Hauptseite

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348
Zeit jeweils freitags, 11:30–13:00 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Diplomarbeit/Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Studienarbeit/Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 16. November 2018, 11:30 Uhr, Raum 348 (Gebäude 50.34)
Vortragende(r) Daniel Weißer
Titel Einbindung eines EDA-Programms zur Erstellung elektronischer Leiterplatten in das Vitruvius-Framework
Vortragstyp Bachelorarbeit
Betreuer(in) Daniel Zimmermann
Kurzfassung Mithilfe der modellgetriebenen Softwareentwicklung kann im Entwicklungsprozess eines Software-Systems, dieses bzw. dessen Teile und Abstraktionen durch Modelle beschrieben werden. Diese Modelle können untereinander in Abhängigkeitsbeziehungen stehen sowie über redundante Informationen verfügen. Um Inkonsistenzen zu vermeiden, werden Tools zur automatisierten Konsistenzhaltung eingesetzt.

In dieser Arbeit wird das EDA-Programm Eagle, das zur Erstellung elektronischer Schaltpläne und Leiterplatten genutzt wird, in das Vitruvius-Framework eingebunden. Bestandteile sind hierbei das Ableiten eines Ecore-Metamodells, das die Schaltplandatei von Eagle beschreibt, das Etablieren von Transformationen zwischen Ecore-Modellen und Schaltplandateien sowie das Extrahieren von Änderungen zwischen zwei chronologisch aufeinanderfolgenden Schaltplandateien. Die extrahierten Änderungen werden in das Vitruvius-Framework eingespielt, wo sie durch das Framework zu in Konsistenzbeziehung stehenden Ecore-Modellen propagiert werden. Zudem wird ein Verfahren eingesetzt, um Änderungen in der Schaltplandatei einem eindeutigen elektronischen Bauteil zuordnen zu können. Dies ist erforderlich, um Bauteile im Kontext mit anderen Programmen zu verfolgen, da die Eigenschaften eines Bauteils in verschiedenen Programmen variieren können.

Vortragende(r) Nicolas Boltz
Titel Representing dynamic context information in data-flow based privacy analysis
Vortragstyp Bachelorarbeit
Betreuer(in) Robert Heinrich
Kurzfassung Durch Industrie 4.0 sind Organisationen in der Lage kleinere Produktionseinheiten, oder individualisierte Produkte kosteneffizienter herzustellen. Dies wird erreicht durch selbstorganisierende Produktions- und Lieferketten, bei der die im Prozess beteiligten Menschen, Maschinen und Organisationen ad-hoc zusammenarbeiten. Um den, durch diese ad-hoc Zusammenarbeit entstehenden, Datenfluss, kontrollieren zu können, reichen aktuelle Zugriffskontrollsysteme nicht aus. Im Zuge dieser Bachelorarbeit wird ein Metamodell vorgestellt, welches in der Lage ist die sich dynamisch ändernden Kontextinformationen von den im Prozess beteiligten Entitäten abzubilden und zur Zugriffskontrolle zu nutzen.

Dabei werden Kontexte zum Darstellen von einzelnen Eigenschaften und als Menge zum Definieren eines Zustands in dem sich eine Entität befinden muss um auf ein Datum zugreifen zu dürfen. Des Weiteren wird eine Analyse beschrieben und evaluiert, welche in der Lage ist verbotene Datenzugriffe in einem modelliertem Systemzustand und Datenfluss zu identifizieren.

Freitag, 16. November 2018, 11:30 Uhr, Raum 301 (Gebäude 50.34)
Vortragende(r) Violina Zhekova
Titel Flexible User-Friendly Trip Planning Queries
Vortragstyp Proposal
Betreuer(in) Saeed Taghizadeh
Kurzfassung The users of the location-based services often want to find short routes that pass through multiple Points-of-Interest (PoIs); consequently, developing trip planning queries that can find the shortest routes that passes through user-specified categories has attracted considerable attention. If multiple PoI categories, e.g., restaurant and shopping mall, are in an ordered list (i.e., a category sequence), the trip planning query searches for a sequenced route that passes PoIs that match the user-specified categories in order.

Existing approaches find the shortest route based on the user query. A major problem with the existing approaches is that they only take the order of POIs and output the routes which match the sequence perfectly. However, users who they are interested in applying more constraints, like considering the hierarchy of the POIs and the relationship among sequence points, could not express their wishes in the form of query users. Example below, illustrates the problem:

Example: A user is interested in visiting three department stores (DS) but she needs to have some food after each visit. It is important for the user to visit three different department stores but the restaurants could be the same. How could the user, express her needs to a trip planning system?

The topic of this bachelor thesis is to design such a language for trip planning system which enables the user to express her needs in the form of user queries in a flexible manner.

Vortragende(r) Philipp Schüler
Titel Query Synthesis in One-Class Active Learning
Vortragstyp Proposal
Betreuer(in) Adrian Englhardt
Kurzfassung Although machine learning plays an ever-increasing role in modern technology, there are still some parts where a human is needed to help with the learning process. With active learning a human operator is added to the process and helps with the classification of unknown samples. This improves the precision of the machine learning process. Although increasing the precision is important, the addition of a human operator introduces a problem known since the invention of the computer: Humans are slow compared to machines. Therefore it is essential to present the human operator with queries having the highest value of informativeness to optimize the learning process. The better the queries are chosen, the less time the learning process needs.

Current query selection strategies, use class label information to interpolate between opposite pairs at the decision boundary or select a query from a set of given unlabeled data points. However, these strategies cannot be used when no unlabeled and no negative observations are available. Then, one uses a query strategy function that rates the informativeness for any query candidate to synthesize the optimal query. While it is easy to calculate the most informative point in just a few dimensions, the curse of dimensionality quickly becomes a problem when searching for the most informative point in a high-dimensional space. This thesis takes a look at synthesizing queries in high-dimensional one-class cases via metaheuristics. The goal is to compare different metaheuristics experimentally with multiple data sets.