Semantische Suche

Freitag, 10. September 2021, 14:00 Uhr

iCal (Download)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Martin Armbruster
Titel Commit-Based Continuous Integration of Performance Models
Vortragstyp Masterarbeit
Betreuer(in) Manar Mazkatli
Vortragsmodus
Kurzfassung Architecture-level performance models, for instance, the PCM, allow performance predictions to evaluate and compare design alternatives. However, software architectures drift over time so that initially created performance models are out-to-date fast due to the required manual high effort to keep them up-to-date.

To close the gap between the development and having up-to-date performance models, the Continuous Integration of Performance Models (CIPM) approach has been proposed. It incorporates automatically executed activities into a Continuous Integration pipeline and is realized with Vitruvius combining Java and the PCM. As a consequence, changes from a commit are extracted to incrementally update the models in the VSUM. To estimate the resource demand in the PCM, the CIPM approach adaptively instruments and monitors the source code.

In previous work, parts of the CIPM pipeline were prototypically implemented and partly evaluated with artificial projects. A pipeline combining the incremental model update and the adaptive instrumentation is absent. Therefore, this thesis presents the combined pipeline adapting and extending the existing implementations. The evaluation is performed with the TeaStore and indicates the correct model update and instrumentation. Nevertheless, there is a gap towards the calibration pipeline.

Vortragende(r) Sina Schmitt
Titel Einfluss meta-kognitiver Strategien auf die Schlussfolgerungsfähigkeiten neuronaler Sprachmodelle
Vortragstyp Bachelorarbeit
Betreuer(in) Jan Keim
Vortragsmodus
Kurzfassung Die meta-kognitive Strategie "laut nachzudenken" kann auf neuronale Sprachmodelle übertragen werden, wie Betz et al. zeigen: Ein vortrainiertes Sprachmodell ist besser in der Lage, deduktive Schlussfolgerungsprobleme zu lösen, wenn es zuvor dynamische Problemelaborationen generiert. Das Sprachmodell verwendet auf dem Datensatz von Betz et al. eine einfache Heuristik für seine Antwortvorhersage, die es mithilfe der selbst generierten Kontexterweiterungen effektiver einsetzen kann. In dieser Arbeit untersuche ich, wie dynamische Kontexterweiterungen die Performanz eines neuronalen Sprachmodells beeinflussen, wenn es nicht auf eine solche Heuristik zurückgreifen kann. Ich überprüfe (i) die Schlussfolgerungsfähigkeiten eines vortrainierten neuronalen Sprachmodells im Zero-Shot Setting, (ii) den Einfluss verschiedener vorgegebener Kontexterweiterungen auf die Zero-Shot-Performanz und (iii) die Fähigkeiten des Sprachmodells, selbst effektive Kontexterweiterungen zu generieren und zu nutzen.

Freitag, 17. September 2021, 11:30 Uhr

iCal (Download)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Tanja Fenn
Titel Change Detection in High Dimensional Data Streams
Vortragstyp Masterarbeit
Betreuer(in) Edouard Fouché
Vortragsmodus
Kurzfassung The data collected in many real-world scenarios such as environmental analysis, manufacturing, and e-commerce are high-dimensional and come as a stream, i.e., data properties evolve over time – a phenomenon known as "concept drift". This brings numerous challenges: data-driven models become outdated, and one is typically interested in detecting specific events, e.g., the critical wear and tear of industrial machines. Hence, it is crucial to detect change, i.e., concept drift, to design a reliable and adaptive predictive system for streaming data. However, existing techniques can only detect "when" a drift occurs and neglect the fact that various drifts may occur in different dimensions, i.e., they do not detect "where" a drift occurs. This is particularly problematic when data streams are high-dimensional.

The goal of this Master’s thesis is to develop and evaluate a framework to efficiently and effectively detect “when” and “where” concept drift occurs in high-dimensional data streams. We introduce stream autoencoder windowing (SAW), an approach based on the online training of an autoencoder, while monitoring its reconstruction error via a sliding window of adaptive size. We will evaluate the performance of our method against synthetic data, in which the characteristics of drifts are known. We then show how our method improves the accuracy of existing classifiers for predictive systems compared to benchmarks on real data streams.

Vortragende(r) Wenrui Zhou
Titel Outlier Analysis in Live Systems from Application Logs
Vortragstyp Masterarbeit
Betreuer(in) Edouard Fouché
Vortragsmodus
Kurzfassung Modern computer applications tend to generate massive amounts of logs and have become so complex that it is often difficult to explain why applications failed. Locating outliers in application logs can help explain application failures. Outlier detection in application logs is challenging because (1) the log is unstructured text streaming data. (2) labeling application logs is labor-intensive and inefficient.

Logs are similar to natural languages. Recent deep learning algorithm Transformer Neural Network has shown outstanding performance in Natural Language Processing (NLP) tasks. Based on these, we adapt Transformer Neural Network to detect outliers from applications logs In an unsupervised way. We compared our algorithm against state-of-the-art log outlier detection algorithms on three widely used benchmark datasets. Our algorithm outperformed state-of-the-art log outlier detection algorithms.

Freitag, 24. September 2021, 11:30 Uhr

iCal (Download)
Webkonferenz: {{{Webkonferenzraum}}} (Keine Vorträge)

Freitag, 24. September 2021, 14:00 Uhr

iCal (Download)
Webkonferenz: {{{Webkonferenzraum}}} (Keine Vorträge)

Montag, 11. Oktober 2021, 14:00 Uhr

iCal (Download)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Lena Witterauf
Titel DomainML: A modular framework for domain knowledge-guided machine learning
Vortragstyp Masterarbeit
Betreuer(in) Pawel Bielski
Vortragsmodus
Kurzfassung Standard, data-driven machine learning approaches learn relevant patterns solely from data. In some fields however, learning only from data is not sufficient. A prominent example for this is healthcare, where the problem of data insufficiency for rare diseases is tackled by integrating high-quality domain knowledge into the machine learning process.

Despite the existing work in the healthcare context, making general observations about the impact of domain knowledge is difficult, as different publications use different knowledge types, prediction tasks and model architectures. It further remains unclear if the findings in healthcare are transferable to other use-cases, as well as how much intellectual effort this requires.

With this Thesis we introduce DomainML, a modular framework to evaluate the impact of domain knowledge on different data science tasks. We demonstrate the transferability and flexibility of DomainML by applying the concepts from healthcare to a cloud system monitoring. We then observe how domain knowledge impacts the model’s prediction performance across both domains, and suggest how DomainML could further be used to refine both the given domain knowledge as well as the quality of the underlying dataset.