Semantische Suche

Freitag, 16. März 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Marcel Groß
Titel Creating Study Plans by Generating Workflow Models from Constraints in Temporal Logic
Vortragstyp Bachelorarbeit
Betreuer(in) Jutta Mülle
Vortragsmodus
Kurzfassung Students are confronted with a huge amount of regulations when planning their studies at a university. It is challenging for them to create a personalized study plan while still complying to all official rules. The STUDYplan software aims to overcome the difficulties by enabling an intuitive and individual modeling of study plans. A study plan can be interpreted as a sequence of business process tasks that indicate courses to make use of existing work in the business process domain. This thesis focuses on the idea of synthesizing business process models from declarative specifications that indicate official and user-defined regulations for a study plan. We provide an elaborated approach for the modeling of study plan constraints and a generation concept specialized to study plans. This work motivates, discusses, partially implements and evaluates the proposed approach.
Vortragende(r) Jan Keim
Titel Themenextraktion zur Domänenauswahl für Programmierung in natürlicher Sprache
Vortragstyp Masterarbeit
Betreuer(in) Sebastian Weigelt
Vortragsmodus
Kurzfassung Für den Menschen sind Kontexte von Anweisungen für die Programmierung in natürlicher Sprache einfach ersichtlich, für den Rechner ist dies nicht der Fall.

Eine Art des Kontextwissens ist das Verständnis der Themen. Hierfür wird im Rahmen des PARSE-Projekts zur Programmierung in natürlicher Sprache ein Ansatz zur Themenextraktion vorgestellt. Dafür wird eine Auflösung von mehrdeutigen Nomen benötigt, weshalb in dieser Arbeit ebenfalls ein Werkzeug dafür entwickelt wurde. Als einen Anwendungsfall für die extrahierten Themen wird die Auswahl von passenden Ontologien angegangen. Durch diese Auswahl wird ermöglicht, statt einer großen Ontologie mehrere kleine domänenspezifische Ontologien einzusetzen. Für die Evaluation der Themenextraktion wurde eine Umfrage durchgeführt, die ergab, dass das erste extrahierte Thema in bis zu 63,6% der Fälle treffend war. In 91% der Fälle ist mindestens eines der ersten vier extrahierten Themen passend. Die Evaluation der Ontologieauswahl ergab ein F1-Maß von 90,67% und ein F2-Maß von 89,94%.

Freitag, 23. März 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Janek Bettinger
Titel Efficient k-NN Search of Time Series in Arbitrary Time Intervals
Vortragstyp Masterarbeit
Betreuer(in) Jens Willkomm
Vortragsmodus
Kurzfassung The k nearest neighbors (k-NN) of a time series are the k closest sequences within a

dataset regarding a distance measure. Often, not the entire time series, but only specific time intervals are of interest, e.g., to examine phenomena around special events. While numerous indexing techniques support the k-NN search of time series, none of them is designed for an efficient interval-based search. This work presents the novel index structure Time Series Envelopes Index Tree (TSEIT), that significantly speeds up the k-NN search of time series in arbitrary user-defined time intervals.

Vortragende(r) Christopher Kaag
Titel Statische Extraktion von Laufzeit-Indikatoren
Vortragstyp Masterarbeit
Betreuer(in) Martin Tillmann
Vortragsmodus
Kurzfassung In dieser Arbeit geht es um die Analyse von LLVM-Quellcode mit dem Ziel, einen Indikator für die Anzahl der CPU-Instruktionen zu finden. Ein Indikator ist ein geschlossener Term, der für eine bestimmte Eingabe die Anzahl der CPU-Instruktionen eines Stück Codes liefert. Diese Definition korreliert mit der Eingabegröße eines Programmes. Wir analysieren den Kontrollflussgraph und Schleifenbedingungen, um Variablen im Code zu finden, die stellvertretend für die Eingabegröße stehen. Diese Indikator-Ermittlung ist ein Fundament für bessere Online-Autotuner in der Zukunft, die sich automatisch auf Eingaben wechselnder Größen einstellen können.

Freitag, 6. April 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}} (Keine Vorträge)

Freitag, 13. April 2018

iCal (Download)
Ort: Raum 010 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Valentin Kiechle
Titel Bewertung des lokalen und globalen Effekts von Lastverschiebungen von Haushalten
Vortragstyp Bachelorarbeit
Betreuer(in) Christine Tex
Vortragsmodus
Kurzfassung Erneuerbare Energien wie Photovoltaik-Anlagen stellen für den Privathaushalt eine Möglichkeit dar, eigenen Strom zu produzieren und damit den Geldbeutel sowie die Umwelt zu schonen. Auch in größeren Wohnblocks mit vielen Partien kommen solche Anlagen gemeinschaftlich genutzt zum Einsatz. Der Wunsch, die Nutzung zu optimieren, verleitet dazu, Demand Side Management Strategien zu verwenden. Speziell werden dabei Lastverschiebungen von einzelnen Haushaltsgeräten betrachtet, um die Sonnenenergie besser zu nutzen. Diese Arbeit bewertet verschiedene solcher Lastverschiebungen und ihre lokalen und globalen Effekte auf die Haushalte. Dazu werden verschiedene Modelle für variable Strompreisberechnung, Haushaltssimulation und Umsetzung von Lastverschiebung entworfen und in einem eigens geschriebenen Simulator zur Anwendung gebracht. Ziel dabei ist es, durch verschiedene Experimente, die Auswirkungen auf die Haushalte in ausgewählten Bewertungsmetriken zu erfassen. Es stellt sich heraus, dass es mäßige Sparmöglichkeiten für private Photovoltaik-Nutzer durch Lastverschiebung gibt, die Optimierung jedoch sowohl im lokalen als auch um globalen Bereich aber ein spezifisches Problem darstellt.
Vortragende(r) Robin Miller
Titel Influence of Load Profile Perturbation and Temporal Aggregation on Disaggregation Quality
Vortragstyp Bachelorarbeit
Betreuer(in) Christine Tex
Vortragsmodus
Kurzfassung Smart Meters become more and more popular. With Smart Meter, new privacy issues arise. A prominent privacy issue is disaggregation, i.e., the determination of appliance usages from aggregated Smart Meter data. The goal of this thesis is to evaluate load profile perturbation and temporal aggregation techniques regarding their ability to prevent disaggregation. To this end, we used a privacy operator framework for temporal aggregation and perturbation, and the NILM TK framework for disaggregation. We evaluated the influence on disaggregation quality of the operators from the framework individually and in combination. One main observation is that the de-noising operator from the framework prevents disaggregation best.

Freitag, 20. April 2018

iCal (Download)
Ort: Raum 010 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Fabian Müller
Titel Aufbau einer Werkzeugkette zur Automatisierung der Softwareentwicklung
Vortragstyp Bachelorarbeit
Betreuer(in) Korbinian Molitorisz
Vortragsmodus
Kurzfassung Die Entwicklung professioneller Software ist aus verschiedenen Gründen eine höchst komplexe Aufgabe: Menschen unterschiedlicher Blickwinkel sind daran beteiligt, die Software zu spezifizieren, zu implementieren, zu testen und zu installieren. Dazu arbeiten diese Teams häufig regional oder zeitlich verteilt. Dies macht Maßnahmen zur Softwarequalität zu einem notwendigen Bestandteil von Softwareentwicklungsprozessen.

In dieser Bachelor-Arbeit wurden Werkzeuge und wissenschaftliche Arbeiten zur fortlaufenden Integration untersucht und eine Werkzeugkette aufgebaut, die dieses Prinzip umsetzt. Sie automatisiert neben der Softwareerstellung auch die Testausführung, die Bereitstellung und die Performanzmessung auf verschiedenen Zielsystemen und führt alle Zwischenergebnisse an einer Stelle zusammen. In Zusammenarbeit mit Agilent Technologies wurde eine Benutzerstudie durchgeführt, die aufzeigt, dass die Werkzeugkette eine Funktionalitäts- bzw. Leistungsaussage zu Quellcodeänderungen innerhalb weniger Minuten nach dem Einchecken ermöglicht, was sonst typischerweise Tage bis Wochen benötigt.

Vortragende(r) Lucas Krauß
Titel Reduction of Energy Time Series
Vortragstyp Bachelorarbeit
Betreuer(in) Edouard Fouché
Vortragsmodus
Kurzfassung Data Reduction is known as the process of compressing large amounts of data down to its most relevant parts and is an important sub-field of Data Mining.

Energy time series (ETS) generally feature many components and are gathered at a high temporal resolution. Hence, it is required to reduce the data in order to allow analysis or further processing of the time series. However, existing data reduction methods do not account for energy-related characteristics of ETS and thus may lead to unsatisfying results.

In this work, we present a range of state-of-the art approaches for time series reduction (TSR) in the context of energy time series. The aim is to identify representative time slices from the multivariate energy time series without any prior knowledge about the inherent structure of the data. We rely on unsupervised approaches, i.e., clustering algorithms, to derive these representatives. For validation purpose, we apply the proposed reduction methods in two distinct approaches:

First, we use the TSR method to reduce the run time of energy system optimization models (ESM). ESM produce predictions and recommendations for the future energy system on the basis of historical data. As the model complexity and execution time of the ESM increases dramatically with the temporal resolution of the input data, reducing the input data without impacting the quality of predictions allows analysis at scales that are out of reach otherwise. In particular, we will study the Perseus-EU model. Our analysis show the extent to which each TSR method can reduce run times without degrading the quality of the prediction significantly.

The second application relates to the compression of ETS emerging from grid measurement data. Measurements from sensors installed in the energy grid collect observations in a high temporal resolution but are often highly redundant. Hence, while the storage requirements are high, the collected time series only contain few interesting and representative observations. Here, we use TSR methods to reduce the multivariate time series to a set of representative time slices. We show that amount of redundant observations can be greatly reduced in that way while preserving rare and interesting observations.

Freitag, 27. April 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Nadim Hammoud
Titel Automated Extraction of Stateful Power Models for Cyber Foraging Systems
Vortragstyp Bachelorarbeit
Betreuer(in) Christian Stier
Vortragsmodus
Kurzfassung Mobile devices are strongly resource-constrained in terms of computing and battery capacity. Cyber-foraging systems circumvent these constraints by offloading a task to a more powerful system in close proximity. Offloading itself induces additional workload and thus additional power consumption on the mobile device. Therefore, offloading systems must decide whether to offload or to execute locally. Power models, which estimate the power consumption for a given workload can be helpful to make an informed decision.

Recent research has shown that various hardware components such as wireless network interface cards (WNIC), cellular network interface cards or GPS modules have power states, that is, the power consumption behavior of a hardware component depends on the current state. Power models that consider power states (stateful power models) can be modeled as Power State Machines (PSM). For systems with multiple power states, stateful models proved to be more accurate than models that do not consider power states (stateless models).

Manually generating PSMs is time-consuming and limits the practicability of PSMs. Therefore, in this thesis, we explore the possibility of automatically generating PSMs. The contribution of this thesis is twofold: (1) We introduce an automated measurementbased profiling approach (2) and we introduce a step-based approach, which, provided with profiling data, automatically extracts PSMs along with tail states and state transitions.

We evaluate the automated PSM extraction in a case study on an offloading speech recognition system. We compare the power consumption prediction accuracy of the generated PSM with the prediction accuracy of a stateless regression based model. Because we measure the power consumption of the whole system, we use along with all WiFi power models the same CPU power model in order to predict the power consumption of the whole system. We find that a slightly adapted version of the generated PSM predicts the power consumption with a mean error of approx. 3% and an error of approx. 2% in the best case. In contrast, the regression model produces a mean error of approx. 19% and an error of approx. 18% in the best case.

Vortragende(r) Marc Ueberschaer
Titel Optimierung von Inkrementellen Modellanalysen
Vortragstyp Masterarbeit
Betreuer(in) Georg Hinkel
Vortragsmodus
Kurzfassung In der Modellgetriebenen Softwareentwicklung sind Analysen der entstehenden Modelle notwendig, um Validierungen schon auf der Modellebene durchführen zu können, um so kostenintensiveren Fehlern vorzubeugen und Kosten zu sparen. Allerdings sind die Modelle stetigen Änderungen unterworfen, die sich auch auf die Analyseergebnisse auswirken können, die man gerne stets aktuell hätte. Da die Modelle sehr groß werden können, sich aber immer nur kleine Teile dieser Modelle ändern, ist es sinnvoll diese Analysen inkrementell zu gestalten. Ein Ansatz für solche inkrementellen Modellanalysen ist NMF Expressions, das im Hintergrund einen Abhängigkeitsgraphen der Analyse aufbaut und bei jeder atomaren Änderung des Modells aktualisiert. Die Effizienz der Analysen hängt dabei aber oft von der genauen Formulierung der Anfragen ab. Eine ungeschickte Formulierung kann somit zu einer ineffizienten Analyse führen. In der Datenbankwelt hingegen spielt die genaue Formulierung der Anfragen keine so große Rolle, da automatische Optimierungen der Anfragen üblich sind. In dieser Masterarbeit wird untersucht, inwieweit sich die Konzepte der Optimierungen von Anfragen aus der Datenbankwelt auf die Konzepte von inkrementelle Modellanalysen übertragen lassen. Am Beispiel von NMF Expression wird gezeigt, wie solche Optimierungen für inkrementelle Modellanalysen umgesetzt werden können. Die implementierten Optimierungen werden anhand von definierten Modellanalysen getestet und evaluiert.

Freitag, 4. Mai 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}} (Keine Vorträge)

Freitag, 11. Mai 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Lennart Hensler
Titel Streaming Model Analysis - Synergies from Stream Processing and Incremental Model Analysis
Vortragstyp Masterarbeit
Betreuer(in) Georg Hinkel
Vortragsmodus
Kurzfassung Many modern applications take a potentially infinite stream of events as input to interpret and process the data. The established approach to handle such tasks is called Event Stream Processing. The underlying technologies are designed to process this stream efficiently, but applications based on this approach can become hard to maintain, as the application grows. A model-driven approach can help to manage increasing complexity and changing requirements. This thesis examines how a combination of Event Stream Processing and Model-Driven Engineering can be used to handle an incoming stream of events. An architecture that combines these two technologies is proposed and two case studies have been performed. The DEBS grand challenges from 2015 and 2016 have been used to evaluate applications based on the proposed architecture towards their performance, scalability and maintainability. The result showed that they can be adapted to a variety of change scenarios with an acceptable cost, but that their processing speed is not competitive.

Freitag, 18. Mai 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Simon Dürr
Titel Modellierung und Verifikation von Mehrgüterauktionen als Workflows am Beispiel eines Auktionsdesigns
Vortragstyp Masterarbeit
Betreuer(in) Jutta Mülle
Vortragsmodus
Kurzfassung The presentation will be in English.

Die Zielsetzung in dieser Arbeit war die Entwicklung eines Systems zur Verifikation von Mehrgüterauktionen als Workflows am Beispiel eines Auktionsdesigns. Aufbauend auf diversen Vorarbeiten wurde in dieser Arbeit das Clock-Proxy Auktionsdesign als Workflow modelliert und zur Verifikation mit Prozessverifikationsmethoden vorbereitet. Es bestehen bereits eine Vielzahl an Analyseansätzen für Auktionsdesign, die letztendlich aber auf wenig variierbaren Modellen basieren. Für komplexere Auktionsverfahren, wie Mehrgüterauktionen, die in dieser Arbeit betrachtet wurden, liefern diese Ansätze keine zufriedenstellenden Möglichkeiten. Basierend auf den bereits bestehenden Verfahren wurde ein Ansatz entwickelt, dessen Schwerpunkt auf der datenzentrierten Erweiterung der Modellierung und der Verifikationsansätze liegt. Im ersten Schritt wurden daher die Regeln und Daten in das Workflowmodell integriert. Die Herausforderung bestand darin, den Kontroll-und Datenfluss sowie die Daten und Regeln aus dem Workflowmodell über einen Algorithmus zu extrahieren und bestehende Transformationsalgorithmen hinreichend zu erweitern. Die Evaluation des Ansatzes zeigt, dass die Arbeit mit der entwickelten Software das globale Ziel, einen Workflow mittels Eigenschaften zu verifizieren, erreicht hat.

Vortragende(r) Alexander Poth
Titel Statistical Generation of High-Dimensional Data Streams with Complex Dependencies
Vortragstyp Proposal
Betreuer(in) Edouard Fouché
Vortragsmodus
Kurzfassung The extraction of knowledge from data streams is one of the most crucial tasks of modern day data science. Due to their nature data streams are ever evolving and knowledge derrived at one point in time may be obsolete in the next period. The need for specialized algorithms that can deal with high-dimensional data streams and concept drift is prevelant.

A lot of research has gone into creating these kind of algorithms. The problem here is the lack of data sets with which to evaluate them. A ground truth for a common evaluation approach is missing. A solution to this could be the synthetic generation of data streams with controllable statistical propoerties, such as the placement of outliers and the subspaces in which special kinds of dependencies occur. The goal of this Bachelor thesis is the conceptualization and implementation of a framework which can create high-dimensional data streams with complex dependencies.

Freitag, 25. Mai 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Christian Bitterwolf
Titel Bestimmung von Aktionsidentität in gesprochener Sprache
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Weigelt
Vortragsmodus
Kurzfassung Natürliche Sprache enthält Aktionen, die ausgeführt werden können.

Innerhalb eines Diskurses kommt es häufig vor, dass Menschen eine Aktion mehrmals beschreiben. Dies muss nicht immer bedeuten, dass diese Aktion auch mehrmals ausgeführt werden soll. Diese Bachelorarbeit untersucht, wie erkannt werden kann, ob sich eine Nennung einer Aktion auf eine bereits genannte Aktion bezieht. Es wird ein Vorgehen erarbeitet, das feststellt, ob sich mehrere Aktionsnennungen in gesprochener Sprache auf dieselbe Aktionsidentität beziehen. Bei diesem Vorgehen werden Aktionen paarweise verglichen. Das Vorgehen wird als Agent für die Rahmenarchitektur PARSE umgesetzt und evaluiert. Das Werkzeug erzielt ein F1-Maß von 0,8, wenn die Aktionen richtig erkannt werden und Informationen über Korreferenz zwischen Entitäten zur Verfügung stehen.

Freitag, 1. Juni 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}} (Keine Vorträge)

Freitag, 8. Juni 2018

iCal (Download)
Ort: Raum 252 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Fabian Wiest
Titel Objektorientierte Programmierung im natürlichsprachlichen Dialogsystem JustLingo
Vortragstyp Masterarbeit
Betreuer(in) Alexander Wachtel
Vortragsmodus
Kurzfassung Das in Microsoft Excel integrierte Add-In JustLingo ist ein System, das ermöglicht, natürlichsprachliche Eingaben in die Formelsprache von Excel zu überführen. Motiviert durch die Möglichkeit einfache Algorithmenbeschreibungen der Benutzer zu erkennen, wird in dieser Arbeit eine zusätzliche Erweiterung zum bestehenden System vorgestellt, die das Themengebiet der Objektorientierung einführt. Dabei werden die Nutzereingaben zunächst in UML-Klassennotation überführt. Diese Zwischendarstellung kann dann in ausführbaren C#-Klassencode samt Klassen, Attribute sowie Methoden überführt werden. Zusätzlich verfügt der Prototyp über ein Werkzeug, das in den UML-Diagrammen nicht nur nach existierenden Entwurfsmustern der Softwaretechnik sucht, sondern auch teilweise vorhandene Muster automatisiert vervollständigen kann. Zur Evaluierung der Arbeit wurde das System mit Beschreibungen aus den Klausuraufgaben, die Informatikstudenten im dritten Semester lösen können müssen, konfrontiert. Bei den acht Klausuraufgaben sollten Klassen und deren Beziehungen sowie Attribute und Methoden in den Beschreibungen erkannt werden. Das System hat dabei einen Precision-Wert von 0,70, einen Recall-Wert von 0,59 und einen F-Wert von 0,63 erreicht.

Freitag, 15. Juni 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Timo Maier
Titel Automatische Vorhersage von Änderungsausbreitung basierend auf Anforderungsänderungen in Automatisierungssystemen
Vortragstyp Bachelorarbeit
Betreuer(in) Kiana Busch
Vortragsmodus
Kurzfassung Automatisierungssysteme sind langlebige, softwaregesteuerte Systeme, die aufgrund wechselnder Anforderungen typischerweise mehrere Evolutionszyklen durchlaufen. Da Automatisierungshardware und Software eng verzahnt sind betreffen Änderungen am System oft beide Bestandteile und Änderungsausbreitung ist von Hand nur schwer nachvollziehbar. KAMP ist ein existierender Ansatz zur automatischen Änderungsausbreitungsanalyse. Hier werden Metamodelle verwendet um Änderungsausbreitung mithilfe von definierten Regeln zu berechnen. Die hier vorgestellte Bachelorarbeit erweitert KAMP mit dem Ziel, von der Architektur dieser Systeme zu abstrahieren und Anforderungen mit einzubeziehen. Somit soll eine Änderungsausbreitungsanalyse auf Basis von Anforderungsänderungen in Automatisierungssystemen unterstützen werden. Um Anforderungen zu formalisieren werden Metamodelle für Anforderungen und Entwurfsentscheidungen eingebunden. Evaluiert wird auf Basis vordefinierter Evolutionsszenarien eines Labormodells einer Automatisierungsanlage (xPPU).
Vortragende(r) Inna Belyantseva
Titel Eine Domänenspezifische Sprache für Änderungsausbreitungsregeln
Vortragstyp Masterarbeit
Betreuer(in) Kiana Busch
Vortragsmodus
Kurzfassung Im Zuge der Masterarbeit sollte eine domänenspezifische Sprache für Änderungsausbreitungsregeln evaluiert und erweitert werden.

Durch diese Sprache wird es Domänenexperten ermöglicht, Änderungsausbreitungsregeln auf Grundlage eines Metamodells innerhalb des Änderungsausbreitungsframeworks zu erstellen. Dabei sind keine tiefer gehenden Kenntnisse der Java-Programmierung oder des Änderungsausbreitungsframeworks notwendig. Aus den in dieser Sprache formulierten Regeln werden automatisch Java-Klassen generiert, die eine Änderungsausbreitungsberechnung durchführen können. Zu Evaluationszwecken wurden die bisher mittels Java-Methoden implementierten Änderungsausbreitungsberechnungen untersucht. Diese konnten in Regelklassen gegliedert und teilweise in der Sprache abgebildet werden. Für die nicht abbildbaren Regeln wurden neue Sprachkonstrukte konzipiert. Zudem wurde die Übertragbarkeit von der Sprache zwischen unterschiedlichen Anwendungsdomänen untersucht.

Vortragende(r) Nico Kopp
Titel Entwicklungsmethoden für Produktfamilien
Vortragstyp Masterarbeit
Betreuer(in) Erik Burger
Vortragsmodus
Kurzfassung In dieser Masterarbeit werden Methodiken erarbeitet, welche die Entwicklung von Produktlinien in der Modellbasierten Systementwicklung (MBSE) unterstützen sollen.

Für die Verhaltensbeschreibung von Systemen werden unter anderem Aktivitätsdiagramme verwendet, die keine expliziten Konstrukte zur Modellierung von Variabilität anbieten. Deshalb wird in dieser Arbeit ein Ansatz zur Modellierung von Variabilität in Aktivitätsdiagrammen vorgestellt, der Metamodell-unabhängig ist und somit nicht nur für Aktivitätsdiagramme verwendet werden kann. Dieser Ansatz wird mit gängigen Ansätzen der Variabilitätsmodellierung verglichen und es wird unter anderem untersucht, inwieweit dieser Ansatz die Elementredundanz im Vergleich zu den anderen Ansätzen verringert. Anschließend wird erarbeitet, wie Aktivitätsdiagramme und gefärbte Petri-Netze untereinander konsistent gehalten werden können. Dazu werden deren Gemeinsamkeiten und Unterschiede herausgearbeitet, um Konsistenzhaltungsregeln zu definieren und die Grenzen der Konsistenzhaltung zu finden. Zum Abschluss wird skizziert, was notwendig ist, um die beiden Ansätze miteinander zu kombinieren, um eine Verhaltensbeschreibung einer Produktlinie aus Aktivitätsdiagrammen und gefärbten Petri-Netze zu erhalten, bei denen stets die Aktivitätsdiagramme und Petri-Netze der einzelnen Produktkonfigurationen konsistent zueinander sind.

Freitag, 15. Juni 2018

iCal (Download)
Ort: Raum 010 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Florian Hennerich
Titel Trend Monitoring on Twitter Streams with Semantic Change Analysis
Vortragstyp Proposal
Betreuer(in) Adrian Englhardt
Vortragsmodus
Kurzfassung Die natürliche Sprache befindet sich in ständigem Wandel. Mittels Semantic Change Analysis kann eine Änderung der Bedeutung von Wörtern zwischen Zeitpunkten festgestellt werden. Herkömmliche Semantic Change Detection Systeme arbeiten nur auf statischen Korpora. Durch Social Media wird es jedoch ermöglicht Sprache in Echtzeit zu analysieren. Bisherige Ansätze sind jedoch nicht dafür geeignet auf einem Textstrom zu arbeiten. In dieser Masterarbeit soll deshalb ein Echtzeitsystem zur Verarbeitung von Textströmen entworfen werden, welches frühzeitig die Änderung einer Wortbedeutung aufzeigt. Grundlage hierfür ist die Nutzung und Anpassung geeigneter Einbettung von Wörtern, die zum einen gute Vektoren liefern und zum anderen trotz Begrenzung der Laufzeit und des Speichers den Textstrom gut repräsentieren. Des Weiteren muss das System einen geeigneten Change Detection Algorithmus umfassen. Zur Evaluation soll ein synthetischer Korpus generiert werden, um die verschiedenen Methoden vergleichen zu können. Anschließend soll eine explorative Untersuchung auf Echtweltdaten durchgeführt werden.

Freitag, 22. Juni 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Dou Beibei
Titel Analysis of Classifier Performance on Aggregated Energy Status Data
Vortragstyp Masterarbeit
Betreuer(in) Dominik Werle
Vortragsmodus
Kurzfassung Non-intrusive load monitoring (NILM) algorithms aim at disaggregating consumption curves of households to the level of single appliances. However, there is no conventional way of quantifying and representing the tradeoff between the quality of analyses, such as the accuracy of the disaggregated consumption curves, and the load on the available computing resources. Thus, it is hard to plan the underlying infrastructure and resources for the analysis system and to find the optimal configuration of the system. This thesis introduces a system that assesses the quality of different analyses and their runtime behavior. This assessment is done based on varying configuration parameters and changed characteristics of the input dataset. Varied characteristics are the granularity of the data and the noisiness of the data. We demonstrate that the collected runtime behavior data can be used to choose reasonable characteristics of the input data set.
Vortragende(r) Eric Weinstock
Titel Blueprint for the Transition from Static to Dynamic Deployment
Vortragstyp Bachelorarbeit
Betreuer(in) Robert Heinrich
Vortragsmodus
Kurzfassung This thesis defnes a blueprint describing a successful ad-hoc deployment with generally applicable rules, thus providing a basis for further developments. The blueprint itself is based on the experience of developing a Continuous Deployment system, the subsequent tests and the continuous user feedback. In order to evaluate the blueprint, the blueprint-based dynamic system was compared with the previously static deployment and a user survey was conducted. The result of the study shows that the rules described in the blueprint have far-reaching consequences and generate an additional value for the users during deployment.

Freitag, 29. Juni 2018

iCal (Download)
Ort: Raum 010 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Marcel Hiltscher
Titel Robust Subspace Search
Vortragstyp Proposal
Betreuer(in) Georg Steinbuss
Vortragsmodus
Kurzfassung In this thesis, the idea of finding robust subspaces with help of an iterative process is being discussed. The process firstly aims for subspaces where hiding outliers is feasible. Subsequently, the subspaces used in the first part are being adjusted. In doing so, the convergence of this iterative process can reveal valuable insights in systems where the existence of hidden outliers poses a high risk (e.g. power station). The main part of this thesis will deal with the aspect of hiding outliers in high dimensional data spaces and the challenges resulting from such spaces.
Vortragende(r) Till Stöckmann
Titel Untersuchung des Trade-Offs zwischen Privacy und Forecasting-Qualität
Vortragstyp Proposal
Betreuer(in) Christine Tex
Vortragsmodus
Kurzfassung Diese Arbeit befasst sich mit den Themen Realisierung des Privacy-Aspekts bei Smart Meter Daten durch Pertubation, sowie der Güte der Forecasts auf ebendiesen Daten. Genaue Vorhersagen über zukünftigen Stromverbrauch (Forecast) gelten als eine der Errungenschaft durch die Etablierung von Smart Metern. Installiert in Privathaushalten stellen Smart Meter aber auch ein neues Einfallstor in die Privatsphäre des Verbrauchers dar. Die Lösung ist es, die Daten vor der weitergehenden Verarbeitung durch Pertubation zu verschleiern. Mit dem Gewinn an Privatsphäre verlieren die Messdaten an Güte. Die Bachelorarbeit befasst sich mit diesen gegensätzlichen Eigenschaften der Messdaten. Zentrale Fragestellung ist, wie weit man die Daten verschleiern kann und trotzdem gute Forecast-Ergebnisse bekommt.

Freitag, 29. Juni 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Robert Hochweiß
Titel Analyse und Korrektur von Disfluenzen in gesprochener Sprache
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Weigelt
Vortragsmodus
Kurzfassung Bei Disfluenzen handelt es sich um Unterbrechungen des normalen Sprechflusses, die durch Fehler, Wortwiederholungen, Füllwörter oder ähnliche andere Wörter entstanden sind. Sie sind ein wesentlicher Bestandteil von spontan gesprochenen Äußerungen. Sie erschweren jedoch eine nachfolgende Bearbeitung dieser Äußerungen und müssen daher korrigiert werden.

Eine automatisierte Korrektur erweist sich aufgrund des unregelmäßigen Aufbaus der Disfluenzen als schwierig. Deshalb wird in dieser Bachelorarbeit die Erkennung und Korrektur von Disfluenzen in natürlichsprachlichen Äußerungen untersucht. Hierzu wird mit Hilfe eines maschinellen Lernverfahrens ein Klassifikator entwickelt, der Disfluenzen erkennt und korrigiert. Der Klassifikator wird dabei als Agent für die Rahmenarchitektur PARSE umgesetzt. Die Funktionalität des entworfenen Werkzeugs wird anhand von händischen Transkriptionen sowie einem Testdatensatz des Switchboard-Korpus evaluiert. Auf diesen beiden Datensätzen wird entsprechend ein F1-Wert von 0,710 beziehungsweise 0,792 erreicht.

Freitag, 6. Juli 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Dominik Klooz
Titel Semi-automatic Consistency Preservation of Models
Vortragstyp Bachelorarbeit
Betreuer(in) Heiko Klare
Vortragsmodus
Kurzfassung In order to manage the high complexity of developing software systems, oftentimes several models are employed describing different aspects of the system under development. Models often contain redundant or dependent information, meaning changes to one model without adjustments to others representing the same concepts lead to inconsistencies, which need to be repaired automatically. Otherwise, developers would have to know all dependencies to preserve consistency by hand.

For automated consistency preservation, model transformations can be used to specify how elements from one model correspond to those of another and define consistency preservation operations to fix inconsistencies. In this specification, it is not always possible to determine one generally correct way of preserving consistency without insight into the intentions of the developer responsible for making the changes. To be able to factor in underlying intentions, user interactions used to clarify the course of consistency preservation in ambiguous cases are needed. Existing approaches either do not consider user interactions during consistency preservation or provide an unstructured set of interaction options. In this thesis, we therefore identify a structured classification of user interaction types to employ during consistency preservation. By applying those types in preexisting case studies for consistency preservation between models in different application domains, we were able to show the applicability of these types in terms of completeness and appropriateness.

Furthermore, software projects are rarely developed by a single person, meaning that multiple developers may work on the same models in different development branches and combine their work at some point using a merge operation. One reasonable option to merge different development branches of models is to track model changes and merge the change sequences by applying one after another. Since the model state changed due to changes made in the one branch, the changes in the other branch can potentially lead to different user decisions being necessary for consistency preservation. Nevertheless, most necessary decisions will be the same, which is why it would be useful to reuse the previously applied choices if possible. To achieve this, we provide a concept for storing and reapplying decisions during consistency preservation in this thesis. Thus, we establish which information is necessary and reasonable to represent a user interaction and allow for its correct reuse. By applying the reuse mechanism to a change scenario with several user interactions in one of the case studies mentioned above, we were able to show the feasibility of our overall concept for correctly reusing changes.

Vortragende(r) Maximilian Schecher
Titel Using Architectural Design Space Exploration to Quantify Cost-to-Quality Relationship
Vortragstyp Bachelorarbeit
Betreuer(in) Anne Koziolek
Vortragsmodus
Kurzfassung QUPER ist eine Methode um bei einer Release-Plannung, bei der eine bestimmte Qualitätsanforderung zentral ist, das Fällen von Entscheidungen einfacher zu machen. Die Methode ist genau dann äußerst hilfreich, wenn das Softwareprojekt mehrere konkurrierende Produkte auf dem Markt hat und eine bestimmte Qualitätsanforderung den Wert der Software für den Kunden stark beeinflusst. QUPER benötigt allerdings Schätzungen des Entwicklungsteams und ist somit stark von der Erfahrung dessen abhängig. Das Palladio Component Model in Kombination mit PerOpteryx können dabei helfen, diese groben Schätzungen durch genauere Information für ein kommendes Release zu ersetzen: Mit einem gegebenen Palladio-Modell und einer potentiellen Verbesserung für die Software kann uns PerOpteryx die genaue Verbesserung der Qualitätsanforderung geben. In dieser Arbeit werden zuerst die QUPER-Methode allein und dann QUPER mit Hilfe von PerOpteryx auf zwei exemplarische Softwareprojekte angewandt und die Ergebnisse verglichen.

Freitag, 13. Juli 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Alexander Dick
Titel User-centric Outlier Detection on Energy Data
Vortragstyp Proposal
Betreuer(in) Holger Trittenbach
Vortragsmodus
Kurzfassung Am Campus Nord messen Smart Meter in einer Forschungsfabrik alle 5 Sekunden den Stromverbrauch und weitere elektrische Messgrößen wie z.B. die elektrische Spannung. In meiner Arbeit geht es darum, ein interaktives System zur Erkennung von Auffälligkeiten in den daraus resultierenden Zeitreihen zu erstellen. Zudem soll ein Fachexperte zu einem Teil der Datenpunkte Feedback geben und so die Verwendung von semiüberwachten Lernverfahren ermöglichen. Allerdings sind aktuelle Lernverfahren, die den Nutzer in die Ausreißererkennung einbinden, nicht für Zeitreihen ausgelegt.

Das Ziel der Arbeit ist die Anpassung von bestehenden interaktiven Lernverfahren auf Zeitreihen und die anschließende Evaluierung dieser Verfahren mit Fachexperten. Im Rahmen dieser Arbeit werden dafür zunächst die Zeitreihen auf statische Features abgebildet. Im Anschluss werden anhand eines Prototypen verschiedene interaktive Lernstrategien mit einem Nutzer evaluiert.

Freitag, 20. Juli 2018

iCal (Download)
Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}} (Keine Vorträge)