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Abstract: Software architectures allow identifying confidentiality issues early and in a cost-efficient way. Information
Flow (IF) and Access Control (AC) are established confidentiality mechanisms, so modeling and analysis
approaches should support them. Because confidentiality issues often trace back to data usage, data-oriented
approaches are promising. However, we could not identify a data-oriented approach handling both, IF and AC.
Therefore, we present a unified data-oriented modeling and analysis approach supporting both, IF and AC,
within the same model in this paper. We demonstrate the integration into an existing architectural description
language and evaluate the resulting expressiveness and accuracy by a case study considering 22 cases.

1 Introduction

Confidentiality according to ISO 27000 (International
Organization for Standardization, 2018) is the “prop-
erty that information is not made available or dis-
closed to unauthorized individuals, entities, or pro-
cesses”. Considering security, which includes confi-
dentiality, is vital for software systems (Venson et al.,
2019) but is also a challenging because of increasing
complexity and connectedness of systems (McGraw,
2006, chap. 1). Addressing issues in early develop-
ment phases such as the architectural design is more
cost-efficient than in later phases such as the imple-
mentation in general (Boehm and Basili, 2001; Shull
et al., 2002). The same holds for security issues (Mi-
crosoft Corporation et al., 2009) in the design (Hoo
et al., 2001), (McGraw, 2006, chap. 5).

Automated modeling and analysis approaches can
support people reviewing security aspects and identi-
fying such issues with less effort (Tuma et al., 2020).
However, this is only true if an approach supports
the used security mechanisms and policies. Two
established confidentiality mechanisms are Access
Control (AC) (Sandhu et al., 1994), (Furnell, 2008,
chap. 5) and Information Flow (IF) control (Smith,
2007; Hedin et al., 2012). Both can be used separately
or in combination (Xu et al., 2006; Wang et al., 2009).
If common and specific parts are distinguished, the
advantages of a modeling language supporting both,
IF and AC, in one single language are: i) The com-
mon part, which could be the structure of the system,

only has to be modeled once. Therefore, architects do
not have to remodel large parts of the system when de-
ciding for another confidentiality mechanisms. ii) Ar-
chitects only have to learn the core language and the
language elements specific for the chosen confiden-
tiality mechanism. Consistency management between
dedicated models might enable some of these bene-
fits as well but it is challenging if languages diverge
too much (Torres et al., 2020). Using a data-oriented
language in contrast to a control flow oriented lan-
guage can be beneficial as well because Data Flow
Diagrams (DFDs) are commonly used in threat mod-
eling and security “problems tend to follow the data
flow, not the control flow” (Shostack, 2014, p. 44).

Surveys (Nguyen et al., 2015; van den Berghe
et al., 2017) show a wide range of design-time con-
fidentiality analyses. However, we could not iden-
tify a data-oriented approach capable of representing
and analyzing IF and AC within the same modeling
language and providing the aforementioned advan-
tages. Generic frameworks such as Unified Archi-
tecture Framework (UAF) (OMG, 2020) are flexible
enough to express such aspects but are too generic to
be useful. We see two research questions: RQ1) What
modeling primitives can be shared between IF and AC
and which primitives have to be specific? RQ2) How
can analyses exploit the shared language parts for
identifying violations of IF and AC policies?

In this paper, we address both research questions
by two contributions: C1) We define the model el-
ements for representing system aspects relevant for
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IF and AC. We also discuss how existing Architec-
tural Description Languages (ADLs) based on con-
trol flows or data flows can be extended by example.
C2) We provide analysis definitions for identifying IF
and AC policy violations in such extended ADLs. We
realize our concepts within the ADL Palladio (Reuss-
ner et al., 2016) in order to identify the required steps
to extend existing ADLs. We chose Palladio for two
reasons: First, Palladio is capable of describing be-
havior in terms of control flow and data flow (Werle
et al., 2020), so we can evaluate our concepts for
both paradigms within one prototype. Second, Palla-
dio provides a condensed set of modeling primitives
tailored for analyzing architectural quality properties,
which allows us to focus on core concepts.

We evaluate the expressiveness of the modeling
primitives and the accuracy of the analysis definitions
in a case study. The case study involves modeling 8
systems in 22 cases that include 4 types of IF policies,
4 types of AC models and 1 combined policy. For ev-
ery case, there is an analysis definition that we execute
on a variant of the case featuring a policy violation
and one variant free of policy violations to determine
the accuracy of our analyses. We could express 20
of 22 cases and correctly identified all injected issues.
This means our proposed modeling primitives and the
defined analyses are capable of expressing IF and AC
in systems and successfully detected all violations.

The remainder of this paper is structured as fol-
lows: Section 2 covers foundational knowledge and
Section 3 presents the running example. State of the
art is covered in Section 4. In Section 5, we determine
modeling primitives required for representing IF and
AC by comparing two existing approaches supporting
either IF or AC. In addition, we discuss how exist-
ing ADLs can be extended. Section 6 covers analy-
sis definitions for common IF and AC policies based
on the modeling primitives. The expressiveness of the
modeling primitives as well as the accuracy of defined
analyses are evaluated in Section 7. We also discuss
limitations, the implementation and data availability
there. Section 8 concludes the paper.

2 Foundations

This paper is about an approach for analyzing IF and
AC on Data Flow Diagrams (DFDs) and Palladio.

Access Control (AC) (Sandhu et al., 1994) lim-
its actions of users or processes to avoid security
breaches. AC mechanisms enforce AC policies de-
scribing permissions. Four established AC models
(Furnell, 2008, chap. 5) describing policies are Dis-
cretionary Access Control (DAC), Mandatory Access

Control (MAC), Role-based Access Control (RBAC)
and Attribute-based Access Control (ABAC), which
we describe later as part of our analysis definitions.

Information Flow (IF) (Smith, 2007) controls the
release and the propagation of information. The most
prominent IF property is non-interference, which only
allows information flows upwards a lattice of security
labels, i.e. information on a high level must not influ-
ence information on a lower level. This definition is
too restrictive for real software systems (Zdancewic,
2004), so mechanisms like declassification explicitly
grant flows downwards. Non-interference helps to es-
tablish confidentiality and integrity. However, only
confidentiality is in the scope of this paper.

DFDs (DeMarco, 1979) describe functional sys-
tem aspects. DFDs consist of data flows between the
following nodes: External entities (sources/sinks) ex-
change data with the system. The system consists of
processes and stores. Processes transform incoming
data to outgoing data. Stores save incoming data and
emit saved data. Throughout this paper, we assume
that processes need all inputs to produce all outputs.

Palladio (Reussner et al., 2016) is a component-
based ADL. The language covers the usage, structure,
behavior and allocation of a software system. Usage
and behavior descriptions are ordered lists of actions
that have effects, e.g. on resource usage. The structure
consists of components that provide and require ser-
vices and connected instances of these components.
Allocations assign component instances to resource
nodes. The Palladio extension for data-oriented mod-
eling (Werle et al., 2020) introduces data channels
as special components that communicate by emitting
and consuming data items instead of doing calls.

3 Running Example

We use the TravelPlanner system (Katkalov et al.,
2013; Seifermann et al., 2019) to explain our ap-
proach. The system lets users book flights as shown
in Figure 1. First, users request flights from their
TravelPlanner app by giving search criteria. The
app passes the request to a TravelAgency service that
sends a query to the Airline. The airline returns
matching flights. Users select a flight and retrieve
their credit card details ccd. The airline is not allowed
to access this data, so users declassify it first. After-
wards, users book the flight by submitting the flight
and the credit card details. The airline pays a com-
mission to the travel agency and confirms the book-
ing. Simply said, the confidentiality policy is that only
users access credit card details except they explicitly
grant access. Therefore, the flight booking call from



the travel planner app to the airline is critical.
Katkalov et al. (Katkalov et al., 2013) defined an

IF policy by three levels. Level 1 is accessible to the
user, airline and travel agency. All data except credit
card details are classified by level 1. Level 2 is acces-
sible to the user and the airline. Level 3 is accessible
to the user only. Credit card data is level 3. Releasing
credit card details means changing its level from 3 to
2. A violation occurs if a system part with clearance
level n receives data classified with level m > n.

In previous work (Seifermann et al., 2019), we de-
fined a RBAC policy. Roles match the involved par-
ties user, travel agency and airline. Transmitted data
holds a set of roles allowed to access. Credit card
details only hold the user role. Remaining data is ac-
cessible by all. Releasing credit card details means
adding the airline role to the data. Violations occur if
the system part and data do not share any role.

4 State of the Art

We focus on providing a unified modeling and anal-
ysis approach for detecting IF and AC violations in
software architectures. Therefore, we discuss ap-
proaches considering IF or AC in architecture or de-
sign. We see three groups of related approaches.

Threat Modeling is an established method for
identifying security issues in early software designs.
Various models and procedures help designers in
identifying potential security issues (Shostack, 2014).
Many approaches extend DFDs to increase their ex-
pressiveness (Sion et al., 2020) and support auto-
mated analyses. A considerable share of these ap-
proaches (Abi-Antoun et al., 2007; Berger et al.,
2016; Sion et al., 2018) restricts itself to pattern
matching that requires manual classification of ex-
changed data with attributes such as contains per-
sonal data. In contrast, we focus on deriving this
classification automatically to detect confidentiality
issues. We put threat modeling approaches with auto-
mated classifications into the following last category.

Control Flow Analyses provide powerful means
for identifying confidentiality issues. Almorsy et al.
(Almorsy et al., 2013) calculate security metrics to
identify structural confidentiality issues. However,
they only mention system behavior vaguely, so we
assume they do not consider the effect of data pro-
cessing. There are also approaches (Abdellatif et al.,
2011; Katkalov et al., 2013) complementing design
information with source code to consider detailed data
processing. Besides the increased specification effort,
this information might not be available during design
time. Additionally, source code is not necessary to

consider data processing: Hoisl et al. (Hoisl et al.,
2014) define IF analyses comparable with taint anal-
yses. Such analyses usually overestimate information
flows, which might yield more false positives than de-
tailed analyses. Approaches like UMLSec (Jürjens,
2005) or the approach of Heyman et al. (Heyman
et al., 2012) use more detailed behavior descriptions
to detect violations, which allows more fine-grained
analyses. However, control flow approaches cannot
serve as unified models that also include data flow ar-
chitectures because mapping data flows onto control
flows is not trivial (Alabiso, 1988; Jilani et al., 2011).

Data Flow Analyses support various types of con-
fidentiality analyses. Data flow models can serve
as unified models because mapping control flows on
data flows is well known from compiler optimization
(Lowry and Medlock, 1969) and there are established
mappings (Khedker et al., 2009). Recently, several
data flow analyses have been proposed. SecDFD
(Tuma et al., 2019; Tuma et al., 2020) uses ex-
tended DFDs to detect violations of IF policies as well
as other security properties. Van den Berghe et al.
(van den Berghe et al., 2017) also detect IF violations
but use a Domain-specific Language (DSL) to spec-
ify systems and their behavior formally by DFD-like
concepts. Both approaches could support the IF anal-
ysis of the running example. In previous work (Seifer-
mann et al., 2019), we also used extended DFDs but
detected violations of RBAC policies, which supports
the AC analysis of the running example. The previous
approaches are data-driven but none claims and eval-
uates detecting both, IF and AC, violations within the
same model. We could not find such an approach.

5 Modeling Primitives for
Confidentiality

This section covers the unified meta model. We mine
modeling primitives from identified domain concepts
of two related approaches. A modeling language in-
tegrates these modeling primitives to represent confi-
dentiality concepts. After that, we describe how to in-
tegrate these modeling primitives into existing ADLs.

Mining Modeling Primitives To find shared and
specific modeling primitives for representing IF and
AC at design level, we compare the primitives of the
recent IF approach SecDFD (Tuma et al., 2019) and
our recent AC approach DDSA (Seifermann et al.,
2019). Both formalize modeling primitives by meta
models. The upper part of Figure 2 describes the sim-
plified SecDFD meta model, the lower part describes
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Figure 1: Interactions of components during the booking of a flight in the TravelPlanner running example.
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Figure 2: Meta models of SecDFD (top) / DDSA (bottom).

the simplified DDSA meta model. Here and for the
remainder of this paper, simplification means that we
omit associations, attributes, classes or interfaces not
essential for our explanations. We identified the fol-
lowing six concepts shared between both meta models
that we marked by upper-case letters in Figure 2.

System Structure (S) is about describing interact-
ing parts of systems. SecDFD describes the structure
by processes and stores, which are basic elements of
DFDs. DDSA builds the structure on services realized
by operations. The corresponding analyses treat these
differently named elements roughly the same way.

External Entities (E) are users or external systems
that can receive information from the system or send
information to it. SecDFD and DDSA represent these
entities in the same way but using different names.

Flows (F) transmit information between the pre-
viously described elements. SecDFD also calls this
flows. Even if DDSA describes flows by the con-
trol flow term “call”, both elements describe the same
concept and are treated the same way in analyses.

Properties (P) describe characteristics of entities.
SecDFD allows properties on all nodes within and
outside of the system but limits the property to a trust
or attack zone. DDSA only supports characterizing
operations but allows characteristics to be finite value
sets. Analyses use both concepts to compare charac-
teristics of nodes with other or fixed expected values.

Data (D) describes the exchanged information.

SecDFD describes the type of exchanged information
by assets. DDSA uses variables and data types for the
same. Both concepts only specify types but no partic-
ular characteristics such as a level 3 classification.

Behavior (B) describes the influence of system el-
ements on characteristics of exchanged information.
Both approaches use analyses based on label propaga-
tion, so the behaviors are given in terms of label prop-
agation functions. SecDFD couples the label propa-
gation function with the node type. DDSA does the
same but the underlying model supports defining be-
haviors in the model by means of assignments.

To summarize, both approaches represent the
same fundamental modeling concepts by different
modeling primitives. SecDFD introduces modeling
primitives tailored for particular analyses. DDSA in-
corporates a flexible approach requiring designers to
model properties and behavior specific to intended
analyses. Both analyses use label propagation with
different sets of labels and propagation functions.

Unified Modeling Primitives Based on the previ-
ous comparison, we assume that we can analyze IF
and AC within a unified modeling approach that sub-
sumes the previously mined primitives. We do not
discuss or evaluate usability as part of this section or
paper. Tuma et al. (Tuma et al., 2020) already demon-
strated that a modeling language based on data flows
and appropriate tooling is, depending on the partic-
ular use case, usable. Our modeling primitives are
also based on data flows and we can also provide a
catalogue of predefined behaviors, labels and analysis
definitions. Therefore, we do not see this as a research
question anymore. Instead, we aim for determining
how we can represent IF and AC analyses within one
modeling language that complies with DFD terminol-
ogy. Therefore, we define a new meta model that in-
corporates all modeling primitives and supports flex-
ible analysis definitions. We stick to the data flow
terminology used by SecDFD and pick up the idea
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of flexible property and characteristic definitions of
DDSA. Additionally, we provide means for specify-
ing reusable behaviors and properties. Figure 3 illus-
trates the simplified resulting meta model.

The meta model distinguishes nodes and edges.
Nodes are the commonly used modeling primitives
for defining the system structure S (processes and
stores) and external entities E. Every node has a de-
fined behavior B specified by a label propagation
function and required inputs and outputs via pins. As-
signments specify the label propagation function by
assigning a truth value to a label on an output pin
based on constants, logical expressions and references
to labels on input pins. A label with a false truth value
means that it is not applied. Pins decouple behaviors
from particular nodes and incoming flows. Therefore,
pins enable reusing behaviors in multiple nodes. A
flow F transports all labels of an output pin of a source
node to the input pin of a destination node. To repre-
sent properties P of nodes, we assign labels to nodes.

Integration of Modeling Primitives in ADLs To
show how existing ADLs can make use of our mod-
eling primitives and analyses to be defined later, we
describe the integration with the ADL Palladio. Pal-
ladio supports data flows and control flows, so we
show the integration with both paradigms. The in-
tegration always consists of two steps. First, we iden-
tify modeling primitives that have no counterparts and
that have to be added to the ADL, therefore. Second,
we define a transformation for this extended ADL
to our ADL-independent meta model shown in Fig-
ure 3. The transformation allows us to reuse the same
analysis definitions for all possible ADLs. We ex-
emplify these steps for Palladio by going through the
modeling primitives, identifying their existing coun-
terparts and describing the transformation to the mod-
eling primitives. These transformations are tailored to
the ADL. To increase comprehensibility, we explain
the general ideas of the transformations but avoid low
level descriptions. The full transformations are avail-
able in our data set (Seifermann et al., 2021).

Control Flow (CF) Palladio already provides
modeling concepts that fit our modeling primitives:
Processes are represented by services. Flows are rep-
resented by calls between services. Pins are repre-

Figure 4: Integration into control-oriented Palladio (upper)
and transformation result for flight booking service (lower).

sented by parameters and return values. Each of these
elements can be transformed one by one. Palladio
already considers users, which match external enti-
ties. The modeling primitives often missing in ADLs
are stores, labels and behaviors. We extend Palladio
by stores as special types of components. The label
and behavior primitives can be integrated as they are.
An overview on the extended meta model is given in
the upper part of Figure 4. Most of the elements can
be easily transformed. The only exception are ser-
vices, which require one process (entry) for receiv-
ing and distributing all input parameters and one pro-
cess (exit) for returning output parameters. The trans-
formation result for the flight booking service in the
lower part of Figure 4 illustrates this.

Data Flow (DF) Palladio already provides mod-
eling concepts that fit our modeling primitives: Pro-
cesses are represented by data channels. Flows are
represented by data flows between data channels. Pins
are represented by the outgoing and incoming data
flows. Each of these elements can be transformed
one by one. Palladio already considers users, which
matches external entities. The modeling primitives
often missing in ADLs are stores, labels and behav-
iors. We extend Palladio by stores as special type of
data channel. The label and behavior primitives can
be integrated as they are. Figure 5 gives an overview
on the extended meta model. Most of the elements
can be easily transformed. Figure 5 shows the trans-
formation result for the flight booking service. There
are less processes compared to the CF version because
entry and exit processes are not needed.

6 Analysis Definition

Confidentiality analyses are defined on the previously
presented unified modeling primitives. Therefore, the
definition can be reused over all ADL integrations.
Both, SecDFD and DDSA use label propagation to
derive labels of transmitted data based on initial labels
and label propagation functions. In the running exam-



Figure 5: Integration into data-oriented Palladio (upper) and
transformation result for flight booking service (lower).

ple, an initial label is required for the criteria passed
to the travel planner. By applying label propagation
functions of traversed processes, the analysis derives
the label of criteria or query data passed through the
system. After deriving all data labels, the analysis
compares data labels with node labels. In the RBAC
running example, the analysis compares access rights
labels on data with role labels on nodes. A violation
occurs if a node accesses data with an access rights set
not containing the role of the node. To summarize, we
need a) data labels, b) node labels, c) behaviors (i.e.
label propagation functions) and d) the label compar-
ison function for an analysis definition.

We provide analysis definitions of common IF and
AC analyses as presented by IFlow (Katkalov, 2017),
DDSA (Seifermann et al., 2019) and SecDFD (Tuma
et al., 2019). We also define analyses for the AC mod-
els DAC, MAC, ABAC and for Taint-Based Memory
Protection via Access Control (TMAC) (Wang et al.,
2009) that combines IF and AC.

Two behaviors are used in all analyses. We briefly
introduce them here and do not mention them any-
more later: The forward behavior copies all labels of
the input to the output pin. The create behavior has
no inputs and sets labels on the output pin explicitly.

Non-Interference Considering High/Low (2L) IF
analyses of SecDFD (Tuma et al., 2019) compare the
trust zone of nodes with data classifications. An IF
policy is violated if nodes within attack zones access
data classified as high. This can also be seen as taint
analysis. We need two classification labels (high/low)
applied to data and two zone labels (attack/trusted)
applied to nodes. In addition, we need two labels
(high/low) to represent the content of encrypted data.
Encryption and decryption can be used to transport
data classified high through attack zones. The used
behaviors are as follows: The encrypt behavior uses
incoming classification labels as encrypted content la-
bels on outputs and sets the classification to low. The
decrypt behavior uses incoming encrypted content la-
bels as classification label on outputs. The join behav-

ior takes multiple inputs and sets the encrypted con-
tent and the classification label to high if at least one
input has a high label for the respective label type.

Non-Interference with Hierarchical Lattice (HL)
IF analyses of IFlow (Katkalov, 2017) for the cases
TravelPlanner, ContactSMSManager and Distance-
Tracker compare the node clearance with data clas-
sifications. An IF policy is violated if nodes with a
certain clearance level access data with higher clas-
sification level. This analysis type is called non-
interference using a hierarchical lattice. The clear-
ance and classification levels are hierarchical security
levels building a lattice. There is one label per level
that can be attached to data or nodes. The used be-
haviors are as follows: The sync behavior acts like
the forward behavior but has an additional input pin,
whose labels are ignored. The declassify behavior
acts like the forward behavior but replaces labels of
a certain type with new fixed labels. For instance,
the declassification behavior replaces the classifica-
tion level User of the credit card data with the new
classification level User,Airline in the IF running ex-
ample. The join behavior applies the most restrictive
classification label of all inputs to the output.

Non-Interference with Lattice Groups (LG) The
PrivateTaxi case of IFlow (Katkalov, 2017) requires
that nodes owned by a certain role must not access
certain critical data types. More precisely, a distance
calculation service must not access contact data of
users and a taxi broker service must not access route
data. A violation means one of these rules is violated.
This can be seen as two separated lattice groups con-
taining two levels each. The lattice of the first group
is non critical data followed by route data. The lat-
tice of the second group is non critical data followed
by contact data. The analysis definition is tailored to
the particular use case. For the sake of simplicity, we
omit detailed descriptions for this case. Informally
said, we have labels representing critical data types
and labels representing services. A violation occurs
if a forbidden combination of service label and crit-
ical data type label exists at one node. The data set
(Seifermann et al., 2021) provides further details.

Core Role-based Access Control (RBAC) The
DDSA AC analysis (Seifermann et al., 2019) covers
Core RBAC (Furnell, 2008, pp. 71) that defines per-
missions of roles and role assignments. The analysis
reports a node holding no role that is contained in the
set of allowed roles of incoming data. The particular
data and node labels depend on the used roles. In the
running example, the labels are user, travel agency



and airline. A violation is reported if the intersec-
tion of data and node labels is empty. There are two
behavior types. The intersect behavior applies the in-
tersection of all input labels to the output pins. The
declassify behavior acts like the forwarding behavior
but additionally adds a specified role to the outputs.

Discretionary Access Control (DAC) DAC (Fur-
nell, 2008, pp. 61) directly assigns access permissions
(subject and allowed action) to objects. In DFDs, read
and write are feasible actions to consider. We define
permission labels that apply to stores because they are
the best to detect read and write actions. A permis-
sion label is an element of the cross product of avail-
able subjects and actions (read/write). External enti-
ties have an identification label. Traversal labels on
data represent the nodes that already have been tra-
versed. The read action analysis determines the orig-
inating store of received data by the traversal labels.
The analysis reports a violation if there is no read per-
mission label matching the identity label of the exter-
nal entity. The analysis for write violations looks at
the traversal labels of data received by stores to iden-
tify external entities writing to the store. The analysis
reports a violation if there is no write permission la-
bel matching the identity label of the external entity.
The only used behavior takes inputs and applies the
union of the traversal labels including the label of the
current node to all outputs.

Mandatory Access Control (MAC) MAC (Fur-
nell, 2008, pp. 64) provides general policies with-
out referring to particular nodes or data. One promi-
nent MAC security model is the military security
model, which reduces to the already explained non-
interference with hierarchical lattice.

Attribute-based Access Control (ABAC) ABAC
(Furnell, 2008, pp. 74) defines attribute-based sub-
ject and object selectors and assigns permissions be-
tween them. All attributes become labels that are as-
signed to nodes or data. An analysis selects nodes and
data based on their labels and reports a violation for
any undefined combination. Because ABAC is highly
flexible, we do not give a specific analysis definition.

Taint-Based Memory Protection via Access Con-
trol (TMAC) TMAC (Wang et al., 2009) extends
AC for computer memory with restrictions based on
taint labels. The analysis description depends on the
used AC model, so we can use previously presented
analysis descriptions and extend them by taint analy-
sis. In the simplest form, the taint label is just a single

label (data is tainted). Additionally, there is a label for
critical nodes. Existing AC behaviors are extended to
consider taint labels: the taint label is applied to all
outputs if there is at least one tainted input. An addi-
tional declassification behavior removes the taint la-
bel. The AC label comparison is extended to ensure
that tainted data never arrives at critical nodes.

7 Evaluation

We evaluate the expressiveness of presented modeling
primitives (C1) and the accuracy of the analysis def-
initions (C2). We describe evaluation goals and met-
rics in Section 7.1. The evaluation design to achieve
the goals is given in Section 7.2. Section 7.3 cov-
ers the cases of our case study-based evaluation. We
present and discuss evaluation results in Section 7.4.
Section 7.5 and Section 7.6 discuss threats to validity
and limitations. We briefly report on the implementa-
tion and data availability in Section 7.7.

7.1 Evaluation Goals and Metrics

We structure our evaluation by the Goal-Question-
Metric (GQM) approach (Basili et al., 1994): we for-
mulate evaluation goals that we can achieve by defin-
ing evaluation questions. Metrics are used to answer
the questions. Our evaluation goals are:

G1) Evaluate the expressiveness of the unified
model including its ADL integration (C1). This
is useful because other approaches cannot represent
both, IF and AC, together.

G2) Evaluate the accuracy of the proposed anal-
yses (C2). Analysis results have to be accurate to be
useful, which would not be the case for high rates of
false positives or false negatives.

Both evaluation goals support each other because
an expressive model is only useful if it can serve its
purpose, which is detecting confidentiality violations
automatically here. Natural language is a counterex-
ample, because it is expressive but does not support
automated analyses. Contrarily, accurate analysis re-
sults are only useful if a considerable amount of sys-
tems and confidentiality mechanisms are supported.

We evaluate the expressiveness of the unified
model (G1) by evaluating its integration into the Pal-
ladio ADL because this is the intended way to use it.
The ADL does not impose more restrictions than the
modeling primitives because the transformation from
the ADL can produce all modeling primitives. There-
fore, it is not necessary to evaluate the expressiveness
twice. The corresponding evaluation questions are as
follows: Q1.1) Can the extended ADL express be-



havior relevant for common IF analyses? Q1.2) Can
the extended ADL express behavior relevant for com-
mon AC analyses? Q1.3) Can the extended ADL ex-
press behavior relevant for combined IF and AC anal-
yses? The case study described in Section 7.2 answers
the questions by determining the share of successfully
modeled systems and analyses.

We evaluate the accuracy of the analyses (G2)
by the following evaluation questions: Q2.1) Can
the IF analyses provide sufficiently accurate results?
Q2.2) Can the AC analyses provide sufficiently ac-
curate results? Q2.3) Can the combined IF and AC
analyses provide sufficiently accurate results? To an-
swer the questions, we execute the analyses modeled
for G1. We compare the results with expected previ-
ously defined results or results from related work if
available. Based on the comparison, we calculate the
recall (also called sensitivity) r = tp

tp+ fn
with true pos-

itives tp and false negatives fn as well as specificity
s = tn

tn+ fp
with true negatives tn and false positives fp.

Both metrics are commonly used in medicine for rat-
ing binary classifications (Metz, 1978). Additionally,
we calculate precision p =

tp
tp+ fp

, which is commonly
used in rating the accuracy in information retrieval.

7.2 Evaluation Design

Our evaluation is based on a case study, which is a
common way of evaluating modeling notations and
analyses in the field of security (Nguyen et al., 2015;
van den Berghe et al., 2017). The procedure is the
same for every case. A case is about one particular
system, modeled by one particular paradigm (CF/DF)
and about one particular confidentiality analysis. For
every case, we create two system variants: One vari-
ant contains no issue, so the automated analysis shall
not report a violation. The other variant contains an
issue, so the automated analysis shall report a vio-
lation. We inject the same issue as reported in re-
lated work. If none has been reported, we build an
issue based on common mistakes such as wrong calls,
wrong wiring of components and so on. We model
both variants using the extended Palladio ADL, de-
fine the analysis in terms of our modeling primitives
as described in Section 6 and execute the analysis. Af-
ter the last step, we can classify the produced artifacts,
i.e. models and analysis results, and collect the met-
rics to answer the evaluation questions.

To calculate the metric for questions Q1.1, Q1.2
and Q1.3, we test if we can model variants and cor-
responding analyses and compare that to the total
amount of variants and analyses. We classify a variant
as successfully modeled if i) we could represent all
labels and behaviors described for the particular anal-

ysis in Section 6 and ii) we could formulate the label
comparison function for the particular case. For each
question, we calculate the share of supported variants.

To calculate the metrics for answering questions
Q2.1, Q2.2 and Q2.3, we classify the analysis results.
The ground truth for expected analysis results is the
classification of the variant during its creation by us,
which in turn is justified by related work whenever
available. We classify each reported violation indi-
vidually but aggregate these individual classifications
for calculating the metric. This means the analysis re-
sult of each variant contributes exactly one true/false
positive/negative to the metric calculation. Thereby,
we avoid that a large amount of good results for one
particular analysis definition hides a small number of
bad results for another analysis definition. If the anal-
ysis reports a violation for a variant not containing
an issue, we classify the result as false positive fp.
If the analysis does not report a violation for a vari-
ant containing an issue, we classify the result as false
negative fn. If the analysis does not report a violation
for a variant not containing an issue, we classify the
result as true negative tn. For every violation reported
for a variant containing an issue, we check that every
reported violation traces back to the actual issue. If
there is at least one violation that does not trace back
to the actual issue, we classify the result as fp. Other-
wise, the result becomes a true positive tp.

We consider cases about IF, AC and their combi-
nation. Additionally, we aim for validating the sup-
port of the CF and the DF paradigm as we claim in
this paper. Therefore, we must have at least one case
per element of the cross product of the confidential-
ity mechanism (IF, AC and combination) and the sys-
tem behavior paradigm (CF and DF). To achieve this,
we select cases from the related approaches IFlow
(Katkalov, 2017) (IF), SecDFD (Tuma et al., 2019)
(IF), DDSA (Seifermann et al., 2019) (AC) or cre-
ate own cases to fill the remaining gaps (further AC
analyses and combination with IF). We group cases
of related approaches sharing the same analysis def-
inition into equivalence classes. We select one case
of each class because modeling further cases of this
class would not give us any more insight into expres-
siveness or accuracy. If the case is only available in
one paradigm (CF or DF), we derive a case in the
other paradigm based on the available descriptions.
An overview on the selected cases is given in Table 1.
Every value in a cell represents a case and refers to the
analysis definition applied in the case. The selected
cases cover all analyses that we claimed to support:
non-interference with hierarchical lattice (HL), lattice
groups (LG) and high/low (2L), as well as the access
control models. In addition, we realized TMAC in the



Table 1: Cases considered for case study evaluation. CF
means Control Flow, DF means Data Flow.

Inform. Flow Access Control
System CF DF CF DF

TravelPlanner HL HL RBAC RBAC
DistanceTracker HL HL RBAC RBAC
PrivateTaxi LG LG
BankingApp – –
JPmail 2L 2L
ImageSharing DAC DAC
FlightControl MAC MAC
BankBranches ABAC ABAC

TravelPlanner for CF and DF. We describe the case
selection and the cases in Section 7.3.

7.3 Case Selection and Description

First, we describe the equivalence classes of cases of
the related approaches (Katkalov, 2017; Tuma et al.,
2019; Seifermann et al., 2019). We describe the se-
lected cases afterwards. IFlow (Katkalov, 2017) pro-
vides five cases. TravelPlanner, DistanceTracker and
ContactSMS target non-interference with hierarchi-
cal lattices (HL). PrivateTaxi targets non-interference
with lattice groups (LG). BankingApp targets non-
interference between users. We select PrivateTaxi,
BankingApp, and TravelPlanner as representative
cases for each class. We add DistanceTracker because
we already used TravelPlanner as running example.
SecDFD (Tuma et al., 2019) provides five cases tar-
geting non-interference with high/low lattice (2L). All
cases are equivalent, so we select JPmail. DDSA
(Seifermann et al., 2019) provides the cases Trav-
elPlanner, DistanceTracker and ContactSMS known
from IFlow but tailored to RBAC. All cases are
equivalent, so we select TravelPlanner and Distance-
Tracker. We could not identify cases including ref-
erence results for DAC, MAC, ABAC. So, we de-
fined cases based on descriptions of the access control
models (Furnell, 2008, pp. 61). ImageSharing covers
DAC, FlightControl covers MAC and BankBranches
covers ABAC. Further, we extend the travel planner
example by TMAC (Wang et al., 2009).

TravelPlanner has already been explained in Sec-
tion 3. With respect to TMAC, we extend the analysis
to report data coming from an external into the sys-
tem that is not immediately validated by the system.
DistanceTracker consists of a tracking service on a
user device that collects GPS locations, calculates a
distance and submits the distance to a distance track-
ing service. The distance tracking service must never
have access to plain locations. PrivateTaxi is a broker
platform to bring together drivers and riders going in

the same direction. The broker must never know the
route or location of users but delegates proximity cal-
culations to a trusted third party service. BankingApp
is a system to withdraw money after authentication.
Different users must never interfere with each other.
JPmail is an email system. Sender and receiver en-
crypt their communication to not allow intermediate
nodes to read the email body. Intermediate nodes
must never access the plain mail body. ImageSharing
is a file sharing system to share family photos with
multiple users. The store has access permissions at-
tached: Parents can write images and read them. Rel-
atives can read images. Indexing bots such as used
by search engines must not access images. The anal-
ysis tests if illegal access occurs. FlightControl is a
flight monitoring system covering weather monitor-
ing, civil flight monitoring and military flight moni-
toring. Weather staff must only access weather infor-
mation. Civil flight staff can access civil plane loca-
tions in addition. Military flight staff can access mil-
itary plane locations in addition. The analysis tests
if subjects access information with a classification
higher than their clearance. BankBranches is a bank-
ing system to manage accounts and calculate credit
lines spanning two regions. Employees can manage
regular customers within their region. Managers can
manage customers from all regions and celebrities.
The analysis tests these restrictions based on subject
and data attributes.

The smallest case has 4 structural elements (com-
ponents, data channels, interfaces) and one behavior.
The two largest case have 34 structural elements and 8
types of behaviors. We consider the cases, especially
those taken from related work, realistic.

7.4 Evaluation Results and Discussion

We structure the section by the evaluation goals and
questions. We start with the expressiveness goal G1.

To answer Q1.1, we tried to model the cases, i.e.
the system and the analysis definition, TravelPlan-
ner, DistanceTracker, PrivateTaxi, BankingApp and
JPmail with the CF and DF architectural description
language integration, which sums up to ten cases and
twenty variants. We successfully modeled all sys-
tems and analysis definitions except the BankingApp,
which means a coverage of 80%. We could not model
the banking case because the case is about isolating
tenants, i.e. the corresponding analysis requires dis-
tinguishing different actors and data that are the same
on a type level. We did not focus on expressing en-
tities and data on instance level because this leads to
fine-grained models not appropriate for early design
phases. If required, our ADL integration can express



tenants by scenario-based modeling, which represents
tenants as dedicated new actor types and system parts
used by tenants as dedicated new system parts. How-
ever, this comes with additional modeling effort and
obfuscates the intended architecture.

To answer Q1.2, we tried to model TravelPlan-
ner, DistanceTracker, ImageSharing, FlightControl
and BankBranches with the CF and DF architectural
description language integration, which are ten cases
and twenty variants. We could successfully model all
cases and variants, which leads to full coverage.

To answer Q1.3, we tried to model the TMAC-
extended TravelPlanner with the CF and DF architec-
tural description language integration, which are two
cases and four variants. We could successfully model
all cases and variants, which leads to full coverage.

To summarize, we could cover all tested AC and
combined cases, as well as most of the IF cases. We
confirmed a previously known and intended limita-
tion with respect to representing tenants in systems.
Therefore, we achieved good expressiveness with re-
spect to most of the common AC and IF analyses.

The accuracy evaluation (G2) is divided in IF, AC
and combined cases. To answer Q2.1, we run analy-
ses about non-interference with hierarchical lattice on
TravelPlanner and DistanceTracker, non-interference
with lattice groups on PrivateTaxi, as well as non-
interference considering high/low on JPmail. All
cases are realized with the CF and DF architectural
description language integration, which sums up to
eight cases and sixteen variants. The analysis cor-
rectly reported no error on variants without issue and
only reported valid violations on variants with issue.
This means precision, recall and specificity are 1.

To answer Q2.2, we run analyses for DAC on Im-
ageSharing, for MAC on FlightControl, for ABAC
on BankBranches and for RBAC on TravelPlanner
and DistanceTracker. We realized all cases in the
CF and DF architectural description language integra-
tion, which sums up to ten cases and twenty variants.
The analyses correctly reported no error on variants
without issue and only reported valid violations on
variants with issue. This means precision, recall and
specificity are 1.

To answer Q2.3, we run the TMAC analysis on
TravelPlanner with the CF and DF architectural de-
scription language integration. The analysis correctly
reported no error on the variant without issue and only
reported valid violations on the variant with issue.
This means precision, recall and specificity are 1.

To summarize, we achieved perfect accuracy on
all cases that we could express in G1. This shows that
we can achieve the same results as related approaches
but support a wider range of analyses. Additionally,

it validates that our analysis concepts and their imple-
mentation are sufficient to achieve valuable results.

7.5 Threats to Validity

We structure the discussion of threats to validity by
the four categories of validity for case study research
by Runeson et al. (Runeson et al., 2012, pp. 71).

Construct validity requires that measures taken ac-
tually measure what the researcher had in mind. The
measures are the share of expressible variants and the
accuracy of our analysis definitions. The share of ex-
pressible variants is feasible because we do not have
unbalanced data sets, i.e. more analyses of a certain
type than another. However, the share does not al-
low in-depth analysis of reasons for limited expres-
siveness. Therefore, we additionally discussed the re-
sults and possible causes. The accuracy metrics are
established for rating classifiers.

Internal validity requires that investigated factors
are actual factors influencing the results. For ex-
pressiveness, we investigate the factors modeling lan-
guage and analysis definition. However, there are ad-
ditional factors: Limited experience in the modeling
language or security mechanisms can influence re-
sults negatively. We can exclude this factor because
the person that modeled the systems and defined the
analyses is an author of this paper and therefore has
sufficient experience with both. Too simple scenar-
ios can positively influence results. We consider this
threat low because the cases stem from related work
or cover the core concepts of the corresponding con-
fidentiality mechanisms. For accuracy, we investigate
the factors of analysis definitions and the analysis ex-
ecution concepts. An additional factor are wrong re-
sult classifications. To cope with that, we ensured that
reported violations trace back to the actual issue.

External validity requires that generalizations of
results are valid. In research based on case studies,
there is no statistical representative sample. There-
fore, generalizations are only valid for cases with
comparable characteristics. Our results can be gen-
eralized for ADLs that provide means for describing
system structure and behavior by calls or data ex-
change. Also, we think that we can support further
confidentiality analyses that use type-level informa-
tion rather than instance-level information.

Reliability requires that the results are indepen-
dent of a particular researcher. The modeling cer-
tainly depends on the experience of the executing re-
searcher. Other researchers might not achieve the
same expressiveness results. However, this does not
invalidate the results because expressiveness is about
the upper bound of expressible scenarios and not



about what average users can achieve. The latter
would be subject to a usability evaluation, which we
did neither do nor focus on. It is sufficient to un-
derstand that the scenarios can be modelled by our
ADL extension by reviewing the models in our data
set (Seifermann et al., 2021). With this data set, re-
searchers can also replicate the accuracy study. Anal-
ysis execution and metrics can be done objectively.

7.6 Limitations

Our proposed approach has two major limitations.
First, analyses are restricted to type level. Because
we focus on software architectures and early software
designs, we chose to omit instance level information
such as specific data values or complex interplay be-
tween two actors of the same type. We doubt that
such detailed information is actually available in early
design phases and certainly modeling this in detail
would increase the modeling effort.

Second, we cannot cover implicit flows (King
et al., 2008), i.e. information flows via control flow
dependencies. Our approach, like most other model-
based approaches, requires explicit flows. Implicit
flows are often subtle and require detailed models or
source code. Again, this would certainly increase the
modeling effort considerably.

7.7 Tool Support and Data Availability

We realized a prototype within the Palladio tooling.
We realized all meta models described previously in
the Eclipse Modeling Framework (EMF). We inte-
grated editing support in existing Palladio editors to
ease modeling. To reduce the modeling effort, we
integrated means for reusing analysis definitions in-
cluding behaviors, labels and label comparisons. We
plan to provide a catalogue containing labels, be-
haviors and analysis definitions of the analyses pre-
sented in this paper except for the case-specific ones
such as ABAC. An automated model transformation
maps the Palladio model to an instance of our generic
meta model. Another automated model transforma-
tion maps the generic model instance to a logic pro-
gram doing the label propagation. All parts related to
the logic program are an engineering task, so we did
not present them in this paper. A DSL (Hahner et al.,
2021) simplifies specifications of new analyses.

All artifacts of our prototype are publicly available
and also part of the data set (Seifermann et al., 2021).
We include all information to replicate the evaluation
such as implementation artifacts, modeled cases and
analysis results including their classification.

8 Conclusions

In this paper, we presented i) a unified model for rep-
resenting systems including their behavior relevant
for IF and AC confidentiality analyses and ii) defi-
nitions for common IF and AC analyses. To the best
of our knowledge, no data-oriented design time ap-
proach can represent both within one modeling lan-
guage. To derive the model, we compared one IF and
one AC approach to identify a set of shared informa-
tion between both analysis types as well as analysis-
specific model elements. Based on the derived unified
model, we defined eight common IF and AC analy-
ses. We evaluated expressiveness and accuracy in a
case study. We evaluated 22 cases and experienced
satisfying expressiveness and accuracy.

The benefit of the approach is twofold. First, it is
now possible to consider IF and AC within the same
architecture. Architects can start modeling shared as-
pects including system structure and rough behavior
and decide later on the confidentiality mechanism.
Without our approach, architects had to decide in the
beginning and had to remodel large parts of the archi-
tecture when switching between mechanisms or de-
fine mappings between the IF and the AC modeling
approach. Second, we explicitly considered how ex-
isting ADLs can be extended to support the confiden-
tiality analyses we proposed. We demonstrated this
by our ADL integration into Palladio. The integration
into an existing ADL can lower the learning effort be-
cause architects only have to learn the new constructs.

In future, we plan to evaluate the ADL integration
approach for more ADLs and to find ways to analyze
tenants without instance level information.
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