Institutsseminar/2018-10-26

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche
Termin (Alle Termine)
Datum Fr 26. Oktober 2018, 11:30 Uhr
Dauer 85 min
Raum Raum 348 (Gebäude 50.34)
Vorheriger Termin Fr 19. Oktober 2018
Nächster Termin Fr 2. November 2018

Vorträge

Vortragende(r) Dennis Vetter
Titel Batch query strategies for one-class active learning
Vortragstyp Proposal
Betreuer(in) Holger Trittenbach
Kurzfassung One-class classifiers learn to distinguish normal objects from outliers. These classifiers are therefore suitable for strongly imbalanced class distributions with only a small fraction of outliers. Extensions of one-class classifiers make use of labeled samples to improve classification quality. As this labeling process is often time-consuming, one may use active learning methods to detect samples where obtaining a label from the user is worthwhile, with the goal of reducing the labeling effort to a fraction of the original data set. In the case of one-class active learning this labeling process consists of sequential queries, where the user labels one sample at a time. While batch queries where the user labels multiple samples at a time have potential advantages, for example parallelizing the labeling process, their application has so far been limited to binary and multi-class classification. In this thesis we explore whether batch queries can be used for one-class classification. We strive towards a novel batch query strategy for one-class classification by applying concepts from multi-class classification to the requirements of one-class active learning.
Vortragende(r) Jonas Kunz
Titel Efficient Data Flow Constraint Analysis
Vortragstyp Masterarbeit
Betreuer(in) Robert Heinrich
Kurzfassung Aktuelle Entwicklungen in der Softwaretechnik zeigen einen Trend zur Dezentralisierung von Softwaresystemen. Mit dem Einsatz von Techniken wie Cloud-Computing oder Micro-Services fließen immer mehr Daten über öffentliche Netzwerke oder über die Infrastruktur von Drittanbietern.

Im Gegensatz dazu führen aktuelle gesetzliche Änderungen wie die "General Data Protection Regulations" der EU dazu, dass es für Softwareentwickler immer wichtiger wird sicherzustellen, dass die Datenflüsse ihrer Software gesetzliche Beschränkungen einhalten. Um dies trotz der stetig wachsenden Komplexität von Softwaresystemen zu ermöglichen, wurden verschiedenste modellbasierte Ansätze vorgeschlagen. Ein Nachteil der meisten Ansätze ist jedoch, dass sie oftmals keine voll automatisierte Analyse bezüglich der Verletzung Datenflussbeschränkungen ermöglichen. Aus diesem Grund schlagen wir ein neues Metamodell zur Beschreibung von Datenflüssen von Softwaresystemen vor. Diese Metamodell ist so entworfen, dass eine automatisierte Übersetzung von Instanzen in ein Programm der logischen Programmiersprache Prolog ermöglicht wird. Dieses Programm erlaubt dann die einfache Formulierung von Regeln zur automatisierten Prüfung der Einhaltung von Datenflussbeschränkungen. Ein wichtiger Aspekt für den Entwurf und die Implementierung unseres Ansatzes war die Skalierbarkeit: Ziel war es, sicherzustellen dass unser Ansatz effizient einsetzbar ist. Hierbei haben wir insbesondere Techniken zur Optimierung von Prolog Programmen entwickelt, deren Einsatzmöglichkeiten nicht nur auf unseren Ansatz beschränkt sind.

Vortragende(r) Yimin Zhang
Titel Interactive Visualization of Correlations in High-Dimensional Streams
Vortragstyp Proposal
Betreuer(in) Edouard Fouché
Kurzfassung Correlation analysis aims at discovering and summarizing the relationship between the attributes of a data set. For example, in financial markets, the price of stocks evolves over time. Via a careful estimation of the relationship between stocks, one can try to predict which stock to buy or sell to maximize the wealth of a portfolio.

The standard tool of correlation analysis is the computation of a correlation matrix. However, in the case of streams with many dimensions, it is difficult to extract actionable insights from the correlation matrix, as the number of pairs of attributes increases quadratically and the coefficients evolve over time in unforeseen ways. Thus, novel visualization methods are required.

In this thesis, we will investigate how to visualize the evolution of correlation in high-dimensional data streams in an intuitive way. We will, for example, discuss visualization methods based on force-directed graphs. Also, we will develop a web interface to visualize the correlation structure of data streams and evaluate it systematically via user studies.

Neuen Vortrag erstellen

 

Hinweise