls to a single
component might interfere with each other. We use the previous study as pre-
requisite which allows us to assume that components already fit on the signature
level. We aim at researching the impact of the different locking strategies and
the number of concurrent clients on the QoS attributes. A suite of generators is
used to generate different adaptors which can then be deployed so that timing
measurements can be performed and evaluated.

3 Related Work

Component based software engineering was proposed already in 1968 [6]. Nev-
ertheless, the focus on systematic adaptation of components in order to bridge
interoperability problems is still a field of research. Most papers are based on
the work done by Yellin and Strom [4, 7] who introduced an algorithm for the
(semi-)automatic generation of adaptors using protocol information and an ex-
ternal adaptor specification. Canal et. al propose the use of some kind of process
calculus to enhance this process and generate adaptors using PROLOG [8, 9].

Schmidt and Reussner present adaptors for merging and splitting interface
protocols and for a certain class of protocol interoperability problems [10]. Be-
sides adaptor generation, Reussner’s parameterised contracts also represent a
mechanism for automated component adaptation [2]. Additionally, Kent et al.
[11] propose a mechanism for the handling of concurrent access to a software
component not built for such environments.

Vanderperren et al. have developed a tool called PaCoSuite for the visual
assembly of components and adaptors. The tool is capable of (semi-)automatic
adaptor generation using signature and protocol information [12].

A common terminology for the prediction of Quality of Service of systems
assembled from systems is proposed in [13]. A concrete methodology for predict-
ing .NET assemblies is presented in [14]. Nevertheless, none of this approaches
has a specialised method for including adaptors in their predictions.

An overview on adaptation mechanisms including non-automated approaches
can be found in [15, 16] (such as delegation, wrappers [17], superimposition [18],
metaprogramming (e.g., [19])). Bosch [15] also provides a general discussion on
requirements to component adaptation mechanisms. Not all of these approaches
can be seen as adaptors as used in this paper. But some of the concepts presented
can be implemented in adaptors as shown here.

4 Conclusion

The inclusion of explicit knowledge on component adaptors in QoS prediction of
component based systems can increase both, speed and precision of the respec-
tive models. Especially when using adaptor generator tools (e.g., like in [12])
information on the impact of the adaptor on the adapted component’s QoS can
be determined in advance. This also leads to a more reliable component selection
process as adaptation of the component is included in component assessment.
Future research is directed in gaining insights on how certain concrete generated
adaptors change QoS in a predictable way.

5 Open Issues

Open issues in this field of research can first be seen in prediction models for
quality attributes. Existing methods are not commonly used because of their
complexity and insufficient tool support. It needs future research on how the
explicit inclusion of component adaptors helps in this process.

Additionally, there is very few knowledge on the inter-dependencies of QoS
attributes. What is the effect of introducing a protocol adaptor on performance?
How much decrease in speed do we expect when introducing additional security
on a communication channel?

A last question results from a pattern oriented point of view. Are there any
patterns for component composition or adaptation? A good starting point for
a discussion can be seen in the adaptor or facade patterns introduced by the
Gang of Four [17]. The identification of such patterns might render useful for
producers of adaptor generator tool suites.

References

1. Frølund, S., Koistinen, J.: Quality-of-service specification in distributed object
systems. Technical Report HPL-98-159, Hewlett Packard, Software Technology
Laboratory (1998)

2. Reussner, R.H.: Automatic Component Protocol Adaptation with the CoCoNut
Tool Suite. Future Generation Computer Systems 19 (2003) 627–639

3. Becker, S., Reussner, R.H., Firus, V.: Specifying contractual use, protocols
and quality attributes for software components. In Turowski, K., Overhage, S.,
eds.: Proceedings of the First International Workshop on Component Engineering
Methodology. (2003)

4. Yellin, D., Strom, R.: Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages and Systems 19 (1997) 292–333

5. Becker, S., Overhage, S., Reussner, R.: Classifying software component interop-
erability errors to support component adaption. In: Proceedings of the 7. CBSE
Workshop. Lecture Notes in Computer Science, Springer Verlag (2004) To appear.

6. McIlroy, M.D.: “Mass produced” software components. In Naur, P., Randell, B.,
eds.: Software Engineering, Brussels, Scientific Affairs Division, NATO (1969) 138–
155 Report of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968.

7. Yellin, D., Strom, R.: Interfaces, Protocols and the Semiautomatic Construction of
Software Adaptors. In: Proceedings of the 9th ACMConference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA-94). Volume 29, 10
of ACM Sigplan Notices. (1994) 176–190

8. Bracciali, A., Brogi, A., Canal, C.: Dynamically Adapting the Behaviour of Soft-
ware Components. In: Coordination. Volume 2315 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin, Germany (2002) 88–95

9. Bracciali, A., Brogi, A., Canal, C.: Systematic component adaptation. In Brogi, A.,
Pimentel, E., eds.: Electronic Notes in Theoretical Computer Science. Volume 66.,
Elsevier (2002)

10. Schmidt, H.W., Reussner, R.H.: Generating Adapters for Concurrent Component
Protocol Synchronisation. In: Proceedings of the Fifth IFIP International confer-
ence on Formal Methods for Open Object-based Distributed Systems. (2002)

11. Kent, S.D., Ho-Stuart, C., Roe, P.: Negotiable interfaces for components. In
Reussner, R.H., Poernomo, I.H., Grundy, J.C., eds.: Proceedings of the Fourth
Australasian Workshop on Software and Systems Architectures, Melbourne, Aus-
tralia, DSTC (2002)

12. Vanderperren, W., Wydaeghe, B.: Towards a new component composition process.
In: Proceedings of ECBS 2001 Int Conf, Washington, USA. (2001) 322 – 331

13. Hissam, S.A., Moreno, G.A., Stafford, J.A., Wallnau, K.C.: Packaging predictable
assembly. In: Proceedings of the IFIP/ACM Working Conference on Component
Deployment, Springer-Verlag (2002) 108–124

14. Dumitrascu, N., Murphy, S., Murphy, L.: A methodology for predicting the per-
formance of component-based applications. In Weck, W., Bosch, J., Szyperski, C.,
eds.: Proceedings of the Eighth International Workshop on Component-Oriented
Programming (WCOP’03). (2003)

15. Bosch, J.: Design and Use of Software Architectures – Adopting and evolving a
product-line approach. Addison-Wesley, Reading, MA, USA (2000)

16. Reussner, R.H.: Parametrisierte Verträge zur Protokolladaption bei Software-
Komponenten. Logos Verlag, Berlin (2001)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, USA (1995)

18. Bosch, J.: Composition through superimposition. In Weck, W., Bosch, J., Szyper-
ski, C., eds.: Proceedings of the First International Workshop on Component-
Oriented Programming (WCOP’96), Turku Centre for Computer Science (1996)

19. Kiczales, G.: Aspect-oriented programming. ACM Computing Surveys 28 (1996)
154–154

