Institutsseminar/2018-11-09

Aus IPD-Institutsseminar
Wechseln zu: Navigation, Suche
Termin (Alle Termine)
Datum Fr 9. November 2018, 11:30 Uhr
Dauer 90 min
Raum Raum 348 (Gebäude 50.34)
Vorheriger Termin Fr 2. November 2018
Nächster Termin Fr 16. November 2018

Vorträge

Vortragende(r) Lukas Böhm
Titel Pattern-Based Heterogeneous Parallelization
Vortragstyp Masterarbeit
Betreuer(in) Philip Pfaffe
Kurzfassung In dieser Arbeit werden zwei neue Arten der Codegenerierung durch den automatisch parallelisierenden Übersetzer Aphes für beschleunigte Ausführung vorgestellt. Diese basieren auf zwei zusätzlich erkannten Mustern von implizitem Parallelismus in Eingabeprogrammen, nämlich Reduktionen in Schleifen und rekursive Funktionen die das Teile-und-herrsche-Muster umsetzen. Aphes hebt sich in zwei Punkten von herkömmlichen parallelisierenden Übersetzern hervor, die über das reine Parallelisieren hinausgehen: Der erste Punkt ist, dass Aphes sich auf heterogene Systeme spezialisiert. Das zweite Hervorstellungsmerkmal ist der Einsatz von Online-Autotuning. Beide Aspekte wurden während der Umsetzung dieser Arbeit beachtet. Aus diesem Grund setzen die von uns implementierten Code-Generatoren sowohl lokale Beschleunigung über OpenMP und C++11 Threads als auch entfernte Beschleunigung mittels Nvidias CUDA um. Desweiteren setzt der generierte Code weiter auf die bereits in Aphes vorhandene Infrastruktur zum Autotuning des generierten Maschinencodes zur Laufzeit.

Während unserer Tests ließen sich in mit Aphes kompilierten Programmen mit Reduktionen in Schleifen Beschleunigungen von bis zu Faktor 50 gegenüber mit Clang kompilierten Programmen beobachten. Von Aphes transformierter Code mit rekursiven Funktionen erzielte Beschleunigungswerte von 3,15 gegenüber herkömmlich mit GCC und Clang generierten ausführbaren Dateien des gleichen Programms. In allen Fällen war der Autotuner in der Lage, innerhalb der ersten 50 Ausführungsiterationen des zu optimierenden Kernels zu konvergieren. Allerdings wiesen die konvergierten Ausführungszeiten teils erhebliche Unterschiede zwischen den Testläufen auf.

Vortragende(r) Kevin Angele
Titel Semi-automatische Generierung von Aktiven Ontologien aus Datenbankschemata
Vortragstyp Masterarbeit
Betreuer(in) Sebastian Weigelt
Kurzfassung Es wird prognostiziert, dass in Zukunft die Hälfte der Firmenausgaben für mobile Anwendungen in die Entwicklung von Chatbots oder intelligenten Assistenten fließt.

In diesem Bereich benötigt es zur Zeit viel manuelle Arbeit zur Modellierung von Beispielfragen. Diese Beispielfragen werden benötigt, um natürlichsprachliche Anfragen zu verstehen und in Datenbankanfragen umsetzen zu können. Im Rahmen dieser Arbeit wird ein Ansatz vorgestellt, welcher die manuelle Arbeit reduziert. Dazu wird mittels der Daten aus der Datenbank und Formulierungen, inklusive Synonymen, aus Dialogflow (ein intelligenter Assistent von Google) eine Aktive Ontologie erzeugt. Diese Ontologie verarbeitet anschließend die natürlichsprachlichen Anfragen und extrahiert die Parameter, welche für die Anfrage an die Datenbank benötigt werden. Die Ergebnisse der Aktiven Ontologie werden mit den Ergebnissen aus Dialogflow verglichen. Bei der Evaluation fällt auf, dass die Aktiven Ontologien fehleranfällig sind. Es werden zusätzliche, unerwünschte Parameter extrahiert, welche das Ergebnis verschlechtern. Die Übereinstimmungsrate bei einem Eins-zu-Eins-Vergleich mit Dialogflow liegt bei etwa 40%. Zukünftig könnte durch das Hinzufügen einer zusätzlichen selektiven Schicht innerhalb der Aktiven Ontologien die Parameterextraktion verbessert werden.

Neuen Vortrag erstellen

 

Hinweise