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Abstract. Using model-to-model transformations to generate analysis models
or code from architecture models is sought to promote compliance and reuse
of components. The maintainability of transformations is influenced by various
characteristics - as with every programming language artifact. Code metrics are
often used to estimate code maintainability. However, most of the established
metrics do not apply to declarative transformation languages (such as QVT Re-
lations) since they focus on imperative (e.g. object-oriented) coding styles. One
way to characterize the maintainability of programs are code metrics. However,
the vast majority of these metrics focus on imperative (e.g., object-oriented) cod-
ing styles and thus cannot be reused as-is for transformations written in declara-
tive languages. In this paper we propose an initial set of quality metrics to evaluate
transformations written in the declarative QVT Relations language. We apply the
presented set of metrics to several reference transformations to demonstrate how
to judge transformation maintainability based on our metrics.

1 Introduction

Model transformations are often used to transform software architectures into code or
analysis models. Ideally, these transformations are written in special transformation lan-
guages like QVT [17]. With an observable increase in the application of Model-Driven
Software Development (MDSD) in industry and research, more and more transforma-
tions are written by transformation engineers. Thus an increasing set of transformation
scripts have to be maintained in the near future, i.e., they demand to be understood by
other developers, bugs need to be tracked down and removed, and enhancements need
to be implemented because of evolving source or target meta-models.

Today there are two main streams of model-to-model transformation languages:
imperative (or operational) and functional (or relational) languages. For imperative
languages like QVT Operational we can reuse existing literature about software code
metrics for imperative, e.g. object oriented, languages. However, for relational model-
transformation languages like QVT Relations there is not even a comparable amount of
literature. In this paper we report on early experiences gained in our group on applying
QVT Relations. They show that understanding relational transformations turns out to be
quickly a difficult task. The difficulties increase more than linearly when transformation
sizes increase and single relations become more complex.



In traditional object-oriented software development software metrics are used as a
means to estimate the maintainability of code [2]. The estimated maintainability then
indicates when the code base becomes too hard to maintain. Software developers take
corrective actions like refactorings [7] or code reviews to keep the code in a maintain-
able state. However, these metrics do not yet exist for relational model transformation
languages. Nevertheless, some initial research targets metrics for functional program-
ming languages in general like Lisp or Haskell. Being part of the same language family,
some metrics for functional programming languages can serve as a starting point for the
definition of metrics for declarative model-transformation languages. In this paper we
try to draw upon their ideas in defining our own set of metrics for model-transformation
languages.

As an initial step towards estimating the maintainability of functional model trans-
formation languages, we present a set of metrics usable to get insight into the main-
tainability of QVT Relations transformations. For this, we analysed existing metrics
for functional programming languages and combined them with general code metrics
(like Lines of Code (LOC)) and complemented them with our own experiences from
applying QVT Relations. This set of developed metrics shall finally serve as a basis to
judge internal transformation quality and to guide the development of transformation
refactorings or review checklists (i.e., a list of bad smells to look for). We evaluated our
metrics on the standard model-transformation example given by the QVT standard: the
transformation from UML models to entity-relationship models to show that the metrics
(a) are computable and (b) give insight into the transformation’s internal quality.

The contribution of this paper are metrics to evaluate aspects of the maintainability
of QVT Relational transformation scripts. These metrics are described in detail and their
ranges of “bad” values are characterized including a rationale explaining which type
of maintainability problem the metric detects. An early case study shows the metrics’
applicability and initial evaluation results.

The paper is structured as follows. After discussing the properties of transformation
languages in Section 2, we give an overview of related work to our approach in Section
3. Section 4 introduces identified quality metrics for transformations and Section 5 il-
lustrates how to systematically compute the values for quality metrics. To demonstrate
the applicability of our approach we introduce a case study in Section 6. We discuss the
limitations and validity of the approach in Section 7. Finally, Section 8 concludes the
paper and highlights future research directions.

2 The Group of Relational Transformation Languages

The goal of our work is to quantify the maintainability of model transformations. There-
fore, we start by defining suitable metrics in this context. We identified a lack of quality
metric definitions for relational transformation languages in the literature. Hence, in
this paper, we focus on model transformations created using QVT Relational (QVT-R),
but we assume that our metrics can be applied to model transformations created using
other relational transformation languages as well. The main observed difference be-
tween relational and operational (i.e., imperative) languages is the fact, that operational



transformation languages describe a sequence of statements to create certain output. In
contrast, relational transformation languages only describe the relations between input
and output of a transformation in a declarative manner, not the way how it is computed
(non-determinism). This results in special characteristics of relational transformation
languages which have to be reflected by the metrics to be defined.

2.1 QVT Relational

QVT Relational is part of the QVT standard [17] and used for describing model trans-
formations in a declarative manner. This means the transformation itself is written as a
set of relations that shall be satisfied during the transformation process. As QVT Re-
lational is multidirectional, there is no single source and target model but a list of so
called candidate models. Each of these candidate models can be chosen as a target of
the transformation, identifying the execution direction. When the transformation is in-
voked in a selected execution direction only the target model is modified such that all
relations hold.

1 top relation ClassToTable {
2 cn : Str ing ;
3 pref ix : Str ing ;
4 checkonly domain uml c : SimpleUML: : UmlClass {
5 umlNamespace = p : SimpleUML: : UmlPackage {} ,
6 umlKind = ’ Per s i s t en t ’ ,
7 umlName = cn
8 };
9 enforce domain rdbms t : SimpleRDBMS: : RdbmsTable {

10 rdbmsSchema = s : SimpleRDBMS: : RdbmsSchema { } ,
11 rdbmsName = cn ,
12 rdbmsColumn = cl : SimpleRDBMS: : RdbmsColumn {
13 rdbmsName = cn + ’ t i d ’ ,
14 rdbmsType = ’NUMBER’ } ,
15 rdbmsKey = k : SimpleRDBMS: :RdbmsKey {
16 rdbmsColumn = cl : SimpleRDBMS: : RdbmsColumn{}}
17 };
18 when {
19 PackageToSchema(p , s ) ;
20 }
21 where {
22 ClassToPkey (c , k ) ;
23 pref ix = cn ;
24 AttributeToColumn (c , t , pref ix ) ;
25 }
26 }

Listing 1.1. Example of QVT Relational.

An example QVT-R transformation is given in Listing 1.1. A relation has two or
more domains, that are given as patterns on the candidate models. The pattern usually



includes an object graph pattern, properties and associations between objects and de-
fines a variable binding for each pattern match. By using the same variables in different
domain patterns we can define the relation between candidate models. In consequence
the target model is modified for each found pattern binding not being fulfilled to the
extent that the relation holds. Beyond that, a relation can have when and where clauses
that specify pre- and post-conditions. A relation only has to be satisfied when all pre-
condition relations contained in the when clause are satisfied. In a similar manner each
relation contained in the where clause has to be fulfilled when the relation containing
the clause is fulfilled. Furthermore a target domain can be marked as checkonly, i.e. the
target domain model is only checked for consistency and not modified. Besides this,
relations are marked as enforce by default, thus insisting on the application of model
changes for relations that do not hold. A relation can be marked as top-level. This means
that the relation has to hold in any case for a successful transformation, while any non-
top-level relation only has to be satisfied when directly or transitively referenced from
a where clause.

2.2 General Observations on Maintainabilty of QVT-R Transformations

QVT-R can be applied for example in transformations between languages, code gen-
eration and incremental or refinement transformations. One main advantage of QVT-R
is its brevity and conciseness. In the QVT-R language the structure of transformations
is mainly characterised by the interdependencies of its relations. On the other hand
relations can be defined in a way that they match overlapping sets of elements. Con-
sequently, this increases complexity in cases when a new relation is introduced and it
is influenced by other relations. For example, let transformation T be defined as a set
of relations R, R = {a, b, c, d}. Suppose we want to extend T with a relation e, but e
depends on a result of a and a depends on a result of both b and c, while c depends on d.
Thus, we first need to understand how relations a, b, c and d are related in order to cor-
rectly include e into the transformation. In the case of more complex transformations it
is very hard to have all dependencies in mind. Because of this net of dependencies it is
hard to say if a new introduced relation conflicts with other relations or influences them
in an undesired way. One possible design of relational transformation could be cluster-
ing of relations that match or create the same element (clustering of top-level relations).
Furthermore, the identification of possible execution paths, how long they usually are
and what they dependend on, is a very complex task.

3 Related Work

Quality metrics have been studied already to measure quality (software quality was de-
fined by [3]) of object-oriented software [6, 12, 19], software architectures [1, 21] and
design [15]. Metrics to estimate the maintainability of software are mostly based on
measuring the size and complexity of code. Depending on the employed programming
languages (functional, imperative, etc.) different metrics need to be employed for this
task. The most relevant group of metrics for our approach is derived from related work



in the area of functional languages, such as the metrics defined by Harrison et al. in
[11]. The group of relational transformation languages is related to functional program-
ming languages, therefore we can reuse the existing functional metrics, similar to [22],
in combination with some metrics used for object-oriented languages. However, Amstel
et al. [22] focuses on model transformations created using the ASF+SDF transforma-
tion language. Most of these metrics are, however, quite generic and could be applied to
nearly arbitrary functional programming languages. Nevertheless they do not take into
account the special character of relational transformations, such as their strong align-
ment to the source and target metamodels. Still, some of these metrics can be used to
measure certain aspects of model transformations written in QVT-R. We adapted some
of the metrics to the special requirements of the QVT-R transformation language and
extended them by the addition of more specific metrics (especially the group of man-
ual metrics). Furthermore, we automated the gathering of the majority of the metrics
presented in this paper.

In [8] initial considerations for transformation metrics based on a classification of
transformation features [4] and a goal question metric plan were presented. However,
these ideas were still in a very early stage and were not elaborated down to the special
needs of different groups of transformation, such as relational transformations. Reynoso
et al. [18] analysed how the complexity of OCL expressions impacts the analysability
and understandability of UML models. As OCL is also part of QVT-R these findings
are relevant for our approach. However, the remaining part of relational transformations,
apart from OCL expressions, cannot be analysed using this approach. A special way of
gathering a maintainability metric based on the occurrence of frequent patterns within
a model or transformation was presented in [14]. The presented metric is based on
a pattern mining approach that detects the most frequently occurring constructs. The
assumption made in that paper is based on cognitive psychology, which says that the
human brain works like a giant pattern matching machine and therefore can process
things that re-occur often, more easily. Thus we incorporated this metric into our suite.
Using OCL for the definition of metrics was introduced by Abreu in [5]. However, the
approach presented there did not cope with metrics concerning the maintainability of
transformations at all.

4 Metrics Definition

This section introduces metrics for measuring the quality of model transformations cre-
ated using relational transformation language, such as QVT-R. For each metric we give
a description, including a brief motivation. We also include the rationale behind the
metric giving insights in why we believe the metric indicates the maintainability of a
transformation. Additionally, we include a way for the computation (if possible using
QVT-R and OCL) of the introduced metrics.

4.1 Automated metrics

In this section we will discuss the metrics derived for QVT-R that can be automatically
computed. We identified four categories: Transformation Size metrics, Relational met-
rics, Consistency metrics and Inheritance metrics. In the following sections we will give



the names, descriptions and rationales of the automated metrics. Table 1 then gives the
computation directions using OCL for the presented automated metrics.

Transformation Size metrics The size of the transformation has an impact on the un-
derstandability of a transformation. The size of a whole transformation can be measured
in several ways. The number of lines of code, for instance, is a simple metric measuring
the pure code size of a transformation. This is comparable to measuring lines of code
in programming languages. Comments and blank lines are also included in this metric.
The number of code, comment and blank lines can also be viewed separately. Used in
conjunction with other metrics we can derive valuable measures of a transformation,
e.g. when compared to the number of top level relations.

The number of relations is a metric that can be used to derive the degree of frag-
mentation and modularisation of a transformation. Higher number of relations can be
considered better, as it is an indicator for a high degree of modularisation. A high de-
gree of modularisation can support the maintainability of a transformation and also the
reuse of a transformation or parts of it. The number of top level relations gives a picture
about the independent parts of a transformation. A top level relation is a starting point
for a transformation and can trigger the execution of other relations. An execution of
a transformation requires all top level relations to hold. The ratio of top level relations
to non-top level relations shows the rate between independent and dependent parts of
a transformation. An interesting metric is number of starts defined by the number of
top relations without when-clause. A higher number of starts increases the number of
possible execution paths and therefore makes the transformation less maintainable. The
metric number of domains expresses the complexity of a transformation dependent on
the number of match patterns. The number of domains predicates additionally gives in-
formation about the complexity of these patterns. The number of when-predicates and
the number of where-predicates defines how complex the dependency graph between
relations is.

The number of metamodels in a transformation has an impact on the complexity of
the transformation itself and its match patterns. The size of the metamodel (defined by
a number of classes) on which the relations match elements might also have a great
impact on the structure and therefore on the understandability and modifiability of the
transformation. The larger the metamodel the larger the set of possible instances of
this metamodel. Therefore, more combinations may have to be considered in the match
patterns of the relations.

Relational metrics The size of a transformation relation can be measured in different
ways. The OMG specification of QVT states that a relation has one or more domains
and that every domain has a domain pattern that consists of a tree of template expres-
sions. The size of a relation can be expressed in terms of its number of domains or the
depth of the domain patterns. Additionally, relations can define when and where predi-
cates giving pre- and postconditions. This leads to three different metrics for measuring
the size of a relation: Number of domains , Number of when/where predicates, Size of
domain pattern per domain. Another derived metric, the ratio between the size of the
relations and the number of relations might also give hints about the maintainability of
the transformation itself. However, the direction of the metric (e.g., for better maintain-



ability) remains to be evaluated. For example, having many but small relations helps
to understand the transformation punctually, for specific relations. However, grasping
the interconnections of many small relations is also a tedious and error-prone task, thus
leading to the conclusion that having larger but fewer relations may be also good for
maintainability. Still, defining a functional dependency between size and number of re-
lations in a transformation might give hints on the maintainability of the transformation.

The metric average number of local variables per relation additionally gives indica-
tions on the dependencies within a relation that a developer needs to grasp when trying
to understand and modify the relation. A measurement for the complexity of the inter-
connections between relations is the average number of arguments in the form of its
domains and the number of variables that are bound by calls to other relations in when-
or where- predicates. These metrics are denoted val-in and val-out. Note that in QVT-R
val-in is always the same as number of domains. A high number of val-out means that
a relation is strongly dependent on the context, which might decrease the reusability of
a relation.

Relations generally depend on other relations to perform their task. The dependency
of a relation R on other relations can be measured by counting the number of times re-
lation R uses other relations or queries. These dependency metrics are denoted fan-in
and fan-out, where fan-in is the number of calls to R and fan-out is the number of re-
lations that are called by R. A high value of fan-in indicates that the relation is reused
quite often and therefore is highly reused or somehow more central to the overall trans-
formation. A high value of fan-out means that a relation uses a lot of other relations
or functions (maybe delegates functionality to library queries), again making the rela-
tion more “central”. The metric number of enforce/checkonly domains expresses a rate
of change between the domains of the relation (e.g., source and target domain). The
metric expresses the number of possible match patterns by the number of checkonly
domains and the level of change provided by a relation (a number of diverse change
patterns) by the number of enforce domains. The complexity of a transformation may
furthermore be affected by the number of OCL helpers and number of lines/restricted
elements per OCL query, which encapsulate more complex behaviour.

Consistency metrics A high degree of inconsistency in the transformation is a rea-
son for confusion during development and may lead to reusability and transformation
completeness problems. To detect an inconsistency in a transformation we introduce a
number of consistency metrics. An example of inconsistency could be a relation that
was not completed during development. Such a relation could be identified as a relation
without domains, with only one domain or with domains without predicates. There-
fore, we defined the metrics number of relations without domains, number of relations
with singular domains and number of domains without predicates. An additional met-
ric for the detection of incomplete relations is the number of unused variables. Unused
variables pollute the code and complicate navigation within the transformation.

The already introduced consistency metrics are easy to automate. Another quite
generic but still interesting metric is number of clones. However, the automation of this
metric is a research field by itself. This metric identifies code duplicates, which are,
as in other fields of code maintainability, candidates that impact maintainability of the
code.



Inheritance metrics QVT-R transformations can extend each other and override rela-
tions from parents. Inheritance metrics measure the level of inheritance of the transfor-
mation and its complexity. The balance metric shows size and distribution of transfor-
mation functionality between children. This metric is calculated as a ration between a
number of relations, domains and equations per child transformation in comparison to
the average.

In a similar way as in object-oriented programming the dependency of children on
their parents can be measured by counting the number of transitive parents per child
and number of direct/transitive children per parent. Based on these metrics and the fan-
in and fan-out metrics we can get a view of the dependencies between relations in the
different transformations (create a dependency graph). The metric number of overrides
gives information on how many relations from a parent transformation were overridden
by a child relations. The larger this value gets, the more effort has to be invested into un-
derstanding which parts of the transformation hierarchy are actually used (combination
of non-overridden (inherited), overridden and additional non-inherited parts).

4.2 Manually gathered metrics

In the following, we describe metrics that are not gathered fully automated but require
manual or semi-automated analysis to determine the actual value of a metric.

Similarity of relations (frequent patterns) The Similarity of relations (frequent pat-
terns) indicates how many similar patterns can be found in a transformation. A large part
of the complexity of a transformation and on an model abstract model of the transfor-
mation comes through the need to understand patterns that occur within these models.
The more complex a transformation is the harder it is to maintain it. Thus, to be able
to grasp the complexity of transformations, we propose to emulate human information
processing through pattern mining on models. Human analysis of software products is
conducted either top-down or bottom-up according to [16]. Using a top-down approach
the analyst tries to apply his/her knowledge about design and domain to classify the
software product under analysis. In order to do this he/she tries to gain an overview of
the whole application. He/She will then successively pick selected software segments
and determine their relevance for his current mental model of the software. Using a
bottom-up approach the analyst will start reading comments of source code or other
software artifacts. The control flow of certain sections will then be inspected sequen-
tially and arbitrary selected variables will be traced throughout the flow. Especially in
declarative transformation languages this is a difficult task as there is no explicit con-
trol flow. The information gained will be integrated to a mental software model which
is the opposite to the top-down approach. Masak [16] notes that top-down analysis is
being conducted more often by experts whereas bottom-up analysis is being used more
often by novice analysts. These findings give strong indication that experts may have
abstract mental patterns at hand which are being used for analysing the software prod-
uct whereas novices must resort to documentation. If analysability is measured in terms
of time to analyse parts of a software product the required time will be low if the anal-
ysed parts dominantly adhere to the expert’s patterns. On the other hand the time will
be very high, if the expert can apply only a few of his/her patterns or the software



heavily differs from patterns known to him/her. These general observations were also
stated for visual patterns in [20] which is why we propose to incorporate them into an
analysability metric.

This metric can be computed by using the frequent pattern mining algorithm pre-
sented in [14] to identify possible frequent patterns. From these candidates the relevant
patterns can be selected and their similarity can be estimated. However, the result of
these pattern mining is mostly a superset of frequent patterns as they would be found
by a human. Thus, manual selection needs to be performed to see whether each of the
most frequent patterns is really a pattern that occurs as repeating structure in the trans-
formation or if it is just the result of constraints on e.g., the transformation metamodel.
For example, in QVT Relations a frequent pattern that is the result of the language con-
cept would be that each relation domain has a root variable which refers to a meta-class
that is contained in the package referred to by the domains typed model (see [17] for the
QVT Relations metamodel). However, this construct in inherent to QVT relations and
is not a frequent pattern that would be relevant for the analysability of a transformation.
Thus, this metric cannot be computed fully automatically but needs an additional man-
ual filter action. For example, a result of this metric could be that 30% of all relations
of a transformation employ a pattern involving the matching or creation of a certain
tree structure consisting of specific types of model elements within the source or target
model. As humans are pretty good in pattern matching, a developer would then be able
to recognise this combination over and over again thus helping him/her to more easily
understand these 30% of relations.

Number of relations that follow a design pattern The Number of relations that follow
a design pattern may be another important indicator for transformation maintainability.
However, the determination of this metric is a tedious manual task as a design pattern
is an abstract concept. It may occur in a form that can only vaguely be identified. The
number of design patterns employed in the transformation may be a strong indicator on
how good a transformation can be understood by external readers. However, as the area
of transformation development is still quite immature only few design patterns have
been identified yet. To determine this metric we need to count the number of design
patterns and their occurrences within the transformation. For example, if a transforma-
tion uses the Marker-Relation Pattern[9] throughout its whole implementation and a
developer knows what that pattern is used for he or she can grasp the meaning of the
transformation more easily.

Type Cut Through Source/Target Metamodel The metric Type Cut Through Source/-
Target Metamodel represents the rate of overlapping rules with respect to the transfor-
mation’s metamodels. The type cut concerning a metamodel is the set of patterns that
match instances of the same parts of a metamodel. In the UML to RDBMS example
from the QVT standard (from which an excerpt in shown in Listing 1.1) the type cut
concerning the meta-class UmlClass would be all those relations that contain a pattern
that matches any UMLClass. The greater this overlap is, the more attention has to be
paid when patterns of relations are modified in order to not lose coverage of possible
instances of the metamodel.

To compute this metric we need to count the number of relations that overlap over
the same part of a metamodel. For example, Relations a, b and c can all match instances



of the same meta-class m. Thus the overlap rate concerning class m would be 3. Finding
type cuts that only refer to a certain element of the metamodel, such as one meta-class m
can be done straight-forward. However, it might be more interesting more fine-grained
patterns that are matched using several different relattions. How such a detailed type
cut can be identified remains target to future research.

5 Computation of metrics

Fig. 1. Computation of metrics workflow.

The automated metrics described in section 4.1 can mostly be expressed as OCL
expressions on the QVT-R meta-model. These OCL expressions can be used to count
the number of elements of a specific type, for instance the number of relations a trans-
formation has. The expressions have to be evaluated in the context of a transformation
or a relation depending on wether a transformation local or relation-local metric is cal-
culated. Table 1 shows the OCL expressions used for calculating the metrics. To bring
these metrics together, relation local metrics can be aggregated by calculating an aver-
age.

1 query countSubExps(templ:QVTRelation: :TemplateExp) : Integer
2 {
3 i f (templ.oclIsTypeOf (QVTTemplate: :ObjectTemplateExp) )
4 then templ.oclAsType(QVTTemplate: :ObjectTemplateExp) . part−>iterate (p:QVTRelation

: :PropertyTemplateItem; acc: Integer = 1| acc + countSubExps(p.value .
oclAsType(QVTRelation: :TemplateExp) ) )

5 else
6 i f (templ.oclIsTypeOf (QVTTemplate: :CollectionTemplateExp) )
7 then countSubExps(templ.oclIsTypeOf (QVTTemplate: :CollectionTemplateExp) .member

.oclAsType(QVTRelation: :TemplateExp) ) )
8 else
9 1

10 endif
11 endif
12 }

Listing 1.2. Query function for calculating the domain predicate count.

For more complex metrics like the domain pattern tree depth it was necessary to
write more complex OCL query functions. Listing 1.2 shows an OCL query function



for recursively counting the nodes of a domain pattern tree. To easily apply all metric ex-
pressions and query functions, we developed a QVT-R transformation that transforms a
QVT transformation to a special metrics model. The metrics metamodel allows for com-
pact storage of metrics for every relation in a transformation and for the transformation
itself. Moreover, it is possible to store the aggregated values that are also calculated by
our metrics transformation. Furthermore, for measuring the lines of code we utilised
common methods used for programming languages. We distinguished whitespace, pure
comment and code lines. Figure 1 shows the workflow for retrieving the metrics.

6 Case study

In this section, we demonstrate how the introduced metrics give insight into the quality
of transformations. We illustrate the applicability of our metrics generation approach
and discuss the results. For this purpose, we present a case study based on an evaluation
of three different transformations.
MOM (Message-oriented-Middleware) Completion Transformation This refinement
transformation integrates performance-relevant details into software architectural mod-
els. These details are woven as additional subsystems into the model of architecture.
The MOM completion transformation is dependent on the input from a mark model [4]
that configures how the actual architecture model should be refined. The configuration,
defined by the mark model, provides the variability to the transformation. For example,
if a connector is to be refined by message-passing the mark model can provide informa-
tion about the type of messaging channel, e.g., using guaranteed delivery. For further
details on this transformation we refer to [13, 10]. Because this transformation is par-
tially generated (includes copy relations for all metamodel elements, these relations are
generated by the Ecore2Copy Transformation) we analyse this transformation twice:
once with generated part and once without. The source and target model of this trans-
formation are based on an underlying component-based metamodel with the size of 110
classes. This transformation is used as a representative of the group of quite complex
transformations.
Ecore2Copy Transformation This transformation is a so called Higher-Order Trans-
formation (HOT), as it generates another transformation. This specific HOT is used to
generate a default copy transformation for a given metamodel by producing a copy rela-
tion for each class and each property of the given metamodel. This is required because
there is no copy operator in QVT Relational. For further details on this transforma-
tion we refer to [9]. The source model of this transformation is the Ecore metamodel
having 31 classes and target metamodel is the QVT Relations metamodel itself with
the size of 110 classes. This transformation is used as a representative of the group of
medium-complex transformations.
UML2RDBMS Transformation This transformation is presented in the QVT specifica-
tion as an example relational transformation [17]. The UML2RDBMS transformation
transforms UML class models into RDBMS tables. The minimum UML source meta-
model contains 6 classes and the target RDBMS metamodel has a size of 18 classes.
This transformation is used as a representative of the group of very simple transforma-
tions.



Name OCL expression
Transformation t
Number of relations t.rule→ size()
Number of top level relations t.rule→ select(oclAsType(QVTRelation::Relation).isTopLevel)→ size()
Number of starts t.rule→ select(oclAsType(QVTRelation::Relation).isTopLevel

and oclAsType(qvtrelation::Relation).when→ isEmpty())→ size()
Number of when t.rule→ iterate(r:qvtbase::Rule;sum:Integer = 0|

sum + r.oclAsType(qvtrelation::Relation).when→ size())
Number of where t.rule→ iterate(r:qvtbase::Rule;sum:Integer = 0|

sum + r.oclAsType(qvtrelation::Relation).where→ size())
Number of metamodels t.modelParameter→ size()
Number of OCL queries t.ownedOperation→ size()
Relation r
Number of domains r.domain→ size()
Number of enforced domains r.domain→ select(isEnforcable)→ size()
Number of checkonly domains r.domain→ select(isCheckable)→ size()
Number of when-predicates r.when.predicate→ size()
Number of where-predicates r.where.predicate→ size()
Number of local variables r.variable→ reject(v | TemplateExp.allInstances().bindsTo.includes(v))→ size()
Val-In see number of domains
Val-Out Set{r.when} → including(r.where).predicate→ collect( p | collectVariableArguments

OfRelationCallExps(p)).variable→ asSet()→ size()
Fan-In RelationCallExp.allInstances().referredRelation = r
Fan-Out Set{r.when} → including(r.where).predicate→ collect( p | collectRelationCallExps(p))

.referredRelation→ asSet()→ size()

Table 1. Automated metrics



The results of this case study have shown that the generated transformation (Gen-
MOMCompletion) in contrast to the transformation without the generated parts (MOM-
Completion) has a higher number of small relations. Additionally, the complexity of
match patterns is not high and the complexity of pattern matching is distributed on a
number of relations (Figure 2). Thus, we see how the rate of domain pattern nodes per
relation decreases significantly if the simple copy rules are added.

Transformation MOMCompletion, intuitively categorised as a complex transforma-
tion, shows a much higher values in average domain pattern tree depth as well as the
average number of domains and when-predicates per relation(Figure 3). Interestingly,
the number of where-predicates increases diametrically opposed. This may indicate
that different approaches for defining the overall transformation have been employed.
Moreover, where-predicates indicate a somehow “forward” (thus also more imperative)
executed transformation whereas more when- predicates indicates a more declarative
way of the whole transformation design. Which of these designs is more maintainable
remains to be evaluated. However, using these metrics a connection between these find-
ings could be underlined.

GenMOM- MOM- Ecore2- UML2
Completion Completion copy RDBMS

Lines of Code 7582 1304 473 239
Clean code 5789 1104 416 181
Comments 220 65 13 4
Number of relations 488 23 17 8
Number of top level relations 330 12 8 3
Number of starts 99 1 1 1
Number of OCL queries 20 21 1 1
Number of when-predicates 233 13 9 5
Number of where-predicates 221 5 12 13
Number of metamodels in transformation 3 3 3 2
Average number of domains per relation 2.11 4.652 2,76 2,5
Average number of domain pattern nodes per relation 2.63 14.78 11.529 2
Average number of when-predicates per relation 0.9 1.7826 1 0.63
Average number of where-predicates per relation 0.49 0.87 1.82 1.63
Average number of local variables per relation 0.001 0.478 1.05 2.375
Val-in per relation 2.63 14.78 11.529 2
Val-out per relation 2.3 4.45 3.66 3.12
Fan-in per relation 1.12 1.67 1.34 0.78
Fan-out per relation 1.02 1.34 1.2 0.7
Average number of checkonly domains per relation 1.04 2.09 0.714 1
Average number of enforce domains per relation 1.08 2.5652 2.47 1

Table 2. Automatically calculated metrics



The ratio between the number of top level relations and non-top level relations is the
smallest in case of the generated transformation (1:1). This means a higher utilisation
of top level relations. The generated transformation takes an advantage from a higher
number of execution paths possible in the transformation and is not tuned to limit the
number of starts in order to support maintainability. This also makes sense as the parts
generated for the copy transformations are not intended to be maintained manually
anyway.
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Fig. 2. Results: Transformation Complexity

In general, our observation is that roughly half of the relations are top-level rela-
tions. We can distinguish a pattern showing that a transformation was written manually
by a human based on the number of starts as it seems natural for a human mind to
consider only one execution path.
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7 Limitations and Validity

The definition of metrics with the goal to estimate quality attributes, such as maintain-
ability, always comes with the wish to indicate whether a lower or a higher value of a
metric is better or worse. However, this decision cannot be made without a sound va-
lidation of the “meaning” of a metric. For example, having a low number of relations,
at first glance, seems to be good for maintainability whereas a high number seems to
be bad. On the other hand, if these few relations are very long they may be harder to
maintain that more but smaller relations. Thus, in this paper we only identified what
could be possible indicators that may resemble maintainability of transformations. We
intentionally did not decide, for most of our metrics, which “direction” of a metric is
good or bad concerning maintainability. We leave it to future work to determine and
evaluate this meaning. Thorough empirical evaluations need to be performed in order
identify how meaningful each metric is.

8 Conclusions and Future Work

In this paper we presented an initial set of code metrics to evaluate the maintainability
of QVT Relational transformations. However, such metrics could be applied to differ-
ent relational transformations, they play important role when considering architecture
refinement transformations. We demonstrated the use of these metrics on a set of ref-
erence transformations to show their application in real world settings. The presented
metrics help software architects to judge the maintainability of their model transforma-
tions. Based on these judgments, software architects can take corrective actions (like
refactorings or code-reviews) whenever they identify a decay in maintainability of their
transformations. This results in higher agility when changing metamodels of software
architectures or their platforms, which together with metamodel build basis for trans-
formation definition. Future work is twofold. First, the identified metrics need to be
incorporated into tools which indicate the code quality while developing the transfor-
mations in an IDE. Examples of such tools for object-oriented languages are Project
Usus or Checkstyle . Second, the metrics must be empirically validated to study the ex-
tent to which they indicate decay in maintainability of transformations written in QVT
Relational. Further some additional metrics could be identified as needed during this
process, e.g. such as metrics for recursive relations and transformation cycles.
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