Carl von Ossietzky University of Oldenburg
DFG Graduate School “TrustSoft”
http://trustsoft.uni-oldenburg.de

26111 Oldenburg
Germany

Seminar “Dependability Engineering”, Summer term 2005

Operational Profiles for Software Reliability

Heiko Koziolek
6th July 2005

Abstract

Software needs to be tested extensively before it is considered dependable and trustworthy.
To guide testing, software developers often use an operational profile, which is a quantitative
representation of how a system will be used. By documenting user inputs and their occurrence
probabilities in such a profile, it can be ensured that the most used functions of a system are
tested the most. Test cases can be generated directly out of an operational profile. Opera-
tional profiles are also a necessary part of quality-of-service prediction methods for software
architectures, because these models have to include user inputs into their calculations.

This paper outlines how operational profiles can be modelled in principle. Different kinds of
usage descriptions of software system have been developed and are summarized in this article.

1 Introduction

1 Introduction

Characteristics of dependable software systems are correctness, reliability, availability, performance,
security and privacy. Reliability is defined as the probability that a system will perform its intended
function during a specified period of time under stated conditions. A common metric to measure
reliability is mean-time-between-failure (MTBF'). To achieve a high MTBF and to be considered a
reliable system, software has to be tested extensively.

As testing can almost never assure a complete test coverage, an efficient way of testing has
to be found. An operational profile is a quantitative representation of how a system will be used
[Mus93, MFIT96]. It models how users execute a system, specifically the occurrence probabilities of
function calls and the distributions of parameter values. Such a description of the user behaviour
can be used to generate test cases and to direct testing to the most used functions. Thus, a
practically high reliability of the tested system is achieved.

Descriptions of the user behaviour as in an operational profile can also be used for other purposes
than software testing. The performance and correctness of systems can be analysed and systems
can be efficiently be adopted to specific user groups. If developed early, an operational profile
may be used to prioritise the development process, so that more resources are put on the most
important operations. It might even be possible to apply an ”operational development”, meaning
that the most-used features of a system are released earlier than other features. An operational
profile improves the communication between customers and developers and makes customers think
deeper about the features they would like to have and their importance to them.

In the following a short survey on different operational profiles or usage models for software
systems is provided. The differences and limitations of the approaches are described, as well as
further applications of usage models.

This paper is organised as follows: Section 2 elaborates on the operational profile approach
by Musa by describing the modelling process, listing problems and limitations and introducing
extensions to this type of operational profile. Section 3 deals with another form of usage model,
namely models based on Markov chains. Additionally, two methods of Markov chain based usage
models especially for software components are presented in this section. Section 4 lists applications
of operational profiles other than analysing software reliability, and section 5 concludes the paper.

2 Operational Profiles

2.1 Musa

One of the most refereed papers about the development of operational profiles is from John Musa
from AT&T Bell Laboratories [Mus93]. His company develops operational profiles to guide the
testing of systems. With an operational profile, a system can be tested more efficiently because
testing can focus on the operations most used in the field. It is a practical approach to ensure that
a system is delivered with a maximized reliability, because the operations most used also have been
tested the most.

Musa informally characterises the benefits-to-cost ratio as 10 or greater. In 1993 AT&T had
used an operational profile successfully for the testing of a telephone switching service, which
significantly reduced the number of problems reported by customers. Hewlett-Packard reorganised
its test processes with operational profiles and reduced testing time and cost for a multiprocessor
operating system by 50%. Although the effort may vary, Musa estimates the effort for creating
an operational profile for a typical project with 10 developers, 100000 lines of code and 18 month
development time as about one staff month.

The development process of the operational profile as described by Musa successively breaks
down system use into five different profiles (follow Figure 1 from top to bottom). A profile is a

2 Operational Profiles

Customer
Profile

User Profile

System-mode Profile

Functional Profile

o Number of fuctions e Environmental variables
« Explicit vs. Implicit ¢ Final function list
« Initial function list « Occurrence probabilities

Operational Profile

« Divide execution into runs e Partition input space
« Identify input space e Occurrence probabilities

Test-Case Selection

Figure 1: Development Process of an Operational Profile [Mus93]

set of disjoint alternatives with a probability for each item. If service X occurs 90% of the time
and service Y occurs 10% of the time the operational profile consists of X,90% and Y,10%. The
operational profile is designed by progressively narrowing the focus from customers to operations.

The first four profiles (customer, user, system-mode, functional) are on the design level of a system
while the last profile (operational) is on the implementation level and deals with the actually coded
operations of a system. For smaller applications it may not be necessary to design each of the first
four profiles. For example, if there is only one customer of the software, there is no need to design
a customer profile.

Participants of the development process of the profile are system engineers, system designers,
test planners, product planners and marketing professionals. Usage data is either available from
similar or older system or has to be estimated, for example based on marketing analysis or on the
developers experience. The level of detail of the profiles should mainly be dependent on the expected
financial impact, but is — in practice — often defined based on informed engineering judgement.
The granularity of the profile can also vary for different parts of the system in relationship to their
importance.

In principle, the development of the operational profile is not bound to a specific design method-
ology or programming language. The design documents may be UML diagrams or result of a
structured analysis, and it is possible to create operational profiles for systems programmed object-
oriented or imperative.

In the following each of the five profiles is described with more detail.

2.1.1 Customer Profile

A complete set of customer groups with corresponding occurrence probabilities makes up the cus-
tomer profile. Customers are persons, groups, or institutions that purchase a system. They can

2 Operational Profiles

but need not to be the users of the system at the same time. Customers in a customer group use
the system in the same way. For example, companies with an equal number of employees may use
a telephone switching system in the same way because they have the same number of users even
though their businesses are different.

Information about the customer profile for new systems must be obtained from marketing by
analysing related systems and including the anticipated changes because of the new features in the
new system. A simple example for a customer profile would be two customer groups (small and
large companies) with respective occurrence probabilities of 70% and 30%.

2.1.2 User Profile

A complete set of user groups with corresponding occurrence probabilities makes up the user
profile. Users are persons, groups, or institutions that use a system. They can but need not to
be the purchasers of the system at the same time. Users in a user group use the system in the
same way. The user profile can be derived by taking the customer profile and determining the user
groups for each customer group. Resembling user groups of different customer groups should be
combined.

Examples for user groups are system administrators, maintenance users, regular users etc. User
groups are usually related to job roles of employees and their numbers might be obtained by
counting the job roles for a customer group. The overall occurrence probabilities for user groups
can be obtained by multiplying the probabilities for each user group of a customer group with the
occurrence probability of that customer group. If user groups are combined over different customer
groups, their probabilities will have to be added. A simple example with the input of the customer
profile from above (70% small company (SC), 30% large company (LC)) and 90% regular users
(RU) and 10% administrator (AD) in each customer group would result in a user profile of 63%
(70% * 90%) SC-RU, 7% SC-AD, 27% LC-RU, and 3% LC-AD.

After the user profile has been developed the development of the subsequent profiles can be
delegated to different persons, one user group for each developer.

2.1.3 System-mode profile

A complete set of system-modes with corresponding occurrence probabilities makes up the system-
mode profile. System-modes are sets of functions (design level) or operations (implementation level)
that are grouped for a more convenient analysis of the execution behaviour. It is possible to have
system-modes that can only be used if no other system-modes are active, but it is also possible to
have multiple simultaneous system-modes. The allocation is in the developers’ responsibility.

Examples for characteristics of system-modes are user group (administration mode versus regu-
lar mode), environment conditions (overload traffic versus normal traffic, initialization versus nor-
mal operation), criticality (nuclear power plant controls versus logging functions), user experience
(newbie versus expert), or hardware components (functions executed on server 1 versus functions
executed on server 2). System-modes can be used to represent the increasing experience of users
after introducing a new system.

2.1.4 Functional Profile

A complete set of functions with corresponding occurrence probabilities makes up the functional
profile. For Musa a function is a task or part of work of a system as defined during the de-
sign. Functional profiles are usually designed during the requirement phases or during early design
phases. Later, functions have to mapped to operations, which capture a specific behaviour on the
implementation level.

2 Operational Profiles

. bonoans
(20%)
. sdd vioans ok tolk
7 {10%) {30%))_,/ {80%) (40%)
™ } (10%)
i
{ e \“dlbm wrf \“ﬂ
e o 0%
T {10%)
\ ot
\ it
\{35%: o
infint b.noons
{35%) {10%)
abbrev L10ONS

ok ok
o NG e

y

ons hold
(60%) HO%\
: wl

conf

(10%) (60%)

Figure 2: Example of an implicit functional profile [Mus93]

Before designing a functional profile it is often helpful to construct a work-flow model capturing
the overall processes and the context of the system (i.e. software, hardware, people). To create a
functional profile the system modes have to be broken down into single functions. The functional
profile is independent of the design methodology and for example might be used for object-oriented
or procedural designs.

The number of functions in a functional profile is typically between 50 and 300. Criteria for
breaking down a system task into two functions are the possibility to develop them with different
priorities and the differences in frequency of use. Commands and parameters values are called
input variables. Two functions may consist of the same command but different parameters values,
because there is a significant difference in the use of value range of the parameters. Input variables
that separate functions from each other (in the former case the parameter values) are called key
input variables. The granularity of the functional profile depends on the information available
during early development stages and the projected amount of costs for a higher precision.

A functional profile may be explicit or implicit. An explicit profile includes a cross-product of all
key input variables with their possible values and occurrence probabilities, while an implicit profile
consist of sets for the values of each key input variable with the respective occurrence probabilities.
Suppose two key input variables A and B with two possible values for each variable. The explicit
profile would be [(Al, B1), (A1, B2), (A2, B1), (A2, B2)|, while the implicit profile would be [A1, A2]
and [B1, B2|. Implicit profiles (consisting of the sum of input variables) are smaller but only possible
if the key input variables are independent (see example in Figure 2). A disadvantage is that there
is no direct selection of input state for the test cases within an implicit profile. Explicit profiles
(consisting of the product of input variables) are larger, but allow a direct identification of test
input states. A combination of an explicit and implicit profile is also possible.

The initial function list contains those functions that are most relevant to the users. In a next step
the environmental variables such as hardware configurations and traffic loads have to be collected

2 Operational Profiles

during a brainstorming session of the developers. In Musa’s work, environmental software such as
operating systems or background processes are not considered as environmental variables. After
identifying relevant environmental variables, the final function list can be created, which includes
the dependencies between key input variables and environmental variables.

The occurrence probability for each function in the final function list can be obtained in different
ways. If a similar system or even an older release of the software is available, that system can be
monitored and the probabilities can be gathered by measurements (e.g. by looking into system
logs). If the system under development is new, the probabilities have to be estimated by the
developers, which possibly results in an inaccurate functional profile.

2.1.5 Operational Profile

A complete set of operations with corresponding occurrence probabilities makes up the operational
profile. Operations, as opposed to functions, are actually implemented tasks of a system, while
functions are tasks of a system on the design level. The functions of the functional profile evolve
into operations of the system, but the mapping is sometimes not simply one to one. Normally
the number of operations is higher than the number of functions, as a single function may be
implemented by multiple operations. It is also possible for a set of functions to map to different
set of operations. The refinement level of operations is higher, because they include a task with
specific input values and value ranges.

To develop the operational profile runs are defined, which divide the execution time of a program.
Runs are initiated by a specific user intervention or input state and represent an end-to-end user
activity. A run type is formed by identical runs. For example the function ”change article” in
an online-shop may be broken down into two runs, one deleting an article and one adding a new
article. Each run type possesses a set of input variables that are used during the run, the so-called
input state.

The input space of a program is the set of input states that appear during the system’s execution
and is normally very large, yet finite. The design input space is different from the required input
space a program must be tested for, which also contains conditions like heavy traffic or error
handling. A list of input states and the corresponding occurrence probabilities has to be defined
for an input-state profile. A complete input-state profile normally cannot be defined in practice.
Instead a specified input space is defined by listing the involved input variables and their finite
number of possible values ignoring the variables with an occurrence probability of zero.

Run types can be grouped into operations and the portion of input space associated with an
operation is called a domain. By grouping run types the number of profiles is reduced, which leads
to fewer costs but also to less efficient testing. This trade-off has to be considered when designing
operational profiles. The partitioning of the input space by identifying domains of operations
simplifies the later test generation.

As with the functional profile, there are two way to determine occurrence probabilities: by record-
ing input states in the field with similar system or by estimating the values on basis of the occurrence
probabilities of the functional profile. For the recording, a general recording tool may be developed
which just uses an interface to each application. The estimations should be done by experienced
system designers and also reviewed by experienced users.

2.1.6 Test Selection

With the occurrence probabilities of the operational profile, test cases can be selected efficiently
because the most used operations will be tested the most.

If an explicit operational profile has been designed, the test cases can be selected straightforward.
If an implicit operational profile has been designed, key input variables and their corresponding val-

2 Operational Profiles

ues have to be chosen according to their occurrence probabilities, thereby identifying the operations
that must be tested. If concurrent system-modes (for example user mode and maintenance mode)
occur in the system, it is sensible to also run tests simultaneously to include their interactions in
the test. The sequence of operations during the test should be randomized to reduce the bias of
the test. Operations that need a special sequence (e.g. a file first has to be opened, then can be
read out) should be defined as super-operations.

The number of run categories can be further reduced by only including sequences of two subse-
quent input variables and excluding sequences of more than two input variables. When conducting
regression tests on a system, not only the changed operations should be tested but also all the other
operations to reduce the possibility of cross-effects.

2.1.7 Further Issues

A lot of additional research about operational profiles has been conducted. Musa reports, that
the error in failure intensity is more than 5 times lower than errors in estimating occurrence prob-
abilities of functions [Mus94]. This implies that developers do not have to put a high effort in
precisely determining occurrence probabilities, because the accuracy of these values is not propor-
tionally bound to the failures of the tested systems. Woit specifically described the specification of
operational profiles, test case generation, and reliability estimation for software modules [Woi94].
Avritzer and Weyuker presented test case generation algorithms for operational profiles and per-
formed load testing for several industrial software systems [AW95]. Cukic et. al. developed another
technique for reducing the sensitivity of failure rates to errors in the occurrence probabilities of
an operational profile [CB96]. Bishop showed how reliability bounds can be rescaled in relation to
changes in the operational profile [Bis02]. He found out, that it is possible to derive test profiles
that are insensitive to a varying operational profile.

2.2 Problems and Limitations

In 2000, Whittaker and Voas [WV00] argued for a rethinking of the operational profile and identified
two major problems.

First, using an operational profile emphasises testing the function, which are predicted to be the
most used ones. But in practice users tend not to stay on the path the developers have prepared for
them and often use software in an unconventional and unintended way. Functions, for which the
developers expected lesser use, might not be tested enough if an operational profile has been used
for testing. Thus, using the software in an unintended way decreases reliability rapidly if testing
was based on an operational profile. Operational profiles should not only be modelled after the
typical user but after all users.

Second, interactions with the software, which are not initiated directly by the user, are not ex-
plicitly modelled by an operational profile. Following Musa, operational profiles contain a small
number of single environmental variables, which represent an oversimplified modelling of the in-
fluences on the software. Not only the user creates input to the software, but also the operating
system, for example if it signals for the use of resources. Software does not executed isolated on a
computer, but other applications usually are running in the background competing for resources.
In fact, most parts of the software do not interact with humans, but with device drivers and oper-
ating system APIs. Furthermore, humans normally only interact with input device drivers and not
with the software itself. The configurations of hardware devices and of other software applications
running on the same system influence the behaviour of the software, but are not captured by the op-
erational profile. The operational profile is incomplete and should include more informations about
its environment, especially the operating system, other applications, and system configurations. An
appropriate abstraction level should be kept in mind when modelling the environment, otherwise

2 Operational Profiles

the operational profile would only be valid for a single machine with a specific configuration.

Voas’ ideas for countering the second problem can be found in [Voa00]. For him, an operational
profile should be defined as the set of events a software receives plus the set of inputs generated
by external hardware and software that the software is expected to interact with. To collect
the second set of inputs, he suggests to monitor the systems of pre-qualified users, who use the
software that shall be tested. For this approach, a prototype or older release of the software has to
be available. The software is extended with automated processes that collect usage informations
on the computers of the users, of course only with the users’ consent. For example data about
hardware and software configurations might be obtained from the registry on Windows systems.

To ensure anonymity and privacy of the users participating in such a data collection, Voas pro-
poses the establishment of a middleman organization called Data Collection and Dissemination
Lab (DCDL). Not the software developer, but only the DCDL would directly receive user informa-
tions and only in an encrypted form. The DCDL would anonymise the data and filter out faulty
and unusable data. Additionally, it would ensure that the population of users participating in the
test was representative. The resulting data would then be sent to the software developers, who
could test the software more extensively, because they then would have a clearer picture in which
environments the software will be executed.

2.3 An Extended Operational Profile

Recently, Gittens [Git04, GLBO04] tried to solve some of the operational profile’s problems like the
missing inclusion of the software environment and developed several extensions to the classical
approach. This extended operational profile consists of a process profile, a structural profile and a
data profile.

e Process Profile: Captures processes and their frequencies of a typical usage of the software
and is basically the same as Musa’s operational profile

e Structural Profile: This profile on one hand tries to characterise the data structures of the
application and its configuration. On the other hand the profile includes a description of the
software and hardware environment of the software.

The data structures of the application are characterised by so-called measurable quantities.
Usually they are numerical numbers for the size of a data structure. For example, measurable
quantities for a two-dimensional array would be the number of rows and the number of
columns. Measurable quantities may change with different configurations of the software or
over the course of time. The term data structure does not only refer to arrays, trees or linked
lists here. Furthermore, complexer structures like ADTs or modules can also be described
with measurable quantities. It is for example also possible to characterise web pages by the
number of text fields, buttons, frames etc. Which measurable quantities should be included
into the operational profile is the developer’s choice. After they are defined, the quantities
are recorded by running instances of the software on different systems. Statistics like mean
values, median or standard deviations can then be derived from the collected data.

Some data structures might also be characterised by a fixed number of states, so-called
categorical quantities they are operating in. For example, a data structure with an overflow
flag, which may be set to ON, OFF, and PENDING, has this flag as an categorical quantity
with three associated values. The frequencies of occurrences of the different states can be
recorded.

Additionally, the structural profile includes a vector of variables characterising the hardware
environment and a vector of variables characterising the software environment. Gittens et.
al. have applied the extended operational profile in an industrial case study, but do not

3 Usage Models based on Markov Chains

reveal the concrete values of the hardware and software characterising variables to ensure the
privacy of the software vendor’s testing and user environment.

In conclusion, the structural profile consists of measurable quantities with statistical values,
categorical quantities and hardware/software characteristics.

e Data Profile: This profile is not concerned with the structure of data, but with the actual
values variables can be assigned to. A data profile for a database could contain the most
occurring data types, the size of single table fields and the value ranges of table columns. As
the number of possibilities for values is normally almost infinite, a high-level view of the data
has to be developed, which is the data profile. Values are always recorded for one instance of
the software. For each instance, the data profile consists of a number of variables from one
particular data type, the value ranges for each data type and the largest data length for each
data type from the perspective of the user. These measures are taken from the concepts of
boundary value analysis in black-box testing.

As it is difficult and time-consuming to obtain all of the data needed for such an extended
operational profile manually, Gittens et. al. have developed a toolkit assisting designers. As noted
before, the authors applied their approach on an industrial case study and, using their toolkit,
needed eight person hours to collect the necessary data.

3 Usage Models based on Markov Chains

Operational profiles as in Musa’s approach do not explicitly consider the dependencies between
different inputs to a software system. An operational profile is structured like a tree, with oper-
ation calls as the leafs and probabilities on the branches. Not included are relationships between
consecutive calls, also known as protocols. For example if a specific call always requires a certain
predecessor (e.g. openFile() has to be called before writeFile()), this can not be expressed
explicitly by the operational profile.

3.1 Whittaker, Poore

Whittaker et. al. [WP93] have proposed using Markov-chains for modelling sequences of inputs
to a software system. Like Musa they describe usage for the purpose of generating test cases and
to guide software testing statistically. Ultimately, the reliability of a system shall be improved
by extensively testing the most-used functions. The software system is viewed as a black box,
which receives stimuli from the outside. In particular sequences of stimuli representing traces of
the software execution are of interests to the authors. These sequences directly represent test cases
and can be used in a random experiment, which is conducted for the statistical software testing.
To describe the test cases, a set of random variables is used, which models the complete set of
sequences the user can execute.

A sequence of events can be expressed as a stochastic process. In this approach finite state,
discrete parameter Markov chains are used to model the sequences. The states of the Markov
chain represent inputs to the software system, while the arcs imply an ordering of the inputs and
are annotated with probabilities. The Markov property adds that for each arc, the next state is
independent of all past states given the present state. An advantage of using Markov chains is the
rich body of theory with analytical results and computational algorithms.

The development process of the Markov chain is divided into two steps: the structural phase
and the statistical phase. During the structural phase, a state is created for every possible action
the system is able to receive. Arcs are added to connect consecutive actions. The design of the
structure is creative process, as there is no algorithm to support this phase. An example for the

3 Usage Models based on Markov Chains

=
D

RO CON @
Invocation ouse f
@ Termination

Figure 3: Exemplary Markov model after structural phase [WP93]

result of the structural phase for the manipulation of a window in a graphical user interface can be
found in Figure 3.

After the structure of the Markov chain has been established, probabilities are assigned to the
arcs during the statistical phase. There are three methods to do this:

e Uninformed approach: If no information about the expected probabilities is present, this
approach is the only possibility. The exit arcs of each state are assigned with a uniform
probability distribution. This results in a single unique model, but is not a close resemblance
of the actual probabilities.

e Informed approach: If a prototype or older release of the software system is available,
the informed approach can be used. User behaviour can be monitored, and the measured
frequency counts of taking each arc in the Markov chain can be converted into transition
probabilities. This approach may lead to different models depending on the monitoring data.

e Intended approach: If no similar system is available, at least the experienced designer is
often able estimate the expected transition frequencies with a careful and reasonable analysis
of the user behaviour. This is the intended approach, which also results in different Markov
chains depending on the designer.

The corresponding probabilities to the window example from Figure 3, which have been deter-
mined during the statistical phase, can be seen in Figure 4.

Using Markov chains yields the advantage, that several analytical descriptions of the test cases
can be made based on the model. For example the number of states necessary before reaching a
certain state or the mean first passage time can be calculated out of Markov chains.

Whittaker and Poore used their approach on a simple spreadsheet program, for which the iden-
tified 90 states and over 200 arcs. Additionally, they created a usage model for the IBM DB2
database, which consisted of more than 2000 states, yet the models were still analytically tractable.
It has to be kept in mind that even small software systems can have a large input space, so that a
Markov chain with many states has to be created. But even then, the authors assume a manageable
computational effort for the analysis of these model.

3.2 Wohlin, Runeson

Wohlin and Runeson [WR94]| also use Markov chains for usage modelling, specifically for the reli-
ability engineering of software components. Their usage model is divided into an usage structure

10

3 Usage Models based on Markov Chains

Table I, Statistical Phase—Assigning the Transition Probabilities

From-State To-State Frequency Probability
Invocanon Window 6 1
ﬁ:ﬁ z: ﬁ f’fu:g: i :; E Captured or hypothesized sequences:
1. <Invocation><Window > < Maamize > < Window > < Close >

Window Move 2 1/6 <Termination™
%mnzzx ‘é L!z:se z :g 2. <Invocation> <Window > <Miumize > <lcon > <Restore > < Window >
Misimios Window 1 1 <Close><Termunation >
Mtz T, i i 3. <Invacanuzf > <Window > <Move> <Drag Mouse><Down > <Drag-
Teon Restore 1 1 Mouse> <ngh(>. <Drag Mouse><Down><Drag Mouse > < Window>
Restore Window i 1 <Close> = Terminanon >
Move Drag Mouse 2 1 4. <Invocation><Window > <Size><Drag Mouse > <Left><Drag-
Size pin: epmm 5 4 Mouse > <Up > <Drag Mouse> <Left><Drag Mouse > <Window >
D Mo Wi i s <Close > < Termination >
Drag Mouse Up 1 115 5. <Invocation> <Window > <Move> < Drag Mouse > <Down> <Drag-
Ihagiitouse Down s e Mouse><Left> t:Dmg Mouse><Down><Drag Mouse > <Window >
DRl Mose Left 3 s <Close> < Terminanon >)
e Moige Right 2 215 6. <Invocanon. > <Window > <Size > <Drag Mouse><Down><Drag-
Up Drag Mouse 1 i Mouse> < Right> < Drag Mouse> <Window > < Close > < Termination >
Down Drag Mouse 5 1
Left Drag Mouse 3 1
Right Drag Mouse 2 1
Close Termination 6 1

- 1

Termunation Invocaton
Figure 4: Exemplary probabilities for Markov chain after statistical phase [WP93]

containing possible sequences of service calls and a usage profile containing probabilities of control
flow branches. The overall aim of this work is to provide a basis for the certification of components
in terms of reliability measures for certain usage models. The approach of certification consists of
5 steps:

1. Modelling of the usage structure

2. Modelling of the usage profile

3. Generation of test cases out of the usage model

4. Execution of test cases and collection of failure data

5. Certification of reliability and prediction of future reliability

The usage models by Wohlin and Runeson describe the user behaviour for a complete system
as well as for individual components from an external view. Users may be either human beings or
other components. Because the usage model is divided into usage structure and usage profile the
model can be easily reused. For example by changing the probabilities of the profile while retaining
the usage structure the usage model can be adapted for a different system context.

A hierarchical Markov model, the so-called state hierarchy model (SHY) is used for the repre-
sentation of the usage model. A disadvantage of using Markov models is the possible exponential
growth of the state space and thus the intractability of these models, if they are applied to complex
software systems. To cope with the state space explosion the SHY models consists of five levels,
and the behaviour of single services can be described separately before being composed into one
big model (Figure 5).

The usage structure can be divided into different user types (for example regular users and
administration users). From the user type level the behaviour of single users can be modelled.
For each user a number of services of a components is being described, and for each service the
individual behaviour is being described as a Markov model on the lowest level of the SHY model.
The interaction of different services can be modelled on this level be creating links from one Markov
model to another.

11

3 Usage Models based on Markov Chains

Usage Level

User Type Level

User Level

Service Level

Behaviour Level

Figure 5: State hierarchy model [WR94]

After modelling the usage structure, each branch in the usage model is assigned with a probability,
thereby adding the usage profile. The values for the probabilities must be derived from similar
systems including expected changes, from the experience of the developers or from the expected
usage of the system as described in the system’s specifications. Probabilities are normally static,
but also can be dynamic, expressing the fact that some events are more probable under certain
conditions. Because it may be impossible to determine usage profiles reflecting the exact execution
of a components, it is more important to find reasonable probability relations.

Test cases can be generated by going top-down through the SHY model randomly selecting users
types, single users, services and the corresponding Markov models. After additionally generating
input parameters, the stimulus of a Markov model on the behaviour level can then be added to a
test script. This procedure can be performed iteratively to gain a high coverage of the usage model.

The certification is carried out by proposing a hypothesis, which states if a specific MTBF
requirement can be met with a specific degree of confidence. The goal of testing the component is
to find out whether the hypothesis can be accepted or rejected. If the hypothesis is neither accepted
nor rejected during the testing process, testing has to continue until the needed degree of confidence
is reached. For the certification the failure number (r) is plotted against the normalized failure time
(t) (Figure 6). Normalizing of the failure time is done by dividing the failure time by the required
MTBEF. Testing is performed as long as the measured data points fall into the ”continue” region
and terminated, if the data points fall into the ”accept” or "reject” region. More details about the
hypothesis certification can be found in [MIOS87].

New components can be certified for a particular usage profile with specific reliability measures.
The reliability measures can be stored into a component repository with the component, so that
third-party-users have a guiding value when assessing the component for possible use in their
architecture. However, the certified measures may not be reused blindly, because the usage profile
the component has been specified against is arbitrary and normally cannot be replicated exactly by
a potential user of the component. The component user has to take his special usage characteristics
into account when assessing the true reliability of the component. For example, the component
user can change the probabilities of the usage profile and re-certify the component for his usage
context. By certifying components against more and more usage profiles, the trust into reusing
these components will be increased, because the components have been tested for a large number
of usage contexts.

12

4 Other Applications of Operational Profiles

1

Continue

5] Accept

Figure 6: Control chart for hypothesis certification of the reliability [WR94]

3.3 Shukla, Carrington and Strooper

A recent approach specifically for usage modelling of software components built on the work by
Whittaker and Poore, and used probabilistic statecharts (Figure 7) to describe the usage structure
and profile [SCS04]. With the use of statecharts, the authors hope to overcome the state explosion
problem of Markov chains, which often become intractable for larger system. Yet they do not
explicitly show the advantages of this modelling formalism. This proposal considers dependencies
between the parameters of consecutive calls.

The development of the probabilistic statecharts consists of four steps. First, relevant information
is gathered including descriptions of the interfaces of the components as well as traces of usage data
from a prototype or from simulation. Assumptions are made about the expected use, where no
measurements are available. Afterwards, the structure of the statechart is modelled. This can be
achieved in a top-down manner, going through the usage traces, grouping related operations into
sequences, and designing statecharts for these groups. It can also be done in a bottom-up manner,
first defining states for every operation, and then adding transitions branches starting from the
initial state.

In a third step, a transition matrix is constructed containing the probabilities for the transitions
of every state to every other state. For this purpose the frequencies of calls from the traces are
translated into probabilities. The fourth step consists of a parameter analysis. By looking at the
interfaces of the component, the parameter types can be determined. Constraints for individual
parameters are described as well as relationships between different parameters. For example the
output parameter of one function call might be the input parameter for the next call. These
descriptions are documented textually.

With the completed probabilistic statechart test cases can be generated. The authors wrote a
java program for this purpose.

4 Other Applications of Operational Profiles

Originally, the primary aim of designing operational profile was the generation of test cases, the
guiding of development and testing to the most-used functions of a system, and the reliability
analysis of software systems. However, operational profiles are useful for other purposes as well, as
summed up in this section.

13

4 Other Applications of Operational Profiles

State4 State3

op4 [1.0]

op1[c=n,1.0]

[1.0]/¢c=0 op1 [0<=c<n, 1.0]

State1 State2

Figure 7: Example for a probabilistic state chart as a usage model [SCS04]

Performance Prediction There are a large number of performance prediction methods for software
architectures that instrument operational profiles for their calculations and analyses. A compre-
hensive survey of such methods can be found in [BDIS04]. These methods try to analyse software
architectures before they are actually implemented and take models of the software as inputs. Nowa-
days, UML diagrams are the de-facto standard for documenting designs, and there is a special UML
profile (UML Profile for Schedulability, Performance, and Time [OMGO03]) to include performance
related annotations like computing times or rates of incoming requests into UML models. In fact,
the operational profile of the proposed architecture can be specified coarse-grainly with this profile.
For example, it is possible to annotate single use cases with occurrence probabilities and input
frequencies. Performance prediction methods have to take into account these annotations because
the operational profile is a major influencing factor to the performance of a system. For exam-
ple, if a certain method is most frequently used with large-sized parameters instead if small-sized
parameters, the average response times of this method is expected to be rather long.

Most performance prediction methods either transform UML diagrams into performance models
or directly use such models. Formalisms like queueing networks, stochastic petri-nets, stochastic
process-algebras and markov-models are most common to describe performance models. These
models need occurrence rates of incoming requests as well as transition probabilities between dif-
ferent states of the system as an input for their evaluation. These informations are part of the
operational profile.

An approach specifically for the performance prediction of component-based system can be found
in [BM04]. To analyse the performance of a component-based architecture, an operational profile
is developed for the whole system in this method. Hamlet et. al. [HMWO04] partition their
operational profile for software components into subdomains and use a finite vector approximation
of these subdomains, because the exact operational profile is never available in practice. They
also describe how requests to these subdomains fall into the subdomains of following connected
components. With these informations, they are able to calculate the expected performance of a
complete component-based architecture.

Detection of Redundant Code Alzamil presents an approach for identifying redundant state-
ments in source code with the help of an operational profile [Alz04]. Redundant statements are
statements that might be executed, but removing them would not alter the functionality of the
program. Whether a statement can be considered redundant partially depends on the operational
profile. If users executed the software in a specific way, it might happen that certain statements are
not used in a way that would change the program’s output. For example, an algorithm identifying

14

5 Conclusions

the minimum value of an array of integer-variables does not have to get the value of each element
of the array, if the users always call this algorithm with a sorted array and the minimum value is
always the first value. The reason for eliminating such redundant statements is the improvement
of the performance of the programs.

The author conducted a case study and tested multiple programs looking for redundant state-
ments. At first, random inputs were used to test the software, then a manually generated opera-
tional profile was used. In 80% of the cases using the operational profile yielded a significant higher
number of found redundant code statement. Thus, the performance of the respective programs
could be improved more effectively with the help of operational profiles.

Web Usage Mining A completely different domain involving the analysis of usage data is web
usage mining (for example in [MDLNO2]). These approaches try to identify patterns in the user
behaviour of web applications. The aim is the personalisation of web site contents. For example,
an online shop may be able to make recommendations for products relevant to the user based
on the products he or she viewed before. The methods shall be suited even for anonymous users
not registered to web applications. Patterns like association rules, sequences, and clusters of user
sessions are identified with data mining techniques, afterwards aggregate usage profiles are derived
from these patterns.

5 Conclusions

Several approaches for specifying user behaviour have been presented in this survey paper. The
classical method of developing operational profiles by Musa has been used extensively for software
reliability engineering. After designing different levels of profiles, finally an operational profile on
the implementation level can be specified, from which test cases can be selected. Testing the most
used functions ensures a high software reliability. Problems of the approach, namely the negligence
of the hardware/software environment and the focus on ideal users have been explained as well as
possible extensions to solve these problems.

Another class of usage models are based on Markov chains and can also model dependencies
between consecutive calls to a software system. In this class, a state hierarchy model has been
developed, furthermore probabilistic statecharts have been used to model user behaviour.

Still missing in most models is a proper treatment of parameter values. Probability function
could be used to model the value ranges of input parameters. The dependencies between the
parameter values of consecutive calls could be modelled explicitly. Apart from Hamlet’s work there
is no approach modelling the transformation of operational profiles between multiple software
components. Executing one component with a specific operational profile does lead to another
operational profile on the components that the first component is using to provide its services. To
ensure reliability and for sensible test case generation these transformations need to be modelled
explicitly. Including the software environment into the operational profile has been tried by Gittens,
yet the approach is limited in expressiveness.

Apart from reliability engineering, operational profiles and usage models can be used for other
purposes. In this paper, the examples of performance prediction, redundant code detection, and
web usage mining can be found.

References

[Alz04] AvzAMIL, Z.: Application of the operational profile in software performance analy-
sis. In: WOSP ’04: Proceedings of the fourth international workshop on Software and

15

[AW95]

[BDISO04]

[Bis02]

[BMO04]

[CBY6]

[Git04]

[GLBO4]

[HMWO04]

[MDLNO2]

[MFIt96]

[MIOS7]

[Mus93]

[Mus94]

References

performance, New York, NY, USA: ACM Press, 2004, ISBN 1-58113-673-0, pp. 64-68,
doi:http://doi.acm.org/10.1145/974044.974053

AVRITZER, A.; WEYUKER, E. J.: The Automatic Generation of Load Test Suites and
the Assessment of the Resulting Software. In: IEEE Trans. Softw. Eng. 21 (1995), Ne 9,
pp. 705-716, ISSN 0098-5589, doi:http://dx.doi.org/10.1109/32.464549

BALsamo, S.; DIMARCO, A.; INVERARDI, P.; SIMEONI, M.: Model-Based Perfor-
mance Prediction in Software Development: A Survey. In: IFEE Transactions on Soft-
ware Engineering 30 (2004), Ne 5. pp. 295-310

Bisaopr, P. G.: Rescaling reliability bounds for a new operational profile. In: ISSTA
’02: Proceedings of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis, New York, NY, USA: ACM Press, 2002, ISBN 1-58113-562-9, pp.
180-190, doi:http://doi.acm.org/10.1145/566172.566201

BERTOLINO, A.; MIRANDOLA, R.: CB-SPE Tool: Putting Component-Based Per-
formance Engineering into Practice. In: Component-Based Software Engineering, 7th
International Symposium, CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings,
Springer, 2004, vol. 3054 of Lecture Notes in Computer Science, ISBN 3-540-21998-6,
pp- 233-248

Cukic, B.; Bastani, F. B.: On reducing the sensitivity of software reliability to
variations in the operational profile. In: ISSRFE ’96: Proceedings of the The Seventh In-
ternational Symposium on Software Reliability Engineering (ISSRE ’96), Washington,
DC, USA: IEEE Computer Society, 1996, ISBN 0-8186-7707-4, p. 45

GITTENS, M.: The Extended Operational Profile Model for Usage-Based Software Test-
ing. PhD thesis, Faculty of Graduate Studies, University of Western Ontario, 2004

GITTENS, M.; LUuTFIYYA, H.; BAUER, M.: An Extended Operational Profile Model.
In: ISSRE ’04: Proceedings of the 15th International Symposium on Software Reliability
Engineering (ISSRE’04), Washington, DC, USA: IEEE Computer Society, 2004, ISBN
0-7695-2215-7, pp. 314-325, doi:http://dx.doi.org/10.1109/ISSRE.2004.8

HaMLET, D.; MASON, D.; WoiT, D.: Properties of Software Systems Synthesized from
Components, World Scientific Publishing Company, vol. 1 of Series on Component-
Based Software Development. March 2004, pp. 129-159

MOBASHER, B.; DA1, H.; Luo, T.; NAKAGAWA, M.: Discovery and Evaluation of Ag-
gregate Usage Profiles for Web Personalization. In: Data Min. Knowl. Discov. 6 (2002),
Ne 1, pp. 61-82, ISSN 1384-5810, doi:http://dx.doi.org/10.1023/A:1013232803866

Musa, J.; Fuoco, G.; IRVING, N.; KROPFL, D.; JUHLIN, B.: The Operational Profile,
IEEE Computer Society Press and McGraw-Hill Book Company. 1996, pp. 167216

MusaA, J. D.; IANNINO, A.; OKuMOTO, K.: Software reliability: measurement, predic-
tion, application. New York, NY, USA: McGraw-Hill, Inc., 1987, ISBN 0-07-044093-X

Musa, J. D.: Operational Profiles in Software-Reliability Engineering. In: IEEFE Soft-
ware 10 (1993), Ne 2, pp. 14-32

—— Sensitivity of field failure intensity to operational profile errors. In: Proceedings.,
5th International Symposium on Software Reliability Engineering, 1994, pp. 334-337

16

[OMGO3]

[SCS04]

[Voa00]

[Woi94]

[WP93]

[WR4]

[WV00]

References

OMG, O. M. G.: UML Profile for Schedulability, Performance and Time. http:
//www.omg.org/cgi-bin/doc?formal/2003-09-01, 2003

SHUKLA, R.; CARRINGTON, D.; STROOPER, P.: Systematic Operational Profile De-
velopment for Software Components. In: APSEC ’04: Proceedings of the 11th Asia-
Pacific Software Engineering Conference (APSEC’04), Washington, DC, USA: IEEE
Computer Society, 2004, ISBN 0-7695-2245-9, pp. 528-537, doi:http://dx.doi.org/10.
1109/APSEC.2004.95

Voas, J.: Will the Real Operational Profile Please Stand Up? In: IEEE Softw. 17
(2000), Ne 2, pp. 87-89, ISSN 0740-7459

Worir, D.: Operational Profile Specification, Test Case Generation, and Reliability
Estimation for Modules. PhD thesis, Queen’s University, Kingston, Ontario, Canada,
1994

WHITTAKER, J. A.; POORE, J. H.: Markov analysis of software specifications. In:
ACM Trans. Softw. Eng. Methodol. 2 (1993), Ne 1, pp. 93-106, ISSN 1049-331X, doi:
http://doi.acm.org/10.1145/151299.151326

WoHLIN, C.; RUNESON, P.: Certification of Software Components. In: IEEE Trans.
Softw. Eng. 20 (1994), Ne 6, pp. 494-499, ISSN 0098-5589, doi:http://dx.doi.org/10.
1109/32.295896

WHITTAKER, J. A.; Voas, J.: Toward a More Reliable Theory of Software Reliability.
In: Computer 33 (2000), Ne 12, pp. 36-42, ISSN 0018-9162, doi:http://dx.doi.org/10.
1109/2.889091

17

