Hauptseite

Aus IPD-Institutsseminar
Version vom 27. August 2017, 09:50 Uhr von Erik.burger@kit.edu (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348
Zeit jeweils freitags, 11:30–13:00 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Diplomarbeit/Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Studienarbeit/Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 24. November 2017, Raum 348 (Gebäude 50.34)
Vortragende(r) Nils Wilka
Titel Abstrakte und konsistente Vertraulichkeitsspezifikation von der Architektur bis zum Code
Vortragstyp Bachelorarbeit
Betreuer(in) Kateryna Yurchenko
Kurzfassung Software-Systeme können sensible Informationen verarbeiten. Um ihre Vertraulichkeit zu gewährleisten, können sowohl das Architekturmodell, als auch seine Implementierung hinsichtlich des Informationsflusses untersucht werden. Dazu wird eine Vertraulichkeitsspezifikation definiert. Beide Modellebenen besitzen eine Repräsentation der gleichen Spezifikation. Wird das System weiterentwickelt, kann sie sich auf beiden Ebenen verändern und dementsprechend widersprüchliche Aussagen enthalten. Möchte man die Vertraulichkeit der Informationen verifizieren, müssen die Spezifikationselemente im Quellcode in einem zusätzlichen Schritt in eine weitere Sprache übersetzt werden. Die Bachelorarbeit beschäftigt sich mit der Transformation der unterschiedlichen Repräsentationen der Vertraulichkeitsspezifikation eines Software-Systems. Das beinhaltet ein Abbildungskonzept zur Konsistenzhaltung der Vertraulichkeitsspezifikation und die Übersetzung in eine Sprache, die zur Verifikation benutzt werden kann.
Vortragende(r) René Hahn
Titel Bad Smells and Antipatterns in Metamodeling
Vortragstyp Masterarbeit
Betreuer(in) Misha Strittmatter
Kurzfassung In modern software development, metamodels play an important role as they build the basis for domain-specific modeling languages, which are used for system design, simulation and code generation. Like any artifact in a software-development process, these languages and their respective models need to evolve over time. However, if metamodels that define those languages are badly designed, the evolution process is complicated and therefore additional effort has to be spent for maintenance. Such design problems are considered as a bad smell. Existing approaches to detect smells in metamodels deal mainly with simple defects or focus only on a small number of smells. Therefore, we present a comprehensive investigation of bad smells and antipatterns by reviewing design smells of object-oriented programming and, if possible, transfer them to metamodeling. These smells are in part automatically detectable, thus, we provide tool support with suitable detection methods as an extension for EMF Refactor. We evaluate this approach by testing every automatically detectable smell with appropriate models and an application of the tool support on an already existing large metamodel to evaluate the suggested refactorings.
Freitag, 24. November 2017, Raum 010 (Gebäude 50.34)
Vortragende(r) Milena Nedelcheva
Titel Data-Flow Correctness and Compliance Verification for Data-Aware Workflows in Energy Markets
Vortragstyp Diplomarbeit
Betreuer(in) Jutta Mülle
Kurzfassung Data flow is becoming more and more important for business processes over the last few years. Nevertheless, data in workflows is often considered as second-class object and is not sufficiently supported. In many domains, such as the energy market, the importance of compliance requirements stemming form legal regulations or specific standards has dramatically increased over the past few years. To be broadly applicable, compliance verification has to support data-aware compliance rules as well as to consider data conditions within a process model. In this thesis we model the data-flow of data

objects for a scenario in the energy market domain. For this purpose we use a scientific workflow management system, namely the Apache Taverna. We will then insure the correctness of the data flow of the process model. The theoretical starting point for this thesis is a verification approach of the supervisors of this thesis. It formalizes BPMN process models by mapping them to Petri Nets and unfolding the execution semantics regarding data. We develop an algorithm for transforming Taverna workflows to BPMN 2.0. We then ensure the correctness of the data-flow of the process model. For this purpose we analyse which compliance rules are relevant for the data objects and how to specify them using anti-patterns.

Vortragende(r) Jakob Bach
Titel Impact of Aggregation Methods on Clustering of High-Resolution Energy Data
Vortragstyp Masterarbeit
Betreuer(in) Holger Trittenbach
Kurzfassung Energy data can be used to gain insights into production processes. In the industrial domain, sensors have high sampling rates, resulting in large time series. Therefore, aggregation techniques are used to reduce computation times and memory requirements of data mining techniques like clustering. However, it is unclear what effects the aggregation has on clustering results and how these effects could be described.

In our work, we propose measures to analyse the impact of aggregation on clustering and evaluate them experimentally. In particular, we aggregate with standard summary statistics and assess the impact using clustering structure measures, internal validity indices, external validity indices and instance-based forecasting. We adapt these evaluation measures and other data mining techniques to our use case. Furthermore, we propose a decision framework which allows to choose an aggregation level and other experimental settings, considering the trade-off between clustering quality and computational cost.

Our extensive experiments comprise the cross-product of 6 physical attributes, 7 clustering algorithms, 7 aggregation techniques, 9 aggregation levels and 13 time series dissimilarities. We use real-world data from different machines and sensors of a production site at the KIT Campus North, extracting time series of fixed and variable length. Overall, we find that clustering results become less similar the more the data is aggregated. However, the exact effect and value of evaluation measures depends on the type of aggregate, clusteringalgorithm, dataset and dissimilarity measure.